
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The manuscript by Park et al. describes results from work that integrates mathematical modeling 

predictions regarding combinatorial drug targets and testing these predictions in iPSC-derived 

cerebral organoids as a high-content drug screening system. 

 

There are many positive aspects of the manuscript, and overall I am very enthusiastic about the 

presented results. The manuscript is very well written, easy to follow, and the presented results 

can be of broad scientific interest. The development of a high-throughput drug screening system 

that incorporates advanced organoid systems and mathematical modeling is a substantial 

strength. While I imagine this workflow can test new molecules, inhibitors, etc., its more exciting 

aspect lies in the ability to screen already approved drugs for new clinical indications quickly, thus 

reducing the cost and time to new potential treatments. 

 

However, I believe several areas of concern are essential to address to improve the manuscript 

and interpretation of the results prior to acceptance. 

 

* Research reproducibility of the modeling results: While the Boolean functions of the model are 

available as plain text in the Supplementary Excel file, the model should be shared in the SBML-

qual format (PMID: 24321545) to make it easier for others to reproduce the presented research, 

and to further expand the model. At a minimum, this SBML file should be available as part of this 

manuscript. Better would be making the model available in any or all of existing Boolean model 

repositories (e.g., BioModels (which has been supporting Boolean models for a while now; PMID: 

29106614 ), GINsim.org, Cell Collective; PMID: 22871178). 

 

* Related to reproducibility, I don't believe the methods for the modeling component are 

comprehensive enough. For example, what initial state(s) did the authors use for the quality 

control input-output analyses (Fig. 5 and Fig. 5-1), and the actual predictions? Did the authors 

perform initial condition sensitivity analysis? 

 

* For the oxidative stress input-output analyses: what activity levels were used for other external 

variables (e.g., Reelin, APOE4, etc.)? Did the authors do these analyses for multiple external 

conditions? 

 

* It is not clear how oxidative stress ("ROS") in the model was used for input-output analyses with 

varying activity levels, because the model (Fig 4 and Excell file) shows that several other model 

components regulate ROS -- in other words, it is not an independent variable (input) that could be 

easily used for input-output analyses. 

 

* The authors did an excellent job annotating the model with citations specific to the model 

components’ interactions. This level of annotations will aid in the transparency of the model. For 

readability issues, can the authors replace the PMIDs in all supplementary documents with actual 

citations and references? 

 

* In addition to providing more details about the modeling methodology and model/simulation set-

up, it would be helpful if the authors included citations to offer readers with options further to dive 

even deeper into Boolean/logical modeling. Examples of more recent reviews on the topic include 

PMID: 27303434, 32313939, etc. BoolNet should be cited (PMID: 20378558). Finally, the input-

output analysis of the model leverages the conversion of the binary input/output of Boolean 

networks into semi-continuous Activity Levels and "%ON" concepts originally developed in Helikar 

et al., 2008. As such, it might be appropriate to cite the work. 

 

* Some of the figures are very complex, making them hard to read without zooming in 



significantly (Fig 6 is the least readable) 

 

A few questions on the drug effect work/results: 

* For the drug effect studies, can the authors please more clearly explain what was/were the 

control(s)? 

* How many replicates were used? 

* How did the authors select the drug concentrations? 

* Why did the authors use 24h for the drug treatment? Did the analysis post-treatment happen at 

the 24-hour mark, or was it later? Why not use 48 or 72 hours? 

 

Minor concerns: 

 

* Line 45: remove "the" before precision medicine 

* Line 50: remove "the" before symptoms 

* Line 76: "in vitro" should be italicized 

* Line 99: "Mathematic" should be "Mathematical" 

* Line 128: Missing "genes" from "differentially expressed genes (DEG) patterns" 

* Line 197: Remove "comprehensive" -- while the model is not a "toy model,” comprehensive is a 

relative term, and I don't believe this model is comprehensive (for example many other pathways 

known to interact with the modeled pathways could be included). Perhaps "relevant" is a more 

appropriate word? 

* Line 313: Similar to above, I recommend removing "the whole" because the model does not 

include the entire interaction network 

* Line 321: "was focusing" does not seem grammatically correct; perhaps change to "was to focus 

on.."? 

* Line 333: remove "but" 

 

Best wishes, 

 

Tomas Helikar 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This manuscript entitled “A network-based drug-screening platform for Alzheimer’s disease by 

integrating mathematical modeling and pathological features of human brain organoids” describes 

a network-based drug-screening platform developed by integrating mathematical modeling and 

the pathological features of Alzheimer’s disease (AD) with human iPSC-derived cerebral organoids. 

Basic idea of this manuscript is a novel and interesting in developing drug-screening for 

Alzheimer’s disease. 

However, authors should clearly describe their methods in construction of AD molecular network. 

How did they narrow genes/proteins/phenotypes down to only 77 genes/proteins/phenotypes? It 

appears to be an arbitrary choice. At least, AlzPathway consists of 1,347 species (genes and 

proteins) and 129 phenotypes. Authors need to explain the reason why they focus on MAPK 

signaling pathway, WNT signaling pathway, and PI3K-AKT signaling pathway as molecular 

regulatory network of AD (Fig. 4A) which is a basis for network analysis in this manuscript. By the 

way, Fig. 4A is the correct figure? For example, Reelin has relationships with not only Apoer2 but 

also VLDLR and Apoptosis according to a logic table (Supplementary Table 2). 

Authors also should clearly describe their methods in analysis of the AD network model and 

identification of candidate drugs. For example, Fig. 5A illustrates up-regulated and down-regulated 

pathways according to their perturbation analysis, but they did not explain the definition of “up-

regulated” and “down-regulated” pathways, and they did not show their results of perturbation 

analysis. Authors also should clearly describe their methods of attractor landscape analysis and 

unfortunately attractor landscape drawn in Figure 5B is too small to see. 



By the way, the idea of phenotype score is interesting to estimate the pathological level, but there 

are several concerns. Authors choose key proteins and phenotypes such as Aβ, p-tau, synapse 

loss, apoptosis, and autophagy for calculation of phenotype score, but how to choose these key 

proteins and phenotypes? Phenotype score looks work well but p-tau proteins have double impact 

on the score because p-tau activates synapse loss. They developed a network model but they did 

not consider these kinds of network effects in the calculation of phenotype score. If phenotype 

score well works to estimate the pathological level, why did they need to develop a network model 

and conduct a perturbation analysis? Why don’t authors directly conduct the phenotype score 

calculation? 

Basic idea of this manuscript is a novel and interesting in developing drug-screening for 

Alzheimer’s disease, but they need to clearly describe their methods and results. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

This is an interesting paper in which Park et al. first generate a cerebral organoid (CO) model of 

Alzheimer’s disease (AD) through two complementary appraoches: (1) using patient derived iPSCs 

(PiB+ iCOs) and (2) using isogenic iPSC lines with a CRISPR-edited apoE ε4 allele (E4iso iCOs). 

 

They do an in-depth characterization of their AD organoids to show that they recapitulate some 

key pathological phenotypes of the disease, which are absent in other in-vitro models. Finally, they 

use computational modeling of known AD pathways to narrow down a list of candidate targets, 

which are selected using mathematical modelling, for testing FDA-approved drugs. They attempt 

to validate these in some of their models. 

 

While an innovated and much approiaciated approach, there are some critical areas of 

Improvement: 

 

1) Data presented in Figure 3. Localization of the plaques could be clearer, especially the 

subcellular localization. Perhaps could be complemented by alternate imaging methods that show 

this key property of the model at higher resolution. 

 

2) Data presented in Figure 4. Potentially move oxidative stress validation to supplemental. 

 

3) Data presented in Figure 6. Park et al. tested FDA-approved drugs on both LPLA288T SNP PiB+ 

iCOs and E4iso iCOs as a validation of their network-based drug screening platform. Results of the 

validation experiments were not entirely conclusive due in part to lack of a clear dose-dependent 

relationship. These results therefore would require further validation, potentially by testing with 

more replicates and in the other cell lines. Drug testing was not performed on PiB+ iCOs that 

contain the ApoE ε4 allele. In addition to LPLA288T SNP PiB+ iCOs only representing a small 

subset of the iCOs used in this study as this SNP is not present in other PiB+ iCOs, these iCOs also 

do not carry the ApoE ε4 allele. Furthermore, although E4iso iCOs were used for drug testing, they 

are not derived from AD patient iPSCs. Thus, to properly validate their model for precision 

medicine applications, FDA-approved drugs need to also be tested on PiB+ iCOs that carry the 

ApoE ε4 allele. These COs better represent the genetic background of human sporadic AD patients 

than E4iso iCOs, while also carrying the ApoE ε4 allele missing in the LPLA288T SNP PiB+ iCOs. 

 

 

While I approaciate the unique aspect the mathematical model brings to the paper, I also felt the 

flow of the paper would be much improved if this was more concisely summarized in the main 

text. 

 

 

 



Reviewer #4: 

Remarks to the Author: 

The manuscript submitted describes a high-content drug-screening platform (HCS) that uses 

human iPSC-derived cerebral organoids (iCOs) in order to identify Alzheimer’s disease (AD) drug 

candidates. For this purpose, pluripotent stem cells (iPSC) derived from participants were used 

that had been selected on the basis of the presence or absence of pathological features of AD or 

the ApoE4 genotype. In addition to the use of iCO’s from participants with preclinical sporadic AD, 

a molecular regulatory network model for AD was developed and integrated in order to filter 

suitable candidates from a library of FDA-approved drugs, the efficacy of which was then tested in 

the HCS-system. 

 

From a technical point of view the described platform contains a couple of interesting and 

important new features that might help to overcome some of the present limitations in the use of 

organoids for high-content drug screening purposes. One of them is a stringent emphasis on 

quality control with respect to producing a large number of homogenous well shaped and evenly 

sized iCO’s. Demonstrating the feasibility of obtaining such iCOs will be relevant for many other 

applications of organoids and of interest to others in the community. 

 

The selection and comparison of iCO’s from participants with or without a high burden of Aβ, total 

tau and phosphorylated tau deposits, is also an important element of the screening platform 

presented, providing a potentially more relevant disease model for sporadic AD than those 

available so far. 

 

Furthermore, the integration of a molecular regulatory network model for AD into the screening 

platform is put forward by the authors as another key innovative element that will facilitate the 

identification of suitable drug candidates. The approach nicely exploits multiple sources of 

information: It takes both gene expression data from iPSC models and prior knowledge from 

curated AD pathways into consideration, and also prefilters the candidate drugs by removing those 

that do not pass the blood-brain barrier (BBB). 

 

However, it is not clear that the network analysis in this approach provides much additional and 

robust filtering information for the candidate drug selection: Instead of performing an unbiased 

genome-scale network analysis, the authors have already pre-selected a network of only 77 nodes 

with well-known functional AD associations, mainly from existing curated AD pathways in KEGG 

AlzPathway. This limits the selection of candidate drug targets significantly - the 77 nodes cover 

already well-studied AD protein targets, and due to this pre-selection, a subset of them will always 

be chosen as candidate targets, independent of the observed alterations in the iPSC 

transcriptomics data. 

 

The known drug associations of these 77 nodes, and the drug BBB-filter will further reduce the 

number of candidate targets and compounds, again independent of the content of the iPSC data. 

Thus, before applying any network analysis, the drugs are already pre-filtered to those that have 

previously been described to target the known AD-associated proteins in the AlzPathway map or 

the KEGG Alzheimer pathway and that pass the BBB. These will all be reasonable candidate drugs, 

but with limited novelty. 

 

The network analysis is used as an additional filter to further reduce the candidate drug selection, 

but it is unclear whether it provides significant and robust filtering information beyond the previous 

generic filters. The two main reasons why there are doubts regarding the robustness and reliability 

of this additional filtering step are outlined in the comments 1) and 2) below: The small number of 

RNA-seq experiments limits the statistical power, the transcriptomics data comes from only 11 

participants, which may lead to subject-specific idiosyncasies (1), and the manuscript suggests 

that the significance scores to determine the differentially expressed genes may not have not been 

adjusted for multiple hypothesis testing and/or a relaxed p-value cut-off was used. 

 



Main comments: 

 

1.) One limitation is that the data comes from only 11 participants. The data for these subjects 

may not be representative for the overall population of sporadic AD patients, and subject-specific 

idiosyncrasies in the data that are not disease-relevant could lead to errors in the transcriptome-

based network model and perturbation analysis. The authors mention that they aim at a 

personalized precision medicine approach, but the distinction between disease-associated 

biological variance and other sources of variance in the data is still an issue with small numbers of 

subjects, and small numbers of RNA-seq experiments limiting the statistical power, in particular for 

the transcriptome-derived network analysis. It is therefore recommended to compare the data 

against larger public iPSC data for AD, e.g. derived from the GEO database for the transcriptomic 

analyses. 

 

2.) It is not clear whether the p-values that were used to define the differentially expressed genes 

(DEGs) were adjusted for multiple hypothesis testing. Using a relaxed p-value cut-off for the 

pathway analysis (-log10(p-value) > 1, corresponding to a p-value cut-off of 0.1) can be justified 

by taking into consideration that pathways with an enrichment of many small, close-to-significant 

alterations are likely disease-relevant. However, since the authors do not only aim at ranking GO 

processes, but also at identifying individual drug target genes, a false-discovery-rate (FDR) above 

10% for individual genes would lead to too many errors (in particular, if the authors did not use 

FDR-adjusted p-values, but nominal p-values). Therefore, FDR corrected p-values should be used 

for all analyses that rely on the significance of individual gene alterations. 

 

3) The authors state that the pre-selected network consists of 77 nodes and 203 links. While these 

nodes representing mainly genes/proteins from KEGG and AlzPathway definitely play important 

roles in AD, a significantly larger number of genes/proteins will likely be relevant for AD than this 

pre-filtered subset, and the restriction to mostly KEGG/AlzPathway-derived nodes may bias the 

results towards target genes in these pathways that are already well-known and whose associated 

drugs therefore have limited novelty. A possibility to avoid this limitation is to use a pathway-

agnostic network analysis (e.g. using a genome-scale network from the STRING web-service or 

other public resources for genome-scale gene regulatory or protein interaction networks) to 

identify network clusters of transcriptomic alterations, which are not already captured by the 

known pathway definitions. 

 

4) To show that the mathematical modeling / network analysis provides a significant added value 

beyond the compound filtering obtained from the network model pre-selection of 77 nodes and the 

BBB-filter, it would be useful to compare the ranked target and compound lists with and without 

the additional network analysis (e.g. testing whether there is an improved enrichment of known 

AD protein drug targets, such as BACE1, MAOB, MAPT etc., that have been considered in AD 

clinical trials, in the network analysis derived ranking list). 

 

In summary, the current manuscript describes the use of a drug screening platform that 

overcomes some of the limitations of current iPSC/iCO human disease models and is of potential 

interest beyond AD. However, it does not provide sufficient information to show that network 

analysis improves the filtering significantly beyond what is already achieved by the prior generic 

filtering steps. Some possibilities to adjust the analysis workflow (e.g. by using a genome-scale 

network analysis approach) are suggested. 
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Response to the Reviewers’ Comments and Summary of Changes 1 
 2 
*To reviewers: The Line numbers are based on the automatically-converted pdf 3 
file not the original manuscript word File (.docx).  4 
 5 
Response to the specific comments of Reviewer 1: 6 
 7 
[COMMENT #1]  8 
Research reproducibility of the modeling results: While the Boolean functions of the 9 
model are available as plain text in the Supplementary Excel file, the model should be 10 
shared in the SBML-qual format (PMID: 24321545) to make it easier for others to 11 
reproduce the presented research, and to further expand the model. At a minimum, this 12 
SBML file should be available as part of this manuscript. Better would be making the 13 
model available in any or all of existing Boolean model repositories (e.g., BioModels 14 
(which has been supporting Boolean models for a while now; PMID: 29106614), 15 
GINsim.org, Cell Collective; PMID: 22871178). 16 
[RESPONSE]  17 
Following the reviewer’s comment, we have converted our Boolean model to SBML-18 
qual format, and the SBML file is available at [https://github.com/syjang-19 
SBiE/Alz_neuron_network] (see ‘Methods – Mathematical modeling’ of the revised 20 
manuscript for details, line 631-632). The Boolean functions of our model were written 21 
in accordance with the BoolNet format, and they have been converted to SBML-qual 22 
format using BioLQM v0.6.1. As soon as our paper is accepted, we will add detailed 23 
annotations to our model and upload its SBML file to the existing Boolean model 24 
repositories such as BioModels, GINsim.org, CellCollective by referencing our study. 25 
 26 
[COMMENT #2]  27 
Related to reproducibility, I don't believe the methods for the modeling component are 28 
comprehensive enough. For example, what initial state(s) did the authors use for the 29 
quality control input-output analyses (Fig. 5 and Fig. 5-1), and the actual predictions? 30 
Did the authors perform initial condition sensitivity analysis? 31 
[RESPONSE]  32 
For the quality control input-output analyses (Supplementary Fig. 7-1, 7-2), the initial 33 
state of all but three nodes were set to zero: the value of ‘ROS’ node was set according 34 
to input conditions and the values of ‘APOE4’ and ‘LPL’ were fixed depending on the 35 
given genetic conditions. For given genetic conditions, qualitative input-output analysis 36 
was performed for all 1,000 input levels of ‘ROS’ between 0% and 100% over 0.1% 37 
increment. For each input level, the Boolean network simulation was conducted over 38 
1,000-time steps. Each node’s state value during the last 300-time steps were tracked, 39 
and the average node state value in this period was taken as the ‘average node activity’.  40 
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For the actual prediction (Fig. 5), we used the ‘getAttractors’ function in the 41 
‘BoolNet’ package. Due to the high computational cost of simulating all initial states, 42 
we randomly sampled one million initial states. We confirmed that the main results 43 
were not sensitive to the randomly selected initial states through repeated sampling 44 
processes. The function’s ‘method’, ‘type’ parameters were set to ‘random’ and 45 
‘synchronous’, respectively to find attractors. We also used ‘genesON’ and ‘genesOFF’ 46 
parameters of the function to simulate genetic conditions and perturbations. 47 

Following the reviewer’s comment, we have further performed initial condition 48 
sensitivity analysis of the input-output analyses. From the total of 77 nodes, a certain 49 
number of nodes except ‘ROS’, ‘APOE4’ and ‘LPL’ have been randomly selected and 50 
given an initial state value of ‘1’ and the others have been set to ‘0’. The number of 51 
selected nodes has been set from 10 to 70 with 10 nodes interval, and the input-output 52 
analysis has been performed for these randomly generated initial state values. The 53 
average node activities obtained from this analysis have been compared with the 54 
previous results using the ‘pcc’ function of the ‘sensitivity’ R package. We have set the 55 
value of the ‘nboot’ parameter of the function to 100. The results of this initial condition 56 
sensitivity analysis of our Boolean model have all showed Pearson correlation 57 
coefficients of 1. This is because, when we fixed the value of ‘APOE4’ or ‘LPL’ node 58 
for given genetic conditions, all initial states of each simulation trial have converged to 59 
only one attractor. Consequently, we have confirmed that the results of input-output 60 
analyses are not affected by initial conditions. We have added the aforementioned 61 
description to ‘Input-output relationships of the network model’ in ‘Methods’ of the 62 
revised manuscript (line 658-670). 63 
 64 
[COMMENT #3]  65 
For the oxidative stress input-output analyses: what activity levels were used for other 66 
external variables (e.g., Reelin, APOE4, etc.)? Did the authors do these analyses for 67 
multiple external conditions? 68 
[RESPONSE]  69 
In our study, ‘APOE4’ was the only external variable considered in this network model. 70 
‘APOE4’, which stands for Apolipoprotein isoform 4, is a well-known risk factor of 71 
Alzheimer’s disease1. The activity level of ‘APOE4’ was set to have a value of ‘0’ or ‘1’, 72 
depending on the given genetic condition. If APOE isoform is ε4 allele, the activity 73 
level of ‘APOE4’ was fixed to have a value of ‘1’, otherwise it was fixed to have a 74 
value of ‘0’. For the case of ‘Reelin’, we found that the negative link from ‘Apoptosis’ 75 
was accidentally missing in the process of visualizing the Boolean model from the 76 
original logic table. The relationship between ‘Reelin’ and ‘Apoptosis’ was enlisted as 77 
‘Reelin = !Apoptosis’ in the original Supplementary Table 2 and was used in all 78 
processes of obtaining simulation results. In the revised manuscript, we have updated 79 
the figure for our Boolean model (Fig. 4) in accordance with the original logic table 80 
(Supplementary Table 2).  81 
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 82 
[COMMENT #4]  83 
It is not clear how oxidative stress ("ROS") in the model was used for input-output 84 
analyses with varying activity levels, because the model (Fig. 4 and Supplementary 85 
Table 2) shows that several other model components regulate ROS -- in other words, it 86 
is not an independent variable (input) that could be easily used for input-output analyses. 87 
[RESPONSE]  88 
In our study, oxidative stress (‘ROS’) was used as an input to describe the effects of 89 
aging, which is a major risk factor of Alzheimer’s disease that increases pathological 90 
protein levels (i.e. beta-amyloid, p-tau, etc.)2. However, because biological evidence 91 
that ROS is produced by beta-amyloid or Ca2+ ion exists, the regulatory interactions 92 
directed to ROS could not be ruled out in our model3. Thus, as the reviewer pointed out, 93 
ROS is not strictly an independent variable in our model. Despite this issue, we used 94 
ROS as an independent variable to analyze the changes of output node states for fixed 95 
initial ROS levels only for input-output analysis. 96 
 97 
[COMMENT #5]  98 
The authors did an excellent job annotating the model with citations specific to the 99 
model components’ interactions. This level of annotations will aid in the transparency 100 
of the model. For readability issues, can the authors replace the PMIDs in all 101 
supplementary documents with actual citations and references? 102 
[RESPONSE]  103 
Following the reviewer’s comment, we have revised the manuscript by replacing the 104 
PMIDs in all supplementary documents with actual citations and references. 105 
 106 
[COMMENT #6]  107 
In addition to providing more details about the modeling methodology and 108 
model/simulation set-up, it would be helpful if the authors included citations to offer 109 
readers with options further to dive even deeper into Boolean/logical modeling. 110 
Examples of more recent reviews on the topic include PMID: 27303434, 32313939, etc. 111 
BoolNet should be cited. Finally, the input-output analysis of the model leverages the 112 
conversion of the binary input/output of Boolean networks into semi-continuous 113 
Activity Levels and "%ON" concepts originally developed in Helikar et al., 2008. As 114 
such, it might be appropriate to cite the work.  115 
[RESPONSE]  116 
Following the reviewer’s comment, we have cited the latest review papers on 117 
Boolean/logical modeling in the revised manuscript (line 618-619). A citation for the 118 
BoolNet package has also been added (line 627-631). Finally, a citation for the Helikar 119 
et al., 2008 has also been added to the ‘Methods’ section of the revised manuscript, so 120 
that appropriate citation for the previous study is made (line 648). 121 
 122 
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[COMMENT #7]  123 
Some of the figures are very complex, making them hard to read without zooming in 124 
significantly (Fig. 6 is the least readable) 125 
[RESPONSE]  126 
We have increased the font size on our figures and especially modified Fig. 6. The 127 
graph type has been changed in order that the medicinal effects can be seen well at a 128 
glance (all of the cell viability data have moved to Supplementary Fig. 11. Instead, 129 
PiB+ #5 iCOs data were added in the Fig. 6 according to the Reviewer 4’s comment).  130 
 131 
[COMMENT #8]  132 
For the drug effect studies, can the authors please more clearly explain what was/were 133 
the control(s)?  134 
[RESPONSE]  135 
No drug treatment groups (we call them as ‘vehicle group’; Veh) were used as control 136 
groups. Since our drug powders were initially diluted in DMSO or distilled water (DW) 137 
to make them dissolve, iCOs of Veh groups receive a treatment with appropriate amount 138 
of DMSO or distilled water (DW) (the same volume of solution used to make drug 139 
dissolve) that do not contain drugs meant to affect iCOs. The detailed methods for the 140 
drug treatment were added to the ‘Drug treatment’ section which is described in the 141 
Methods section (line 521-526).  142 
 143 
[COMMENT #9]  144 
How many replicates were used? 145 
[RESPONSE]  146 
Six replicates (individual iCOs) per each drug dose were performed. We also mentioned 147 
it in the ‘Drug treatment’ section in the Methods section (line 526-527).  148 
 149 
[COMMENT #10]  150 
How did the authors select the drug concentrations?  151 
[RESPONSE] 152 
Since our drug candidates were subjected to drug repositioning, they had mainly been 153 
tested for applications in fields other than neurodegenerative disorders. Most of the 154 
references used cell types different from neurons. We could hardly find any studies 155 
treating the drugs on brain organoids as it is a relatively novel and unconventional 156 
method in drug screening. Consequently, we referred to studies using the drugs in in 157 
vitro application and optimized for our system by testing the dosage range that includes 158 
the optimal level suggested by the references.  159 

When setting the dosage range, we had two points into consideration. Firstly, a lower 160 
dosage limit should be tested to observe the potential neurotoxic effects of the drugs. 161 
Responsiveness to drugs might differ according to cell types, and iPSC-derived neurons, 162 
which resemble primary cells, could be more vulnerable to a higher concentration than 163 
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conventional cell lines. Secondly, the fact that brain organoids are three-dimensional 164 
aggregates of interconnected neurons with complex cytoarchitecture and extracellular 165 
matrix should be considered. These might serve as barriers to simple diffusion of drugs 166 
and induce essentially different drug penetration dynamics and subsequent uptake by 167 
cells compared to conventional monolayer culture. It led us to test the upper 168 
concentration limit as equal to or higher than the references.  169 

For example, Ripasudil, which is approved for glaucoma and ocular hypertension 170 
treatment, has been treated at a concentration of 10 μM on human corneal endothelial 171 
cells on the previous studies4,5; we tested various conditions ranging from 0.25 μM to 172 
10 μM to account for potential neurotoxicity. Everolimus, an mTOR inhibitor, has been 173 
treated on human coronary artery endothelial cells at 0.5 μM6, and on A-498 and Caki-1 174 
cell lines at 1 μM7. Thus, we set a dosage range spanning from 0.25 μM to 5 μM that 175 
can include the optimal dosage level indicated by the references. After setting the 176 
concentration range to be tested, we further validated it by MTT assay to observe its 177 
influence on cell viability. Although the drug effects were trivial on enhancing cell 178 
viability, we could not observe any harmful effects induced by the drugs at our treated 179 
doses.  180 
 181 
 182 
[COMMENT #11]  183 
Why did the authors use 24h for the drug treatment? Did the analysis post-treatment 184 
happen at the 24-hour mark, or was it later? Why not use 48 or 72 hrs? 185 
[RESPONSE]  186 
Although the ‘Veh’ groups (used as controls whereas the treatment groups were used as 187 
cases) were not treated with the drugs, they were simultaneously grown in the opti-188 
MEM media, which is not suitable for the permanent cell culture of iCOs, during the 189 
treatment of drugs with other iCOs. We thought the best time point will be that of 190 
‘showing a natural tendency of cell death but not too much’. We speculated 48 or 72h 191 
(>24h) may be too long for the drug test because the ‘Veh’ groups also can show 192 
excessive loss of neuronal cells (might be called as ‘cell senescence’) even without the 193 
drugs. As expected, the Veh group showed statistically significant loss of their own cell 194 
viability from 48h timepoint (reference figure below). So, we decided to use 24h 195 
timepoint for the drug treatment.  196 

   <Reference figure for COMMENT #11> 197 
 198 
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[COMMENT #12: Minor concerns]  199 
* Line 45: remove "the" before precision medicine/ * Line 50: remove "the" before 200 
symptoms/ * Line 76: "in vitro" should be italicized/ * Line 99: "Mathematic" should be 201 
"Mathematical"/ * Line 128: Missing "genes" from "differentially expressed genes 202 
(DEG) patterns"/ * Line 197: Remove "comprehensive" -- while the model is not a "toy 203 
model,” comprehensive is a relative term, and I don't believe this model is 204 
comprehensive (for example many other pathways known to interact with the modeled 205 
pathways could be included). Perhaps "relevant" is a more appropriate word/ * Line 313: 206 
Similar to above, I recommend removing "the whole" because the model does not 207 
include the entire interaction network /* Line 321: "was focusing" does not seem 208 
grammatically correct; perhaps change to "was to focus on."?/ * Line 333: remove "but" 209 
[RESPONSE]  210 
We corrected all of them. Thanks for the kind and detailed comments. 211 
 212 
   213 
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Response to the specific comments of Reviewer 2: 214 
 215 
[COMMENTS] 216 
This manuscript entitled “A network-based drug-screening platform for Alzheimer’s 217 
disease by integrating mathematical modeling and pathological features of human brain 218 
organoids” describes a network-based drug-screening platform developed by integrating 219 
mathematical modeling and the pathological features of Alzheimer’s disease (AD) with 220 
human iPSC-derived cerebral organoids. Basic idea of this manuscript is a novel and 221 
interesting in developing drug-screening for Alzheimer’s disease.  222 
However, authors should clearly describe their methods in construction of AD 223 
molecular network. [1]How did they narrow genes/proteins/phenotypes down to only 77 224 
genes/proteins/phenotypes? It appears to be an arbitrary choice. At least, AlzPathway 225 
consists of 1,347 species (genes and proteins) and 129 phenotypes. [2]Authors need to 226 
explain the reason why they focus on MAPK signaling pathway, WNT signaling 227 
pathway, and PI3K-AKT signaling pathway as molecular regulatory network of AD 228 
(Fig. 4A) which is a basis for network analysis in this manuscript. [3]By the way, Fig. 229 
4A is the correct figure? For example, Reelin has relationships with not only Apoer2 but 230 
also VLDLR and Apoptosis according to a logic table (Supplementary Table 2). 231 
[4]Authors also should clearly describe their methods in analysis of the AD network 232 
model and identification of candidate drugs. For example, Fig. 5A illustrates up-233 
regulated and down-regulated pathways according to their perturbation analysis, but 234 
they did not explain    the definition of “up-regulated” and “down-regulated” 235 
pathways, and [5]they did not show their results of perturbation analysis. [6]Authors also 236 
should clearly describe their methods of attractor landscape analysis and unfortunately 237 
[7]attractor landscape drawn in Figure 5B is too small to see. [8]By the way, the idea of 238 
phenotype score is interesting to estimate the pathological level, but there are several 239 
concerns. Authors choose key proteins and phenotypes such as Aβ, p-tau, synapse loss, 240 
apoptosis, and autophagy for calculation of phenotype score, but how to choose these 241 
key proteins and phenotypes? [9]Phenotype score looks work well but p-tau proteins 242 
have double impact on the score because p-tau activates synapse loss. They developed a 243 
network model but they did not consider these kinds of network effects in the 244 
calculation of phenotype score. If phenotype score well works to estimate the 245 
pathological level, [10]why did they need to develop a network model and conduct a 246 
perturbation analysis? Why don’t authors directly conduct the phenotype score 247 
calculation?  248 
Basic idea of this manuscript is a novel and interesting in developing drug-screening for 249 
Alzheimer’s disease, but they need to clearly describe their methods and results. 250 
 251 
[COMMENT #1] 252 
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How did they narrow genes/proteins/phenotypes down to only 77 253 
genes/proteins/phenotypes? It appears to be an arbitrary choice. At least, AlzPathway 254 
consists of 1,347 species (genes and proteins) and 129 phenotypes. 255 
[RESPONSE]  256 
The AlzPathway has various types of components (e.g. gene, protein, signaling pathway, 257 
etc.), so its components could not be directly used as nodes for the network model. For 258 
this reason, we used the AlzPathway for sorting out the list of signaling pathways. Of 259 
the components in the AlzPathway, only the signaling pathways of the neuron 260 
(indicated by ‘n_’ prefix) were considered for the construction of the network model. 261 
These pathways were grouped into Notch, RELN, MAPK, Jak/Stat, Wnt, NR1/NR2R, 262 
Ca2+, TGFβ and mTOR (PI3K-AKT) signaling pathways. Among them, TGFβ signaling 263 
pathway related to microglia8 was excluded.  Based on these signaling pathway 264 
information, we searched for experimental studies in neuronal context to the best of our 265 
knowledge. By using this literature-based approach, we reconstructed simple regulatory 266 
links (i.e. activate or inactivate) and actual regulatory relationships such as update logic 267 
of node state (e.g. A node = B node AND C node) (Supplementary Table 2).  268 
 269 
[COMMENT #2] 270 
Authors need to explain the reason why they focus on MAPK signaling pathway, WNT 271 
signaling pathway, and PI3K-AKT signaling pathway as molecular regulatory network 272 
of AD (Fig. 4a) which is a basis for network analysis in this manuscript. 273 
[RESPONSE]  274 
In our study, we focused on APOE4, LPL-related signaling pathways in line with the 275 
experimental results in the main manuscript (Fig. 2). Through a literature-based 276 
approach, we constructed the model network primarily based on MAPK, Wnt, and 277 
mTOR signaling pathways9-11, and also considered other signaling pathways in the 278 
AlzPathway. We have added more explanation on the model construction in the revised 279 
manuscript (line 608-612). 280 
 281 
[COMMENT #3] 282 
By the way, Fig. 4a is the correct figure? For example, Reelin has relationships with not 283 
only Apoer2 but also VLDLR and Apoptosis according to a logic table 284 
(Supplementary Table 2). 285 
[RESPONSE]  286 
As the reviewer pointed out, there was a typographical error in Fig. 4a of the original 287 
manuscript. In the revised manuscript, we have corrected this and updated the figure for 288 
our Boolean model in accordance with the original logic table. 289 
 290 
[COMMENT #4 & 6] 291 
Authors also should clearly describe their methods in analysis of the AD network model 292 
and identification of candidate drugs. For example, Fig. 5a illustrates up-regulated and 293 
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down-regulated pathways according to their perturbation analysis, but they did not 294 
explain the definition of “up-regulated” and “down-regulated” pathways.  295 
Authors also should clearly describe their methods of attractor landscape analysis 296 
[RESPONSE]  297 
As we described in the ‘Mathematical modeling’ section of ‘Methods’, attractor is a 298 
network state that represents a specific biological phenotype. Attractor landscape is the 299 
landscape of all attractors and the set of all states converging to each attractor (basin of 300 
attraction) in the state space of a given network model. Attractor landscape analysis 301 
enables quantitative evaluation of the network system by transforming complex 302 
dynamical properties of the network model into the states of convergence (attractors) 303 
and the converging propensity of initial states (basins). Using attractor landscape 304 
information, we can quantify node activities by averaging attractor states weighted by 305 
their basin sizes. In other words, attractor landscape analysis is a kind of procedure that 306 
can quantify node activities using attractor landscape information and further estimate 307 
the perturbation effect in silico. We have added the aforementioned description to 308 
‘Attractor landscape analysis’ in ‘Methods’ of the revised manuscript (line 633-641).  309 
 310 
The term ‘up-regulated’ and ‘down-regulated’ means the increase and decrease, 311 
respectively, of representative nodes (genes or proteins) for each signaling pathway. For 312 
instance, ‘up-regulated’ and ‘down-regulated’ correspond to the increase and decrease, 313 
respectively, of ERK node activity in case of the MAPK signaling pathway. The 314 
representative nodes for each signaling pathway are described on the right-side table of 315 
the Supplementary Fig. 8. 316 

 317 
[COMMENT #5] 318 
They did not show their results of perturbation analysis. 319 
[RESPONSE]  320 
The major perturbation analysis results used in the experiments (Fig. 5) were provided 321 
as a bar graph in the Supplementary Fig. 10. Other results could not be included in the 322 
Supplementary Dataset because the list of candidate targets is too long (e.g. the number 323 
of double perturbations: 70C2=2,416 cases). Instead, we provided the R-code for the 324 
perturbation analysis in the ‘Methods’ of the revised manuscript (line 631-632). 325 
 326 
[COMMENT #7] 327 
attractor landscape drawn in Figure 5b is too small to see. 328 
[RESPONSE]  329 
Following the reviewer’s comment, we have redrawn the ‘Attractor landscape’ in Fig. 5 330 
of the revised manuscript. 331 
In the conceptual image of the ‘① Node perturbation’ box of Fig. 5a, each grey circle 332 
in ‘Attractor landscape’ represents network state, which is a collection of node states (1 333 
or 0). The black circle is the attractor to which all states within the basin of attraction 334 
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converge. The grey circles within the boundary of attractor A belong to the basin of A. 335 
The basin size of attractor A, which is the number of grey circles in the basin of A, is 336 
larger than the basin size of attractor B. 337 
 338 
[COMMENT #8] 339 
By the way, the idea of phenotype score is interesting to estimate the pathological level, 340 
but there are several concerns. Authors choose key proteins and phenotypes such as Aβ, 341 
p-tau, synapse loss, apoptosis, and autophagy for calculation of phenotype score, but 342 
how to choose these key proteins and phenotypes? 343 
[RESPONSE]  344 
The reasons why we chose Aβ, p-tau, neuron loss, synapse loss, and autophagy as key 345 
proteins and phenotypes are as follows. First, because Aβ and p-tau are the well-known 346 
biological markers of Alzheimer’s disease, they were chosen as the target proteins the 347 
expression levels of which should be decreased. Second, the goal of our study is to 348 
identify an optimal target that can decrease the neuron/synapse loss, which is associated 349 
with the cognitive impairment in Alzheimer’s disease, by analyzing the network model. 350 
Third, based on previous findings that the degradation of autophagy function increases 351 
accumulation of Aβ, we included autophagy as a key phenotype12,13. Choosing 352 
autophagy as a key phenotype helps to understand whether the accumulation 353 
mechanism of Aβ is due to an increase of Aβ production or a decrease in autophagy 354 
function. For these reasons, we chose Aβ, p-tau, neuron loss, synapse loss, and 355 
autophagy as key proteins and phenotypes in this study.  356 

As we described in the ‘Analysis of the AD network model and identification of 357 
candidate drugs’ part of ‘Results’, we calculated the phenotype score using the key 358 
proteins and phenotypes’ node activities obtained from attractor landscape analysis of 359 
our network model. Therefore, simulation of the network model is a prerequisite to 360 
obtain the phenotype score. In the network model with a given genetic condition (e.g. 361 
APOE4, LPL), we can identify which node contributes to producing a desirable 362 
phenotype score using the node perturbation analysis as described in ‘Result’ of the 363 
main manuscript. The desirable phenotype score refers to the case where the activities 364 
of the pathological proteins and phenotypes are low. Hence, both perturbation analysis 365 
and calculation of the phenotype score are required to find the optimal target(s) for a 366 
given genetic condition. 367 
 368 
[COMMENT #9] 369 
Phenotype score looks work well but p-tau proteins have double impact on the score 370 
because p-tau activates synapse loss. They developed a network model but they did not 371 
consider these kinds of network effects in the calculation of phenotype score. 372 
[RESPONSE]  373 
Although there is a positive link from ‘p-tau’ to ‘Synapse loss’, activation of ‘p-tau’ 374 
alone cannot satisfy the sufficient condition for activating ‘Synapse loss’ according to 375 
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its update logic; (synapse_loss = (Cofilin | tau_p) & !(BDNF | CREB)). For this reason, 376 
there is no double impact of ‘p-tau’ on the phenotype score. 377 
  378 
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Response to the specific comments of Reviewer 3: 379 
 380 
[COMMENT #1]  381 
Data presented in Figure 3. Localization of the plaques could be clearer, especially the 382 
subcellular localization. Perhaps could be complemented by alternate imaging methods 383 
that show this key property of the model at higher resolution 384 
[RESPONSE]  385 
As the reviewer suggested, we have tried imaging brain organoid sections in higher 386 
resolution (40X) with Zeiss LSM 700 (Supplementary Fig. 5, line 192-196). The 387 
images clearly show that amyloid-beta aggregates are formed in extracellular interstitial 388 
spaces, and hyper-phosphorylated tau co-localizes intracellularly along with neuronal 389 
marker MAP2. As sites of amyloid deposition and tau hyper-phosphorylation do not 390 
always overlap, it is indefinite to conclude by a single image that levels of pathogenic 391 
protein differ significantly between two groups. Thus, we used a total of 64 organoid 392 
sections from 6 individual lines (CN1, CN5, AD4, AD5, E3par, E4iso) that came from 393 
various Z-positions of an organoid to reflect diverse regions of a three-dimensional (3D) 394 
object. In accordance with the main results, two-dimensional (2D) 395 
immunohistochemistry images show that amyloid-beta and p-tau immunoreactivity was 396 
significantly increased in PiB positive group compared to the negative group. Also, 397 
isogenic E4 organoids retained higher levels of amyloid-beta and p-tau compared to the 398 
parental E3 line. Even though we have used many samples for quantification, 2D 399 
segmentalization of a 3D object could introduce unintentional bias where some regions 400 
are over-represented. This was the foremost reason we used 3D tissue clearing 401 
technology and ImageXpress Micro Confocal system to image organoids and measure 402 
pathogenic protein levels as it provides a holistic view on an entire organoid. 403 
 404 
[COMMENT #2]  405 
Data presented in Figure 4. Potentially move oxidative stress validation to 406 
supplemental. 407 
[RESPONSE]  408 
The data presented in Fig. 4 show the molecular regulatory network model of 409 
Alzheimer’s disease and its validation for different oxidative stress levels. Following the 410 
reviewer’s comment, we have repositioned previous Fig. 4c to Supplementary Fig. 9 411 
(the result of enriched pathway analysis) to Supplementary data of the revised 412 
manuscript. Since validation of network model is as important as building the model in 413 
Boolean/logical modeling studies14, we have kept Fig. 4b to show essential input-output 414 
relationships of the network model in the revised manuscript. 415 
 416 
[COMMENT #3]  417 
Data presented in Figure 6. Park et al. tested FDA-approved drugs on both LPLA288T 418 
SNP PiB+ iCOs and E4iso iCOs as a validation of their network-based drug screening 419 
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platform. Results of the validation experiments were not entirely conclusive due in part 420 
to lack of a clear dose-dependent relationship. These results therefore would require 421 
further validation, potentially by testing with more replicates and in the other cell lines. 422 
Drug testing was not performed on PiB+ iCOs that contain the ApoE ε4 allele. In 423 
addition to LPLA288T SNP PiB+ iCOs only representing a small subset of the iCOs 424 
used in this study as this SNP is not present in other PiB+ iCOs, these iCOs also do not 425 
carry the ApoE ε4 allele. Furthermore, although E4iso iCOs were used for drug testing, 426 
they are not derived from AD patient iPSCs. Thus, to properly validate their model for 427 
precision medicine applications, FDA-approved drugs need to also be tested on PiB+ 428 
iCOs that carry the ApoE ε4 allele. These COs better represent the genetic background 429 
of human sporadic AD patients than E4iso iCOs, while also carrying the ApoE ε4 allele 430 
missing in the LPLA288T SNP PiB+ iCOs. 431 
[RESPONSE]  432 
We totally agree with that. As the reviewer suggested, we further performed drug test 433 
by using the iCOs from PiB+ carrying the ApoE e4 allele (PiB+ #5 iCOs). We added this 434 
result in Fig. 6d (We also changed graph types in Fig. 6 in order that the medicinal 435 
effects can be seen well at a glance). Some interpretations are as follows:   436 
i) Most of the drugs showed better efficacy in reducing A� and tau deposition as their 437 
concentration increased, except for the ‘Astaxanthin’ and ‘Everolimus with 1 uM 438 
Flibanserin’. ii) PiB+ #5 iCOs showed better drug effectiveness on the A� reduction 439 
than E4iso iCOs. One possibility is that it is because PiB+ #5 iCOs are basically derived 440 
from sporadic AD participants, but E4iso iCOs are not although we cannot rule out the 441 
possibility of difference on genetic background from each patient. iii) Similar to E4iso 442 
iCOs, the combinative therapy using Flibanserin with Ripasudil worked best when 443 
compared to other drugs. 444 
Although, the tendency from PiB+ #5 iCOs is not exactly matched with E4iso iCOs, it is 445 
obvious that most of the drugs had effectiveness on the reduction of A� and tau. 446 
Furthermore, we think it is quite natural because PiB+ #5 iCOs are basically derived 447 
from sporadic AD participants, but E4iso iCOs are not, as mentioned above. Therefore, 448 
these results indicate that we validated our network-based drug-screening platform by 449 
integrating mathematical modeling and pathological traits of human iCOs. 450 
 451 
[COMMENT #4]  452 
While I appreciate the unique aspect the mathematical model brings to the paper, I also 453 
felt the flow of the paper would be much improved if this was more concisely 454 
summarized in the main text.   455 
[RESPONSE]  456 
We have modified our discussion section (line 330-340) and results section (line 200-457 
202, line 212-220) to make it clearer as you recommended. 458 
  459 
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Response to the specific comments of Reviewer 4: 460 
 461 
[COMMENT #1]  462 
One limitation is that the data comes from only 11 participants. The data for these 463 
subjects may not be representative for the overall population of sporadic AD patients, 464 
and subject-specific idiosyncrasies in the data that are not disease-relevant could lead to 465 
errors in the transcriptome-based network model and perturbation analysis. The authors 466 
mention that they aim at a personalized precision medicine approach, but the distinction 467 
between disease-associated biological variance and other sources of variance in the data 468 
is still an issue with small numbers of subjects, and small numbers of RNA-seq 469 
experiments limiting the statistical power, in particular for the transcriptome-derived 470 
network analysis. It is therefore recommended to compare the data against larger public 471 
iPSC data for AD, e.g. derived from the GEO database for the transcriptomic analyses. 472 
[RESPONSE]  473 
As reviewer suggested, we have tried to compare our transcriptome data to the public 474 
GEO database (Supplementary Fig. 4, line 164-175, line 595-599). It is not possible to 475 
find public iPSC- derived brain organoid data for AD, but we found a public iPSC- 476 
derived neuron data (PIN) for AD (Accession number: GSE143951, Platform number: 477 
GPL16043) and public human AD brain data (PHB) (Accession number: GSE109887, 478 
Platform number: GPL10904) (Supplementary Fig. 4a-4b). We compared PHB GO 479 
data from Toppgene DB (https://toppgene.cchmc.org) to PIN or our own transcriptome 480 
data, to reveal that our transcriptome data from human iCOs is more similar to PHB 481 
than PIN. We performed GO similarity analysis to identify how many GO terms 482 
overlapped each other. We used three GO sub-ontologies (CC, cellular components; BP, 483 
biological processes; MF, molecular functions) (cut-off, FDR- corrected p-value < 0.05). 484 
Interestingly, our own transcriptome data had dramatically high GO similarity to PHB 485 
(CC, 64.9% for PiB iCOs and 76.5% for E4 iCOs; BP, 58.7% for PiB iCOs and 26.0% 486 
for E4 iCOs; MF, 46.7% for PiB iCOs and 29.4% for E4 iCOs), whereas PIN had low 487 
GO similarity to PHB (CC, 7.0% for PIN; BP, 4.2% for PIN; MF, 8.3% for PIN) 488 
(Supplementary Fig. 4c). Specifically, we have tried to confirm that our significant GO 489 
terms (Fig. 2i) are also included in PHB or PIN. Most of the GO terms were also 490 
included as significant terms in PHB (21/28, 75%), but not in PIN (6/28, 21%) 491 
(Supplementary Fig. 4d). Therefore, we concluded that our own transcriptome data is 492 
closer to the real human brain transcriptome data.  493 
 494 
[COMMENT #2]  495 
It is not clear whether the p-values that were used to define the differentially expressed 496 
genes (DEGs) were adjusted for multiple hypothesis testing. Using a relaxed p-value 497 
cut-off for the pathway analysis (-log10(p-value) > 1, corresponding to a p-value cut-off 498 
of 0.1) can be justified by taking into consideration that pathways with an enrichment of 499 
many small, close-to-significant alterations are likely disease-relevant. However, since 500 
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the authors do not only aim at ranking GO processes, but also at identifying individual 501 
drug target genes, a false-discovery-rate (FDR) above 10% for individual genes would 502 
lead to too many errors (in particular, if the authors did not use FDR-adjusted p-values, 503 
but nominal p-values). Therefore, FDR corrected p-values should be used for all 504 
analyses that rely on the significance of individual gene alterations. 505 
[RESPONSE]  506 
Thank you for the critical comment. It needs to be clarified that different correction 507 
strategies were adopted for each RNA-seq analysis.  508 
First, we already applied the FDR corrected p-values for the validation of mathematical 509 
model and identification of individual drug target genes (Fig. 5b and Supplementary 510 
Fig. 8,9). We have mentioned this in the legend of Supplementary Fig. 8. 511 
Second, to demonstrate that gene expression profiles (GO analysis) differ between PiB- 512 
and PiB+ groups (Fig 2i and Supplementary Fig 2a, c, f), we subjected five samples 513 
from each group, performed RNA-seq on each sample and compared gene expression 514 
profiles (GO analysis) by using the selected DEGs. For this specific analysis, we did not 515 
apply multiple correction for the selection of DEGs because we intended to be more 516 
inclusive in documenting subtle differences in gene expression changes, as the reviewer 517 
pointed out. However, since we had not applied FDR correction, even for the GO 518 
analysis deriving significant GO terms from the selected DEGs, we have changed p-519 
values to FDR- adjusted p-values (Fig 2i and Supplementary Fig. 3). We have 520 
mentioned this in the legend of Fig 2 and Supplementary Fig. 3 521 
Regarding the reviewer’s comment, we have also clearly mentioned it in Methods 522 
section (line 592-595, line 600-603), please refer to the Methods section. 523 
 524 
[COMMENT #3]  525 
The authors state that the pre-selected network consists of 77 nodes and 203 links. 526 
While these nodes representing mainly genes/proteins from KEGG and AlzPathway 527 
definitely play important roles in AD, a significantly larger number of genes/proteins 528 
will likely be relevant for AD than this pre-filtered subset, and the restriction to mostly 529 
KEGG/AlzPathway-derived nodes may bias the results towards target genes in these 530 
pathways that are already well-known and whose associated drugs therefore have 531 
limited novelty. A possibility to avoid this limitation is to use a pathway-agnostic 532 
network analysis (e.g. using a genome-scale network from the STRING web-service or 533 
other public resources for genome-scale gene regulatory or protein interaction networks) 534 
to identify network clusters of transcriptomic alterations, which are not already captured 535 
by the known pathway definitions. 536 
[RESPONSE]  537 
The AlzPathway has various types of components (e.g. gene, protein, signaling pathway, 538 
etc.), so its components could not be directly used as nodes for the network model. For 539 
this reason, we used the AlzPathway for sorting out the relevant signaling pathway lists. 540 
Of the components in the AlzPathway, only the signaling pathways of the neuron 541 
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(indicated by ‘n_’ prefix) were considered for the construction of the network model. 542 
These pathways were grouped into Notch, RELN, MAPK, Jak/Stat, Wnt, NR1/NR2R, 543 
Ca2+, TGFβ and mTOR (PI3K-AKT) signaling pathways. Among them, TGFβ signaling 544 
pathway related to microglia was excluded. 545 
Based on these signaling pathway information, we searched for experimental studies 546 
only in neuronal context to the best of our knowledge. By using this literature-based 547 
approach, we reconstructed simple regulatory links (i.e. activate or inactivate) and 548 
actual regulatory relationships such as update logic of node state (e.g. A node = B node 549 
AND C node) (Supplementary Table 2). 550 

In our study, we focused on APOE4, LPL-related signaling pathways in line with the 551 
experimental results in the main manuscript (Fig. 2). Through a literature-based 552 
approach, we constructed the model network primarily based on MAPK, Wnt, and 553 
mTOR signaling pathways9-11, and also considered other signaling pathways in the 554 
AlzPathway. We have added more explanation to the model construction in the revised 555 
manuscript (line 608-612). 556 

The purposes of our study are as follows: 1) to understand complex dynamical 557 
properties of the regulatory network, which cannot be done by simple correlation 558 
analysis among the network components, and 2) to identify optimal candidate targets for 559 
each genetic condition based on quantitative dynamical analysis of the regulatory 560 
network model. As the reviewer pointed out, pathway-agnostic network analysis may 561 
have benefits in finding novel targets. However, since we aim to find the optimal targets 562 
for a given genetic condition rather than to find novel targets, the proposed approach 563 
does not fit our research objectives. Also, public resources such as STRING contain 564 
collective information from various cell-types, so we considered that such kinds of 565 
resources might not be suitable for constructing our neuron-specific network model. 566 
Nevertheless, the reviewer’s comment will be very helpful in our future study to find 567 
out novel targets by further extending our network model to include diverse genetic risk 568 
factors and components. We appreciate the reviewer’s valuable comment in this respect. 569 
 570 
[COMMENT #4]  571 
To show that the mathematical modeling / network analysis provides a significant added 572 
value beyond the compound filtering obtained from the network model pre-selection of 573 
77 nodes and the BBB-filter, it would be useful to compare the ranked target and 574 
compound lists with and without the additional network analysis (e.g. testing whether 575 
there is an improved enrichment of known AD protein drug targets, such as BACE1, 576 
MAOB, MAPT etc., that have been considered in AD clinical trials, in the network 577 
analysis derived ranking list). 578 
[RESPONSE]  579 
There were several network analysis studies that constructed gene or protein interaction 580 
networks using databases such as the STRING and found network clusters/modules of 581 
transcriptomic alterations that are significantly related to diseases. However, the data 582 
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used in these studies contained information of various cell types, such as neuron, 583 
microglia, astrocyte, etc. So, we considered that such kinds of resources might not be 584 
suitable for constructing our neuron-specific network model. In addition, the results 585 
obtained by pathway-agnostic analysis mostly suggested microglia-related components 586 
as targets15, so the target list that can be obtained from the pathway-agnostic analysis 587 
would be inappropriate for our research objectives. 588 

We also curated drug targets under clinical trial from the research conducted by 589 
Cummings J. et al.,16 and took only those included in our model; α-secretase, NMDAR, 590 
MAPT, p38 MAPK- α, APP, PP2B, PPAR-γ. The activities of these nodes were 591 
changed in the direction of beneficial propensity when we perturbed the high phenotype 592 
score targets in our network model. Furthermore, our approach has the advantage of 593 
logical modeling, which allows us to understand the underlying mechanism of the 594 
disease, at the molecular regulatory network level, that occurs differently depending on 595 
genetic conditions (even with the same pathological phenotype), and thus to explore 596 
optimal drug target candidates for each genetic condition. 597 

 598 
 599 

  600 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I think this is a strong manuscript and worthy publishing in Nature Communications. The authors 

did an excellent job addressing my comments, as well as the suggestions of the other reviewers. 

 

 

 

Reviewer #2: 

None 

 

Reviewer #3: 

Remarks to the Author: 

The authors’ revised manuscript has incorporated significant changes, including the addition of 

new data, that sufficiently address our initial concerns and recomended improvements. In addition 

to imaging iCO sections at higher resolution to show clearer subcellular localization of amyloid beta 

plaques and phosphorylated tau, the authors also utilize various Z-positions to compare 

pathogenic protein levels between different iCO groups. Furthermore, the authors have also 

included suggestions to test drug compounds on PiB+ iCOs that contain the ApoE allele, as this 

better reflects the genetic background of sporadic AD patients. 

 

The combination of this new data as well as modifying the graph type in figure 6 to show a clearer 

dose-dependent relationship strengthens the validation of their network-based drug-screening 

platform for AD. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

Thanks for considering some of the suggestions in the revision of the manuscript. Although my 

principle concerns related to limitations of the study with respect to statistical power and the 

constraints of using a limited subset of 77 pre-selected nodes still remain, I do think that the study 

is worth publishing. I still have the concern that if you go in with a highly selected sub-network 

and use it as a constraint, you come out with output nodes that have already been validated to a 

certain extent and the novelty is limited. 

 

Nevertheless, the combination of using a network-based filtering approach and the use of larger 

scale cerebral organoids (e.g.with and without the ApoE4-allele or ROS challenges) apparently is 

able to at least support the selection of potentially useful existing drugs. The system might also 

provide hints for prioritizing drug candidates for further mechanistic and clinical evaluation. 

 

The main impact of the study might be the motivation for the field to combine network based-

based and other computational approaches with the IPSC-derived organoid technology, allowing 

both, in-silico as well as experimental genetic and environmental perturbation studies. In that 

sense the study will probably have a positive impact on a number of organoid applications. 
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