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Materials and Methods

S1 Naive Bayes classifier

As a simple Bayesian network?*, the naive Bayes classifier (NBC)'® has the following graphical

structure:

Xl X2 "'Xn—l Xn

Given the target T, its features X;, X, -+, X, are conditionally independent. Although this local
independence assumption is often violated in practice, NBC still performs “unreasonably” robust'®.
In addition, Section S5 will explain why no overfitting problem occurs in NBCs with proper features.

Therefore, we employ NBC to explore and build precise diagnostic modles.

Anyway, NBC can play its advantages in making classifications only when the associated
features are properly used. As seen, for every dataset, the number of potential attributes is very
huge, up to half a million or even larger, so it is necessary to reduce the search space appropriately
before starting to select features for NBC. To do this, it is important to use a suitable coding scheme

for SNPs.



S2 The 2-value coding scheme: Snp2Bin algorithm

After making preliminary attempts, we find the association between almost every 3- or “4-
genotype” SNP and the target (status of lung cancer or breast cancer or prostate cancer) is unexpect-
edly low, although many SNPs are of statistical significance. In general, a SNP has three genotypes.
However, some genotypes with very low proportion may not appear in a dataset, leading to some 1-
or 2-genotype SNPs. In addition, there are many missing values (about 10% and even more of the
total sequencing results) for SNPs in the six datasets. We regard them as a chaos or mixed state of
genotypes, instead of deleting them simply or replacing them with imputed data. Such a state is then
treated as an imaginary genotype, which stands for potential unknowns to be unexplored, rather than

as a consequence of some other factors like precision of sequencers.

The reason for this is that, for a SNP related to the target, one or more of its genotypes may be
only weakly dependent on (or even nearly independent of) the cancer, and such genotypes increase
the statistical degrees of freedom for the corresponding y>-test, leading further to a false conclusion

about the dependence between this SNP and the cancer.

To solve this problem, we employ in part the idea of transforming a multi-class attribute into
a 2-value variable®? to increase power of y?-tests. Specifically, for a SNP, let X be a 2-value variable
taking 1 for some genotypes and O for all others and, among all such 2-value variables, select the one
having the maximal y2-statistic*! with respect to the cancer. In fact, our algorithm needs to test many
hypotheses of the form “7T" and X are independent conditioned on Y”’, where Y is the conditioning
set containing one or more variables. If X and every variable in Y are 3-value variables, the degree
of freedom of the corresponding y*- or G*-statistic will be (2 — 1) X (3 — 1) x 3" = 2 x 31"; In
comparison, if X and every variable in Y are 2-value variables, the degree of freedom will decrease
sharply to (2 —1) x (2 —1)x 2" = 2/, This means that Snp2Bin is critical in improving the efficiency
of our algorithm. For example, if Y contains three variables, the degrees of freedom will be 54 and

8, respectively, for the two cases. Algo. S1 describes the pseudocode of the resulting algorithm,



namely “Snp2Bin”.

By direct analysis, it can be verified that, for any SNP independent of the cancer, the corre-
sponding 2-value variable must also be independent of this cancer. It follows that 7 and Y are also
independent. This indicates (i) unrelated SNPs will never enter our NBC models, and (ii) the infor-
mation that a SNP carries about the cancer will be encoded by the corresponding 2-value variable as
much as possible.

As an illustration, we take the SNP, rs7524868 of phs000634, as an example (Fig. 1A). As
seen, the 2-value coding scheme combines the genotypes such that the information about the cancer
can be integrated in a better way, and hence improves the association of the coded variables in most

situations.


https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000634.v1.p1

Algo. S1. Snp2Bin algorithm: transforming genotypes into 2-value variables in the sense of getting the

largest mutual information or y?-statistic, denoted by the symbol “I”” in Line 11.

Procedure: [b, ¢] < Snp2Bin(a, s)
Input: a 2 (a1, ,a,)7 is a vector of genotypes, while s £ (s1,---,s,)" is a case-control status
vector, in which a; and s; are from the i-th instance.

Output: b is a 2-value vector of coding a; ¢ is a cell of indicating how genotypes are coded.

1. v < unique of a
2. foreach nonempty set y; ;Ct v do
3. for i taking from 1 to n do
4, if a; € Vi then
5. Bi— 1
6. else
7. Bi<—0
8. end
9. end
10. B Bi,- B
11. ) I(ﬂj, s)
12. end
13. ¢ « argmax j{a;}

14. return b «— B, and ¢ < {y,, v \y,}




S3 Reduction of search space for NBC: IterMMPC algorithm

To reduce the search space of NBC, we choose to use the MMPC (max-min parents and children)
algorithm?®***, Here, we briefly introduce why we choose MMPC to make search space reduction. Let
us first see a simple Bayesian network as follows (X, - - - , Xg are random variables or called nodes):

Xl\{ % — Xz\/

X3 /
\(X X5
6

X7 < X3 /
For X4, (i) in graphical sense, X, is its parent, X is its child, and Xj is its spouse, they block all infor-
mation channels from X4 to other nodes; (ii) in probabilistic sense, X, is conditionally independent
of all other variables given {X5, X¢, X3} £ M. In theory of Bayesian networks, M is called a Markov
blanket?* or, under the faithfulness condition, the Markov boundary of X4. Pellet and Elisseeff?’
proved that M (the set of parents, children and spouses) is the theoretically optimal set of features

of X;. NBC needs only children of the target, so we use the MMPC algorithm here.

Considering that the computational complexity of MMPC is linear to the number of all variables
but exponential to the number of parents and children, we apply a divide-and-conquer strategy by
dividing all SNP attributes randomly into a number of groups and implementing MMPC over each
group to filter redundant variables. Iterate this procedure until no change occurs. The resulting
algorithm, namely “lterMMPC”, is described in Algo. S2. To avoid filtering useful SNPs out, we take
the two parameters, threshold and maxK, of MMPC as 0.1 and 2, respectively. This algorithm is

expected to obtain a superset of the features for our NBC models.



Algo. S2. IterMMPC algorithm: iteratively using the MMPC algorithm to select features of the target.

Procedure: [F, B] < IterMMPC(B, s, k)

Input: B is the data matrix, with each column being produced by Algo. S1; s is the same as defined in

Algo. S1; k is the maximal number of variables in per partition, taken as 10 by default.

Output: 7 is a superset of causal nodes for the target; B is updated data matrix corresponding to .

1.

2.

10.

11.

12.

13.

¥ « attribute set of B
while 1 do
divide F into [|F]|/k] £ g groups, ¥, -+, F4, such that each contains at most k attributes
foreach group 7; do
¥ « output of MMPC over ¥ with respect to B and s
end
F Uj‘:l F;
B — updated data matrix corresponding to ¥
if ¥ remains unchanged then
break
end
end

return ¥ and B




S4 NBC discovery: OptNBC and SubOptNBC algorithms

After applying IterMMPC, a further feature selection procedure is still required. Now, we first use
a score-based method to build our NBCs, namely OptNBC, for which the pseudocode is presented in
Algo. S3. The algorithm consists of two phases: in its forward phase, attributes are added to the
candidate feature set one by one rendering the fastest increase of scores; in its backward phase, the
redundant variables are removed one by one. Here, the score of an NBC is defined as the product of
the posterior probabilities of making correct diagnoses (or equivalently, its logarithm) according to

10-fold cross-validation.

Theoretically, the output of MMPC should be the optimal set of features for the target. However,
MMPC is used in partitioned data iteratively instead of in the whole data directly, so there may be
some redundant variables remaining in the output of our lterMMPC algorithm. On the other hand, in
an NBC model, some parents will not be used as features, leading to a potential compensation from

some children or other variables. OptNBC aims to do this in a simple but efficient way.

SubOptNBC is an alternative algorithm to OptNBC in searching a good NBC. We build this algorith-
m because we want to explore the information hidden in data more sufficiently. SubOptNBC simply
replaces OptNBC by adding the attribute with the second highest score to the NBC in each step of the
forward phase, so its pseudocode is omitted here. The NBCs searched by OptNBC and SubOptNBC

can be viewed as two different experts of making diagnoses with different empirical information.



Algo. S3. OptNBC algorithm: searching optimal NBC. It consists of two phases: Lines 1~12 describe

the forward phase; Lines 13~23 are for the backward phase. In Line 6 and Line 17, Jgw and

Jrw are defined as Jrw = {j fi € ¥\ G} and Jpw L4 gj € G}, respectively.

Replacing Line 6 by ¢ < arg max

JeTrw \arg max je o

{aj}}{a/ j} before ending the forward

phase, the resulting algorithm is called SubOptNBC.

Procedure: M < OptNBC(F, B, s)

Input: ¥ and B are outputs of Algorithm S2; s is the same as defined in Algorithm S1.

Output: M is the searched optimal NBC, in which only the graphical structure is used when performing

10.

11.

12.

leave-one-out or 10-fold cross-validation.
G— Janda « 0
while 1 do
foreach attribute f; € ¥\ G do
«; < score of NBC over G U {f;}
end
{ « arg maxjeij{afj}
if ay > a then
G—GU{feand @ « ¢
else
break
end

end

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

while 1 do
foreach attribute g; € G do
a; < score of NBC over G\ ({g;}
end
{ — argmax g, {j}
if ay > «a then
G < G\{gdand @ « a¢
else
break
end
end

return M < NBC with G as its features




S5 An explanation about why no over-fitting in NBCs with proper features

Taking the following model as an example:

in which T is the target (class) variable, Xi,--- , X509 are the features of 7', and Yi,--- , Yiooo are
redundant (independent) variables; all parameters are randomly created. For this model, 1000 data
points are randomly generated, based on which a simulation study is made with respect to fitting,
leave-one-out and 10-fold cross-validation as follows: (i) using m features to classify 7 for m =
100, 200, ---, 500; (ii) using n redundant variables to classify T for n = 200, 400, ---, 1000.
The values of accuracy, sensitivity, specification and MCC are listed in Tables S3—S6, respectively.

By the results, it concludes that

e When using m true features to make classifications, NBC performs better and better along
with the increase of m (upto near 100%-accuracy), and there is almost no difference between

fitting and leave-one-out/10-fold cross-validation, showing no over-fitting problem occurs.

e When using n redundant variables to make classifications, under the fitting criterion, serious
over-fitting occurs, while under leave-one-out/10-fold cross-validation, predicting the status
of T is nearly equivalent to guessing it by tossing a coin. This indicates over-fitting cannot

occur under leave-one-out/10-fold cross-validation.

In short words, classifications may be made with accuracy upto or near 100% without over-fitting,

as long as the features are correctly pre-determined and the classifier is properly selected.
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Fig. S1. Diagnostic models based on the OptNBC algorithm (all the SNPs can be seen clearly by

enlarging the figure; “Chr” denotes “chromosome”). (A) Model NBC%L. It consists of 268 SNPs dis-

tributed on all chromosomes, getting accuracy 100% according to leave-one-out. (B) Model NBC(715)3.
It consists of 343 SNPs distributed on all chromosomes except Y, getting accuracy 99.91% according

to leave-one-out. (C) Model NBC%. It consists of 318 SNPs distributed on all chromosomes except

Y, getting accuracy 99.83% according to leave-one-out. (D) Model NBCg.ll)T It consists of 255 SNPs

distributed on all chromosomes except Y, getting accuracy 99.93% according to leave-one-out. (E)

Model NBC

3067 1t consists of 242 SNPs distributed on all chromosomes except X and Y, get-

ting accuracy 99.94% according to leave-one-out. (F) Model NBC(;O)6_ aa- 1t consists of 352 SNPs

distributed on all chromosomes except Y, getting accuracy 99.93% according to leave-one-out.
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(A) (B) . (©)

Fig. S2. Diagnostic models based on the SubOptNBC algorithm. (A) Model NBC%. It consists of
290 SNPs distributed on all chromosomes, getting accuracy 99.95% according to leave-one-out. (B)

Model NBC?

~s3- It consists of 329 SNPs distributed on all chromosomes except Y, getting accuracy

99.96% according to leave-one-out. (C) Model NBC(124)7. It consists of 307 SNPs distributed on all
chromosomes except Y, getting accuracy 99.96% according to leave-one-out. (D) Model NBC?I)T
It consists of 249 SNPs distributed on all chromosomes except 22 and Y, getting accuracy 99.93%
according to leave-one-out. (E) Model NBC%)HL. It consists of 258 SNPs distributed on all chromo-
somes except X and Y, getting accuracy 99.94% according to leave-one-out. (F) Model NBC%)& AA-

It consists of 367 SNPs distributed on all chromosomes except Y, getting accuracy 99.93% according

to leave-one-out.
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Fig. S3. Log;¢(p-value) of SNPs associated with cancer risks. (A) Log;o(p-value) of all SNPs

associated with lung cancer risk based on phs000753 and those used in NBC(715)3. (B) Log;o(p-value)
of all SNPs associated with breast cancer risk based on phs000147 and those used in NBC(IQT ©
Logio(p-value) of all SNPs associated with prostate cancer risk based on JL of phs000306 and those
used in NBC;))HL.

; 1)
of phs000306 and those used in NBCy_, ,-

(D) Logo(p-value) of all SNPs associated with prostate cancer risk based on AA
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Fig. S4. Log;¢(p-value) of SNPs associated with cancer risks. (A) Log;o(p-value) of all SNPs
associated with lung cancer risk based on phs000753 and those used in NBC%)3. (B) Logio(p-value)
of all SNPs associated with breast cancer risk based on phs000147 and those used in NBC(I?T ©
Logio(p-value) of all SNPs associated with prostate cancer risk based on JL of phs000306 and those

used in NBC%)HL. (D) Logio(p-value) of all SNPs associated with prostate cancer risk based on AA
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Fig. SS. Log;¢(p-value) of SNPs associated with breast cancer risk based on phs000517. (A)
Log;o(0-order p-value) of all SNPs and those used in NBC§11)7, in which O-order p-values are for test-
ing unconditional independence. (B) Log;o(0-order p-value) of all SNPs and those used in NBC§21)7,
in which O-order p-values are for testing unconditional independence. (C) Log;(1-order p-value)
of all SNPs and those used in NBC§11)7, in which 1-order p-values are for testing independence con-

ditioned on one of the SNPs in NBCéll)T (D) Logio(1-order p-value) of all SNPs and those used in

NBC{.,

NBC)..

in which 1-order p-values are for testing independence conditioned on one of the SNPs in
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Table S1. Classification performance of NBCs according to leave-one-out. (A) Confusion ma-

trix of NBC213)4; (B) Confusion matrix of NBC%)4; (C) Confusion matrix of NBC(715)3; (D) Confusion matrix

of NBC%E; (E) Confusion matrix of NBC(114)7; (F) Confusion matrix of NBC(I%; (G) Confusion matrix of
NBC211)7; (H) Confusion matrix of NBC(521)7; (I) Confusion matrix of NBCé&_JL; (J) Confusion matrix of
NBC%ML; (K) Confusion matrix of NBC;&_ AAS (L) Confusion matrix of NBC%)& AA
(¢.9) Truth (B) Truth
NBCL, NBC,
Case | Control Case | Control
Positive 946 0 Positive 945 0
Test Test
Negative 0 1052 Negative 1 1052
(®) Truth (©)) Truth
NBC!,, NBCY,
Case | Control Case | Control
Positive 1152 1 Positive 1153 1
Test Test
Negative 1 1136 Negative 0 1136
(¢9) Truth (¢)) Truth
NBC() NBC,
Case | Control Case | Control
Positive 1142 1 Positive 1145 1
Test Test
Negative 3 1141 Negative 0 1141
(9] Truth (¢:)) Truth
NBC{, NBCY),
Case | Control Case | Control
Positive 698 0 Positive 698 0
Test - Test
Negative 1 667 Negative 1 667
(@D) NBC Truth (@)) NBC® Truth
306-JL Case | Control 306-JL Case | Control
Positive 828 0 Positive 829 1
Test Test
Negative 1 836 Negative 0 835
x NBC® Truth ¢D) NBC® Truth
306-AA Case | Control 306-AA Case | Control
Positive 1430 1 Positive 1429 0
Test Test
Negative 1 1423 Negative 2 1424

16



Table S2. Performance of remedying procedures (Table 1 continued).

(2
(C) NBC2,

remedies

NBCY.; (D) NBC'., remedies NBC'%,; (E) NBC'%, remedies NBC\\); (F) NBC!!, remedies NBC?); (G)
NBC, remedies NBCY).; (H) NBC!, remedies NBCS; (I) NBCS) | remedies NBCY( | ; (J) NBCY
remedies NBC%)6 L (K) NBC(3%)6_ AA remedies NBC%)6 AAS L) NBC(S&_ AA remedies NBC%)6 AA
(9l Instance No. NBCLY, NBC2, Concl. [l Instance No. NBCZ, NBCSY, Concl.
318 (Ctr) 0.5171 0.1060 Corrected (Ctrl) 0.4619 0.0750 Improved
575  (Ctr) 0.4588 0.1223 Improved 212 (Ctr) 0.4980 0.1532 Improved
778 (Ctrl) 0.4888 0.0608 Improved 414 (Ctrl) 0.5379 0.1386 Corrected
800  (Ctrl) 04778 0.0160 Improved 526  (Ctr) 0.4695 0.0456 Improved
1300 (Case) 0.5355 0.6472 Improved 739  (Ctrl) 0.4834 0.0443 Improved
1781 (Case) 0.5388 0.7085 Improved 1102 (Ctrl) 0.4857 0.0612 Improved
1918 (Case) 0.5378 0.8241 Improved 1278 (Case) 0.5298 0.7456 Improved
2009 (Case) 0.5338 0.7095 Improved 1282 (Case) 0.5140 0.9252 Improved
2059 (Case) 0.5118 0.7765 Improved 1327 (Case) 0.5465 0.9260 Improved
1454  (Case) 0.5397 0.9037 Improved
1467 (Case) 0.5167 0.5590 Improved
1988 (Case) 0.5473 0.9084 Improved
1991 (Case) 0.5073 0.6515 Improved
2001 (Case) 0.5378 0.9134 Improved
2079 (Case) 0.5256 0.8393 Improved
2194 (Case) 0.5218 0.9009 Improved
(2 Instance No. NBCSY) NBC2, Concl. (3 Instance No. NBC2, NBCSL, Concl.
419  (Case) 0.5448 0.8086 Improved 281 (Ctr) 0.4564 0.1147 Improved
1323 (Case) 0.5006 0.8739 Improved 433  (Case) 0.5436 0.9379 Improved
1444  (Case) 0.4680 0.8689 Corrected 441  (Case) 0.5149 0.5864 Improved
1936 (Case) 0.5389 0.7347 Improved 568  (Ctrl) 0.4590 0.2063 Improved
1956  (Ctrl) 0.4631 0.0718 Improved 620  (Ctrl) 0.4844 0.1181 Improved
1982 (Case) 0.4549 0.7723 Corrected 1046 (Case) 0.5203 0.9746 Improved
2153 (Case) 0.4633 0.9114 Corrected 1356  (Ctrl) 0.5486 0.0765 Corrected
1521 (Ctrl) 0.4631 0.0793 Improved
()l Instance No. NBC(Y, NBCE), Concl. [)J Instance No. NBCZ), NBC(Y, Concl.
1038 (Case) 0.5300 0.8261 Improved (Case) 0.5161 0.8553 Improved
1276 (Ctrl) 0.4560 0.3984 Improved 370  (Case) 0.5493 0.6435 Improved
383  (Case) 0.5068 0.9606 Improved
581  (Case) 0.4947 0.8736 Corrected
(U Instance No. NBC%)G_]L NBC%)E,_]L Concl. (0)} Instance No. NBC%)E,_]L NBC%)G_]L Concl.
189  (Case) 0.5065 0.5044 110  (Case) 0.5002 0.9121 Improved
356  (Case) 0.5079 0.6837 Improved 189  (Case) 0.5044 0.5065 Improved
361  (Case) 0.5242 0.8171 Improved 789  (Ctrl) 0.4711 0.0376 Improved
758  (Case) 0.5244 0.7517 Improved
1114 (Case) 0.4706 0.9645 Corrected
4} Instance No. NBCS,, »s NBCE. .,  Concl. (W Instance No. NBCS) . NBCSY. ., Concl.
1006  (Ctrl) 0.5111 0.1906 Corrected 526  (Case) 0.5461 0.7580 Improved
1724 (Ctrl) 0.4875 0.0811 Improved 628  (Case) 0.5163 0.9617 Improved
2101 (Case) 0.5097 0.9602 Improved 643  (Ctrl) 0.4836 0.1185 Improved
2149 (Ctr) 0.4562 0.3912 Improved 838  (Case) 0.5329 0.7508 Improved
2675 (Case) 0.5257 0.8650 Improved 1107 (Case) 0.4596 0.7027 Corrected
2677 (Case) 0.5367 0.8083 Improved 1663 (Case) 0.5104 0.9597 Improved
2689 (Case) 0.5335 0.6234 Improved 1999 (Ctrl) 0.4803 0.1674 Improved
2381 (Ctrl) 0.4796 0.1233 Improved
2430 (Case) 0.517/ 0.8694 Improved
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Table S3. Accuracy (%) of NBCs evaluated according to fitting/leave-one-out/10-fold cross-
validation(CYV)

Criterion NBC with Xy, - -, X,, as features NBC with Yi,--- , Y, as features

100 200 300 400 500 200 400 600 800 1000
Fitting 89.90 97.10 98.60 99.80 99.80 68.50 75.10 78.40 81.70 83.20
leave-one-out 89.00 9640 98.40 99.40 99.60 51.30 50.50 52.60 52.00 52.20
10-fold CV 89.00 96.30 98.40 99.40 99.50 5240 50.60 54.10 51.20 5240

Table S4. Sensitivity (%) of NBCs evaluated according to fitting/leave-one-out/10-fold CV

Criterion NBC with X1, - - - , X,, as features NBC with Yy, --- , Y, as features

100 200 300 400 500 200 400 600 800 1000
Fitting 89.34 96.77 98.03 99.82 99.64 69.67 76.58 80.29 83.33 84.38
leave-one-out 88.35 96.06 97.85 99.28 99.46 5530 5476 5645 56.09 56.28
10-fold CV 88.35 9589 97.85 99.28 99.28 56.26 54.82 57.82 5548 56.50

Table S5. Specification (%) of NBCs evaluated according to fitting/leave-one-out/10-fold CV

Criterion NBC with Xy, --- , X,, as features NBC with Yy, --- , Y, as features

100 200 300 400 500 200 400 600 800 1000
Fitting 90.65 97.51 99.32 99.78 100 66.75 73.15 76.06 79.69 81.72
leave-one-out 89.88 96.83 99.09 99.55 99.78 4520 4442 4690 46.28 46.54
10-fold CV 89.88 96.82 99.09 99.55 99.78 46.63 4450 48.79 4541 46.81

Table S6. MCC of NBCs evaluated according to fitting/leave-one-out/10-fold CV

Criteri NBC with Xy, -, X,, as features NBC with Yy, -+, Y, as features
riterion

100 200 300 400 500 200 400 600 800 1000
Fitting 0.7957 0.9414 09718 0.9960 0.9960  0.3587 0.4953 0.5633 0.6301 0.6601

leave-one-out  0.7775 0.9272 0.9677 0.9879 0.9919  0.0049 -0.0081 0.0330 0.0235 0.0280
10-fold CV 0.7775 0.9252 0.9677 0.9879 0.9899  0.0285 -0.0067 0.0654 0.0088 0.0329

18



Table S7. Classification performance of NBCs (Figure 1 continued) (E) Matthews correlation
coeflicients (MCCs; suggested by one of the referees) of NBCé;‘)}, NBC%%, NBC%B, NBCSg, NBC%()5 L
and NBC%Z _aa according to leave-one-out and 10-fold cross-validation (in the form of “mean=std”),
where the results of 10-fold cross-validation are computed by repeatedly performing 10-fold cross-
validation for 10 times; the “all” column is for the ordinary 10-fold cross-validation, the “max”
column is for the best fold (out of the 10 folds), and the “min” column is for the worst fold. (F)
@ @ @ ) ) @
MCCs of NBC(2), NBCSZ), NBC2) NBCS?), NBCZ) | and NBCSZ),,. (G) MCCs of random 300-feature
NBCs, where the results of leave-one-out are computed by averaging 10 random NBCs for every

data set.

E --
Data Leave-one-out -
phs000634 1.000000 0.994983+0.001950  1.000000+0.000000  0.980946+0.005718
phs000753 0.998255 0.996246+0.001168  1.000000+0.000000  0.987828+0.004462
phs000147 0.998251 0.994581+0.001220  1.000000£0.000000  0.979927+0.007146
phs000517 0.995615 0.995027+0.002092  1.000000+0.000000  0.978241+0.012201
phs000306 (JL) 0.998799 0.994958+0.002455  1.000000+0.000000  0.980814+0.006220
phs000306 (AA)  0.998599 0.996778+0.001370  1.000000+0.000000  0.988833+0.004872

F -
Data Leave-one-out :
phs000634 0.998997 0.99679010.001 036 1.000000+0.000000 0.988011+0.004155
phs000753 0.998253 0.995636+0.001365 1.000000£0.000000  0.980036+0.007054
phs000147 0.999126 0.996154+0.000940  1.000000£0.000000  0.986937+0.004565
phs000517 0.994140 0.993118+0.001958  1.000000+0.000000  0.975358+0.013682
phs000306 (JL)  0.998800 0.995078+0.002430  1.000000+0.000000  0.978470+0.012427
phs000306 (AA)  0.998600 0.9953114£0.001043  1.000000£0.000000  0.986713+0.003979

G m_ 0-fold cross-validation

Min (meanz:std)

phs000634 0.719564+0.009181  0.718224+0.007050  0.797215+0.022714  0.634884+0.023491
phs000753 0.701933+0.009999  0.699119+0.009361  0.771391+0.024923  0.637271+0.018032
phs000147 0.691249+0.009005 0.686718+0.009956  0.756283+0.022465  0.606278+0.030169
phs000517 0.289578+0.030874  0.288875+0.032605  0.401884+0.035301  0.180312+0.043995
phs000306 (JL)  0.365867+0.020679  0.366504+0.020973  0.477780+0.046572  0.251098+0.031080
phs000306 (AA)  0.309344+0.011395  0.308562+0.010901  0.382190+0.029963  0.228295+0.024264
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