Supplemental: The Molecular Make Up of Smoldering Myeloma Highlights the Evolutionary Pathways Leading to Multiple Myeloma

Supplementary Material

Eileen M Boyle^{1,2,3}, Shayu Deshpande¹, Ruslana Tytarenko¹, Cody Ashby^{1,4}, Yan
Wang¹, Michael A Bauer^{1,4}, Sarah K Johnson¹, Christopher P Wardell^{1,4}, Sharmilan
Thanendrarajan¹, Maurizio Zangari¹, Thierry Facon⁵, Charles Dumontet², Bart Barlogie⁶,
Arnaldo Arbini³, Even H. Rustad³, Francesco Maura⁷, Ola Landgren⁷, Fenghuang
Zhan¹, Frits van Rhee¹, Carolina Schinke¹, Faith E Davies³, Gareth J Morgan^{3*}, Brian A
Walker^{8*}

10

3

- ¹ Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- ¹² ² INSERM 1052/CNRS 5286 Cancer Research Center of Lyon, Lyon, FRANCE
- ¹³ ³ Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA

⁴ Department of Biomedical Informatics, University of Arkansas for Medical Sciences,

- 15 Little Rock, AR, USA
- ⁵ Service des maladies du sang. Hôpital Claude Huriez, Lille University Hospital, Lille,
 FRANCE.
- ⁶ Division of Hematology, The Mount Sinai Hospital, New York, NY, USA
- ⁷ Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- ⁸ Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA.
- 22
- ²³ *These authors contributed equally.

24

26 Supplemental Table 1: The incidence of copy number changes in SMM (n=82) and

27 MM (n=223) based on CN estimates from the targeted panel (X^2 =chi-squared

28 statistic, two-sided *p*-value derived from Kruskal Wallis test).

29

	MM	SMM	X ²	<i>p</i> -value		
gain(1q)	33.63%	26.83%	0.9	0.3		
amp(1q)	5.38%	4.88%	0.01	0.9		
del(11q)	4.93%	3.66%	0.2	0.6		
Trisomy 11	49.33%	40.24% 1.9		0.1		
del(1p): CDKN2C	17.04%	2.44%	2.44% 11.2			
Trisomy 9	56.95%	46.34%	2.7	0.12		
del(16q): CYLD	26.01%	12.20%	5.8	0.01		
del(2p)	2.44%	4.48%	0.05	0.8		
del(1p): <i>FAM46C</i>	22.87%	8.54%	7.8	0.008		
Trisomy 6	21.52%	18.29%	18.29% 0.2			
del(16q): MAF	28.25%	13.41%	13.41% 6.3			
del(6q)	15.70%	13.41%	0.06	0.2		
del(13q)	lel(13q) 48.43%		0.9	0.3		
del(17p)	15.70%	6.10%	4	0.04		
del(14q)	19.28%	7.32%	5.5	0.02		

30

32 Supplemental Table 2: Summary of sample sequencing metrics (n=number of

33 patients).

	Translocation panel Depth	Mutation panel Depth
SMM (n=82)	363 (332-394)	786 (692-867)
EM (n=10)	357 (321-406)	735 (731-891)
MGUS (n=17)	413 (340-433)	974 (834-1036)

34

36 Supplemental Table 3: List of genes on the targeted panel. In bold are the

- 37 previously described mutational driver genes.

ARID1A	CHD2	FBXW7	KRAS	PSMG2
ARHGEF12	CHD4	FCHSD2	LRP1B	PTPN11
ARID2	CHEK1	FGFR3	LRRK2	RAD50
ASXL1	CHEK2	HDAC1	LTB	RB1
ATM	CRBN	HDAC4	MAF	RBX1
ATR	CREBBP	HDAC7	MAFB	SETD2
ATRX	CUL4A	HIST1H1C	MAP3K14	SF3B1
BCL10	CUL4B	HIST1H1D	MAX	SMARCA4
BCL6	CXCR4	HIST1H1E	MKI67	STAT3
BCL7A	CYLD	IDH1	MLL	TAF1
BCORL1	DDB1	IDH2	MYC	TET1
BIRC2	DIS3	IKZF1	MYD88	TET2
BIRC3	DNMT3A	IKZF3	NCKAP5	TET3
BRAF	DOT1L	IKZF4	NCOR1	TP53
BRCA1	EGFR	IRF4	NEDD9	TRAF2
BRCA2	EGR1	JAK1	NF1	TRAF3
BRD4	EP300	JAK2	NOTCH1	U2AF1
BRF1	EZH1	JAK3	NOTCH4	VSIG6
CARD11	EZH2	KAT6A	NR3C1	WHSC1
CCND1	FAF1	KDM2B	NRAS	WHSC1L1
CCND3	FAM46C	KDM5A	PCLO	XBP1
CD36	FANCA	KDM6A	POT1	ZFHX4
CDKN1B	FANCD2	KMT2B	PRDM1	ZRSR2
CDKN2C	FANCI	KMT2C	PRKD2	
CHD1	FANCM	KMT2D	PSMB5	

Supplemental Table 4: Metrics of sequential samples.

Name	Median depth	Purity by flow	PYCLONE
A 2	99	74	Yes
A 3	88	70	Yes
A 4	89	90.4	Yes
A 5	86	83.4	Yes
A 6	103	91.26	Yes
B 2	85	94	Yes
В 3	110	98	Yes
В 6	116	67	Yes
B 7	103	87.1	Yes
B 8	106	64	Yes
C_1	90	97.9	Yes
C_2	93	94.7	Yes
C_4	105	89	Yes
C_5	89	85	Yes
C_6	92	80	Yes
C_7	90	60	Yes
C_8	100	80.2	Yes
D_3	126	86	Yes
D_4	154	89	Yes
D_5	128	96	Yes
D_6	100	100	Yes
D_7	98	97	Yes
E_10	80	99.6	Yes
E_2	151	85.3	Yes
E_3	98	84	Yes
E4	108	91	Yes
E_5	123	87.9	Yes
6	115	94.3	Yes
E_7	103	87	Yes
E_8	91	87.6	Yes
E_9	90	98.7	Yes
F_2	112	85.9	Yes
F_3	90	87.4	Yes
F_4	77	90	Yes
F_5	96	89	Yes
<u> </u>	91	68	Yes
F_/	104	100	Yes
<u>F_8</u>	91	94.2	Yes
<u> </u>	81	91	Yes
<u>G_2</u>	99	92	Yes
	99	00	
H_10	68	98	NO
<u> </u>	70	00	
	<u> </u>	90	
<u>о</u> и о	01	97.0	
	10	99.1 09 E	
<u>Γ_</u> θ Ι 1	70	0.06	
	106	87.6	<u> </u>
<u> </u>	95	07.0	No
	00	JZ 05	No
	109	90 F	
ι <u>ο</u> Ι α	84	99.5 90.4	Yes
1.3	07	JJ.T	100

Supplemental Table 5. ddPCR primer and probe sequences.

	IGHG3-MYC (5'-3')	non-translocated <i>IGH</i> locus (5'-3')				
Forward primer	CAGTATTTTAGTAGCTCAAAGACACCTCTT	AGCTGCCACCTGCTTGT				
Reverse primer	GCTTAGGTCAGTTTTGCCCATCT	CTGGGCTGGGCTGAGTT				
Probes	FAM-TCCATTTCTGAAGACTTA-MGBNFQ	FAM- TCCATTTCTGAAGACTTA-MGBNFQ				
	VIC-AGTCCATTTCTGATGACTTA-MGBNFQ	VIC- AGTCCATTTCTGATGACTTA-MGBNFQ				

Boyle et al. The Molecular structure of smoldering myeloma

	Genes/Loci	Ch	Genes/Loci	Chr	Genes/Loci	Chr	Genes/Loci	Chr	Genes/Loci	Chr	Genes/Loci
1	1pTEL	5	5q12	8	WHSC1L1	11	11qCEN	14	PSMB5	19	DOT1L
	ARID1A	1 [CHD1		8pCEN	1 1	DDB1		FANCM		SMARCA4
	HDAC1		RAD50		KAT6A		CCND1		MAX	-	BRD4
	FAF1		EGR1		ZFHX4		FCHSD2		TRAF3	-	JAK3
	CDKN2C	-	NR3C1		NSMCE2	-	BIRC3		BRF1		19pCEN
	JAK1		5q32		TRIB1		BIRC2	15	VSIG6		KMT2B
	BCL10	6	IRF4		LINC00861	-	ATM		15qCEN		PRKD2
	NRAS		NEDD9		FAM84B		MLL		FANCI	-	19qTEL
	1pCEN	-	HIST1H1C		PCAT1	-	ARHGEF12		IDH2	20	ASXL1
	FAM46C		HIST1H1E		POU5F1B		CHEK1		CHD2		MAFB
	1q21.3		HIST1H1D		LOC727677		11qTEL	16	CREBBP	21	U2AF1
	1qTEL		LTB		MYC	12	KDM5A		16qCEN	22	CHEK2
2	DNMT3A		NOTCH4		PVT1		CD27		CYLD		XBP1
	ALKi19		CCND3		LOC728724		CHD4		MAF	-	RBX1
	TET3		6qCEN		GSDMC		CDKN1B		16qTEL		EP300
	NCKAP5		PRDM1		8qCEN		KRAS		FANCA	23	ZRSR2
	CXCR4		PARK2	9	9pTEL		12pCEN	17	17pTEL		KDM6A
	LRP1B	7	CARD11		JAK2		LRRK2		TP53CN	-	TAF1
	SF3B1		IKZF1		CDKN2A	1 1	ARID2		TP53		ATRX
	IDH1		EGFR		CDKN2B		HDAC7		NCOR1	-	CUL4B
	HDAC4		7pCEN		9pCEN		KMT2D		17pCEN	-	BCORL1
3	CRBN	-	7qCEN		NOTCH1	-	IKZF4		NF1		
	FANCD2		CD36		TRAF2		PTPN11		IKZF3	-	
	MYD88		PCLO	10	TET1		KDM2B		STAT3	-	
	SETD2		POT1		MKI67		BCL7A		EZH1		
	Зр		BRAF			13	13qCEN		BRCA1		
	Зq	-	EZH2				BRCA2		MAP3K14		
	ATR		KMT2C				RB1	18	PSMG2	-	
	BCL6						DIS3				
4	FGFR3						13qTEL	1			
	WHSC1						CUL4A	1			
	TET2							1			
	FBXW7										

48 Supplemental Table 6: List of loci included in the plot comparing SMM and MM copy number changes (Figure 1c)

Supplemental Figure 1: The number of mutations per sample identified on the 49 targeted panel is lower in SMM than in MM. The Kruskal-Wallis test results at the top 50 represents the overall test n=number of patients, two-sided p-value derived from 51 Kruskal Wallis test. Boxplot representing second guartile, median, and third guartile, 52 whiskers representing first and forth guartile. 53

54

57 Supplemental Figure 2: Driver mutations increase with disease stages from 58 MGUS to MM (MM=223, EM=10, SMM=82, and MGUS=17).

Supplemental Figure 3: Signature analysis a. Dendrogram representing the signatures present showing clustering of maf subgroup MM samples. b. There was a trend suggesting SMM patients with>5% APOBEC progressed faster than the others

Supplemental Figure 4: Distribution of mutations per sample and risk group 66 (IMWG). 67

Supplemental Figure 5: Impact on progression free survival of a. del(6q) b. IMWG subgroups. c. GEP4 risk score. d. RAS (*BRAF/NRAS/KRAS*) mutations combined e. Multivariate analysis performed using all factors with an event present in n \geq 7 (IMWG, GEP4, del(6q), del(13q), mut/del *TP53*, and *KRAS* mutations). n=number of patients with the mutation and N=total number of patients evaluated, error-bars=95% CI, *p*= logrank test.

78 Supplemental Figure 6: Analysis of the patients that were within 3 months from

initial diagnosis suggesting a. *KRAS* mutations have a stronger impact on progression

among the ND SMM patients. b. GEP4, *KRAS* mutations, and HR mutations segregate

patients effectively $p = \log rank$ test.

82

84 Supplemental Figure 7: NF-κB score in SMM is similar to MM and not MGUS. The

Kruskal-Wallis test results at the bottom represents the overall test. n=number of
 patients, two-sided *p*-value derived from Kruskal Wallis test.

91 Supplemental Figure 8: Evolution of CNA events in sequential sample. Highlighted

⁹² in green and red are the changing losses and gains, respectively.

Supplemental Figure 9: Subgroup analysis of number of mutations per sample over time. a. Mutation rate over time in HRD vs nHRD. b. Mutation rate in progressors vs non progressors. c. Number of mutations per sample between SMM and MM. d. Number of drivers per sample between SMM and MM. χ^2 =chi-statistic, r^2 =coefficient of determination, Error bands=95%CI, *p*=one-way ANOVA (a-b) two-sided p-value derived from Kruskal-Wallis test (c-d), n=number of samples. Boxplot representing second quartile, median, and third quartile, whiskers representing first and last quartile.

Supplemental Figure 10: Genomic evolution of Patient C. a. CCF plot showing the
 emergence of an *NF1* clone. b. Fishplot summarizing the clonal evolution in parallel to
 the paraprotein evolution. c. Phylogeny tree showing branching evolution.

Supplemental Figure 11: Genomic evolution of Patient D. a. CCF plot showing the absence of clonal selection in a patient that has yet to progress. b. Fishplot summarizing the clonal evolution in parallel to the paraprotein evolution. c. Phylogeny tree showing branching evolution.

Supplemental Figure 12: Genomic evolution of Patient E. a. CCF plot showing the
 emergence of a *KRAS* and *MAPK6* clone. b. Fishplot summarizing the clonal evolution
 in parallel to the paraprotein evolution. c. Phylogeny tree showing branching evolution.

Supplemental Figure 13: Genomic evolution of Patient F. a. CCF plot showing
 stable clonal composition. b. Fishplot summarizing the clonal evolution in parallel to the
 paraprotein evolution. c. Phylogeny tree showing branching evolution.

Supplemental Figure 14: Genomic evolution of Patient G. A. CCF plot showing the emergence of a *TNSFR1B* clone. B. Fishplot summarizing the clonal evolution in parallel to the paraprotein evolution. C. Phylogeny tree showing branching evolution

- 141
- 142

143

Supplemental Figure 15: Genomic evolution of Patient B. A. CCF plot showing the
 emergence of *ZFP36L1* clone. B. Fishplot summarising the clonal evolution in parallel to
 the paraprotein evolution. C. Phylogeny tree showing branching evolution

Supplemental Figure 16: Shannon diversity indices overtime. There was no linear 151 correlation with time but patients that progressed had a stable H index whereas those 152 that did not seemed to present changes in H index (a). Patients that progressed had 153 significantly higher H indices than those that did not (b). There was no difference in H 154 index between patients that had a KRAS mutation and those that did not (c). There 155 was no difference in the H index of patients with a t(4;114) and gain(1g) in 156 comparison to those that did not (d) and there was no difference in H index 157 between patients with either a t(4;14), gain(1g) or KRAS mutation in comparison 158 to those that did not have any of these high risk features (e). Error bands 95% CI, 159 n=number of patients, s=number of samples, Boxplot representing second quartile, 160 median, and third quartile, whiskers representing first and last quartile, two-sided p-161 value derived from Kruskal-Wallis test 162

165