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Supplementary Note 1: Formation of spin-hedgehog lattice in MnGe thin films. 

Supplementary Figure 1 | Formation of hedgehog lattice in MnGe thin films. a, The 

spin structures of hedgehog lattice in bulk MnGe, which is a three-dimensional array of 

hedgehogs and anti-hedgehogs. It can be described by the superposition of three helical 

modulation vectors (q-vectors) along the <100> crystal axes. b, The SANS intensity 

pattern of MnGe thin films with the film-thickness t = 160 nm, which is reproduced from 

Supplemetary Ref. 6. The three q-vectors are tilted to the film-normal direction [111], due 

the uniaxial anisotropy from the substrate. The consequence spin texture is the hedgehog 

lattice with a dilute density of hedgehogs and anti-hedgehogs. c, The effect of the film-

thickness on the direction of the q-vectors revealed by the SANS experimentS6. 𝜃  is 

defined as the angle between the q-vectors and the film-normal direction, which is 

reduced with decreasing the film-thickness. This suggests the fact that the in-plane 

anisotropy of spin is enhanced in thinner films. d, The magnetic phase diagram of the 

MnGe thin film (t = 160 nm), which consists of the ferromagnetic (FM) phase, helical 

state, and hedgehog lattice stateS6. 

 

Magnetic structures of topological spin crystals, such as skyrmion- and 

hedgehog-lattice states, can be described by the superposition of spin spirals with 
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propagation vectors q, i.e., the multiple-q statesS1,S2. Therefore, the small-angle neutron 

scattering (SANS) experiment has been one promising way to identify the topological 

spin texture, by detecting the q-vectors in reciprocal space. In bulk MnGe, three 

orthogonal q-vectors along <100> crystal axes have been observed by the SANS 

experimentS2 as well as in the real-space by Lorentz TEMS3. The consequent spin texture 

becomes the dense array of spin hedgehogs and anti-hedgehogs connected by the 

skyrmion strings (i.e., hedgehog lattice) (Supplementary Fig. 1a), which serve as the 

source (monopole) and sink (anti-monopole) of the emergent magnetic field, 

respectivelyS4,S5. Meanwhile, in the thin films of MnGe, the presence of uniaxial 

anisotropy modifies the mutual angles of the three q-vectors, resulting in the hedgehog 

lattice with dilute monopole/anti-monopole densityS6 (Supplementary Fig. 1b). In 

specific, the q-vectors are tilted to the film-normal direction from the <100> direction, 

showing the easy-plane anisotropy of spins in thin films (Supplementary Fig. 1b). 

Moreover, this in-plane anisotropy can be enhanced by decreasing the film-thickness 

(Supplementary Fig. 1c). The magnetic phase diagram of the MnGe thin film is shown in 

Supplementary Fig. 1d, where the hedgehog lattice is stabilized below 50 K and 4 T. 

It should be noted here that recent STM study observed the multi domains with 

differently-oriented helical structures at the surface of a MnGe thin filmS7. Since the 

internal magnetic structure has not been directly observed, we cannot know whether the 

multi-domain state may be maintained into the inside of the film or the multiple helical 

structures may interfere with each other and form a hedgehog lattice beneath the surface. 

Nevertheless, the observed multi-domain state also contains chains of hedgehogs and 

anti-hedgehogs at the disclination lines where helical structures with different 

propagation directions meet.  

In either case, the main discussions on the SSC excitations and the consequent 

skew scatterings in the ferromagnetic region are unaffected by the incomplete 

understanding of ground magnetic state. 
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Supplementary Note 2: Electrical transport properties of the sample with the film 

thickness of 𝟏𝟔𝟎 nm. 

Supplementary Figure 2 | Electrical transport properties of a MnGe thin film (t = 

160 nm). Complete data set for the sample (t = 160 nm). a, Temperature dependence of 

longitudinal resistivity (𝜌𝑥𝑥 ) and conductivity (𝜎𝑥𝑥 ). b, Magnetic-field dependence of 

Hall resistivity (𝜌𝑦𝑥) at various temperatures. c, Normalized 𝜌𝑥𝑥 at various temperatures. 

d, Normalized 𝜎𝑥𝑥  at various temperatures. e, Magnetic-field dependence of Hall 

conductivity (𝜎𝑥𝑦) at various temperatures. 

 

 The temperature dependence of 𝜌𝑥𝑥 (and 𝜎𝑥𝑥) at zero magnetic field 

is shown in Supplementary Fig. 2a. The magnetic-field dependence 𝜌𝑦𝑥, normalized 𝜌𝑥𝑥 

and 𝜎𝑥𝑥 are also shown in Supplementary Figs. 2b-d. The high-temperature (𝑇 > 70 K) 

data of 𝜎𝑥𝑦  following the conventional intrinsic AHE curves are shown in 

Supplementary Fig. 2e, where the black triangles denote the ferromagnetic transition. The 

positive peak structures observed in 𝜌𝑥𝑥  or the negative peaks in 𝜎𝑥𝑥  below the 

ferromagnetic transitions can be attributed to the fluctuations of the emergent magnetic 

field in the hedgehog latticeS5. The increase in 𝜌𝑥𝑥 (decrease in 𝜎𝑥𝑥) at high magnetic 

field originates from the cyclotron motion of electrons.  
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Supplementary Note 3: Electric transport properties of the samples with the film 

thickness of 𝟖𝟎 nm & 𝟑𝟎𝟎 nm. 

 

Supplementary Figure 3 | Electrical transport properties of MnGe thin films (t = 80 

nm & 300 nm). Complete data set for the samples (t = 80 nm & 300 nm). a, Temperature 

dependence of longitudinal conductivity ( 𝜎𝑥𝑥 ). b, Normalized 𝜎𝑥𝑥  at various 

temperatures. c, Magnetic-field dependence of Hall conductivity ( 𝜎𝑥𝑦 ) at various 

temperatures. 

  

The temperature dependence of 𝜎𝑥𝑥 = 1 𝜌𝑥𝑥⁄  at zero magnetic field for the film 

thickness of 80  nm and 300  nm is shown in Supplementary Fig. 3a. The sample 

quality seems to become better (i.e., the residual resistivity decreases) with increasing the 

film thickness in MnGe. The magnetic field dependence of 𝜎𝑥𝑥  and 𝜎𝑥𝑦  are 

summarized in Supplementary Figs. 3b,c. Importantly, the maximum value of the Hall 

angle (~ 20 %) is nearly independent of the film-thickness, suggesting the underlying 

common mechanisms (i.e., spin-chirality skew-scattering).  
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We also note that the Hall angle is the intrinsic quantity, which is independent of 

the relaxation time or the sample quality in the framework of skew-scattering mechanism. 

Therefore, we have discussed the variation of the Hall angle against the film thickness as 

shown in Fig. 3 of the main text. 
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Supplementary Note 4: Scaling relation between 𝝈𝒙𝒚 and 𝝈𝒙𝒙 

Supplementary Figure 4 | Full logarithmic plot of 𝝈𝒙𝒚  versus 𝝈𝒙𝒙  with varying 

temperature (T = 2-40 K) under fixed magnetic field (t = 160 nm, sample #1). The 

arrows denote the T-increasing direction while the orange/blue dashed lines are the guide 

for the scaling relations 𝜎𝑥𝑦 ∝ 𝜎𝑥𝑥
2  / 𝜎𝑥𝑦 ∝ 𝜎𝑥𝑥, respectively. 

 

Since the normal Hall effect satisfies the relation 𝜎𝑥𝑦 =  𝑅0𝜎𝑥𝑥
2 𝐵, where 𝑅0 =

1 𝑛𝑒⁄  is the normal Hall coefficient, the scaling relation of 𝜎𝑥𝑦 ∝ 𝜎𝑥𝑥
2  is expected under 

fixed 𝐵 . As shown in Supplementary Fig.4, however, 𝜎𝑥𝑦  plotted against 𝜎𝑥𝑥  with 

varying temperature (T = 2-40 K ) shows the complex behavior, and does not follow any 

kind of scaling relations (i.e., 𝜎𝑥𝑦 ∝ 𝜎𝑥𝑥
2  for the normal Hall effect and 𝜎𝑥𝑦 ∝ 𝜎𝑥𝑥 for 

the conventional skew-scattering). We note that this result rather corroborates the spin-

chirality skew-scatteirng mechanism, where the SSC excitation responds sensitively to 

the temperature and magnetic-field variation. If we take the data points where the Hall 

angle becomes the maximim at each temperature, the linear scaling relation 𝜎𝑥𝑦 ∝ 𝜎𝑥𝑥 

holds true irrespective of the film-thickness or sample quality (see Fig. 2a in the main 

text). This is because the Hall angle reflects the magnitude of the SSC excitation (i.e. 

tilting angles of spins or density of monopole/anti-monopole exciation), and hence the 

data points used in Fig. 2a may share the same situations regarding the SSC excitation. 
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Supplementary Note 5: The analytical calculation for the thermal excitation of 

scalar-spin chirality (SSC). 

 We have reproduced the overall B-T profile of the SSC excitation by performing 

analytical calculations. For the low-temperature region, we describe the thermal 

fluctuation in terms of the low-energy excitations. At higher temperatures, we calculated 

the SSC using the high-temperature expansion of a chiral magnet. Based on these specific 

examples, we discuss the general behavior irrespective of model parameters. 

 

⚫ Low-temperature region 

The low-energy excitations of the chiral magnets are spin-wave and the 

monopole/anti-monopole pair (skyrmion string) excitations. The existence of the low-

energy skyrmion excitation owes to the fact that the spin hedgehog lattice phase exists in 

the vicinity of the field-forced ferromagnetic phase. The phase transition between the spin 

hedge hog lattice and the ferromagnetic orders are described by the condensation of 

skyrmion strings. Therefore, skyrmion strings exists as low-energy excitations even in the 

ferromagnetic state. In the continuum model, the skyrmion string excitations contribute 

to the scalar spin chirality while the spin wave contribution vanishes in the linear order. 

Therefore, we focus on the skyrmion string excitations in the rest of this section. 

We assume a monopole/anti-monopole string with energy 

𝐸𝑚𝑛(𝐿) = 2𝐸0(1 ∓ 𝛿) + [𝑑(1 ∓ 𝛿) + ℎ]𝐿, (1) 

where 𝐸0(1 ∓ 𝛿) is the energy of the monopoles and anti-monopoles for skyrmion (+) 

and anti-skyrmion (-) strings, 𝐿  is the length of the skyrmion string connecting the 

monopole and anti-monopole, ℎ  is the magnetic field, 𝑑(1 ∓ 𝛿)  is the energy of 

skyrmion/anti-skyrmion string per unit length (we assume the string runs parallel to the 

magnetic field), 2𝑑𝛿 is the energy difference between the skyrmion and anti-skyrmion 

strings. The energy difference reflects the difference of skyrmion and antiskyrmion spin 

textures. Microscopically, it is related to DM interaction and the magnetic field. We 

neglect the interaction between the monopoles because they are negligible if the 

monopole density is sufficiently small. Under these assumptions, the distribution function 

reads 
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𝑍 = ∑ ∑ exp [− ∑
2𝐸0(1 − 𝛿) + [𝑑(1 − 𝛿) + ℎ − ℎ𝑠]𝐿𝑖

𝑇

𝑛

𝑖=1

]

𝐿𝑖=1𝑛=0

× ∑ ∑ exp [− ∑
2𝐸0(1 + 𝛿) + [𝑑(1 + 𝛿) + ℎ + ℎ𝑠]𝐿𝑖

𝑇

𝑛

𝑖=1

]

𝐿𝑖=1𝑛=0

,          (2) 

~ ∑ (
𝑒−

2𝐸0(1−𝛿)
𝑇

1 − 𝑒−
𝑑(1−𝛿)+ℎ−ℎ𝑠

𝑇

)

𝑛

× ∑ (
𝑒−

2𝐸0(1+𝛿)
𝑇

1 − 𝑒−
𝑑(1+𝛿)+ℎ+ℎ𝑠

𝑇

)

𝑛∞

𝑛=0

,

∞

𝑛=0

(3) 

=
1

1 − (
𝑒−

2𝐸0(1−𝛿)
𝑇

1 − 𝑒−
𝑑(1−𝛿)+ℎ−ℎ𝑠

𝑇

)

1

1 − (
𝑒−

2𝐸0(1+𝛿)
𝑇

1 − 𝑒−
𝑑(1+𝛿)+ℎ+ℎ𝑠

𝑇

)

. (4)

 

ℎ𝑠 is introduced for a technical purpose which will be clear in the following. We note 

that the transformation from the second to the third line holds only when 

|
𝑒−

2𝐸0(1±𝛿)
𝑇

1 − 𝑒−
𝑑(1±𝛿)+ℎ±ℎ𝑠

𝑇

| < 1. (5) 

The chirality of the ferromagnetic phase is proportional to the density of the skyrmion 

strings. Therefore, 

𝜒 ∝
1

𝑍
𝑇𝜕ℎ𝑠

𝑍|
ℎ𝑠→0

= 𝑛+ − 𝑛−, (6) 

where 

𝑛± =
1

(1 − 𝑒
𝑑(1∓𝛿)+ℎ

𝑇 ) (1 + 𝑒
2𝐸0(1∓𝛿)−𝑑(1∓𝛿)−ℎ

𝑇 − 𝑒
2𝐸0(1∓𝛿)

𝑇 )

. (7)
 

The result of the SSC as a function of temperature at various magnetic fields is 

shown in Supplementary Fig. 5a, which is consistent with the experimental result in the 

low-temperature limit shown in Fig. 2c of the main text. SSC is zero at zero temperature 

because it is the ferromagnetic state. At a finite temperature, the chirality becomes 

nonzero due to the imbalance of the population between skyrmion and anti-skyrmion 

strings. 

 

⚫ High-temperature region  
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The description based on the skyrmion/anti-skyrmion strings fails at a high 

temperature because of the weak spin correlation. Therefore, we employ the high-

temperature expansion to discuss the B-T profile of the SSC in the high-temperature 

region 𝑇 ≫ 𝐽 (𝐽 is the energy scale of the ferromagnetic exchange interaction). 

For this purpose, we here consider an fcc lattice model with weak Dzyaloshinskii-

Moriya interaction (Supplementary Fig. 5b), 

𝐻 = 𝐻0 + 𝐻1, (8) 

𝐻0 = −ℎ ∑ �̂�[111] ∙ 𝐒𝑖
𝑧

𝑖

−
𝐾

2
∑(�̂�[111] ∙ 𝐒𝑖)

2

𝑖

, (9) 

𝐻1 = −𝐽1 ∑ 𝐒𝑖 ∙ 𝐒𝑗 − 𝐷 ∑ 𝛿𝑖𝑗 ∙ 𝐒𝑖 × 𝐒𝑗

〈𝑖,𝑗〉

+ 𝐽2 ∑ 𝐒𝑖 ∙ 𝐒𝑗

〈〈𝑖,𝑗〉〉〈𝑖,𝑗〉

. (10) 

Here, �̂�[111] is the unit vector along the [111] axis. When 𝐽2 = 𝐾 = 0, this model is an 

fcc version of the effective model often used for MnSiS8. We also note that a related two-

dimensional model has been studied by Leonov et alS9., which finds a skyrmion crystal 

phase at 𝑇 = 0. 

Below we focus on the SSC of the (111) plane. Using high-temperature expansion, we 

calculated the SSC in the paramagnetic/ferromagnetic phase of this model. The thermal 

average of the SSC for the nearest-neighbor triangles reads 

𝜒 =< 𝐒1 ∙ (𝐒2 × 𝐒3) >, (11) 

where the site indices are assigned as in Supplementary Fig. 5b. In the high-temperature 

expansion, we expand the density matrix for 𝑒−𝛽𝐻1 with respect to 𝛽. To the second 

order, the thermal average reads 

𝜒~
1

𝑍
Tr [𝑒−𝛽𝐻0 (1 − 𝛽𝐻1 +

(𝛽𝐻1)2

2
) 𝐒1 ∙ (𝐒2 × 𝐒3)] . (12) 

 =
3√3

2
𝛽2𝐷2[〈(𝑆𝑧)3〉〈(𝑆𝑥)2〉〈(𝑆𝑦)2 + (𝑆𝑧)2〉{〈(𝑆𝑥)2𝑆𝑧〉〈(𝑆𝑦)2〉 + 〈(𝑆𝑥)2〉〈(𝑆𝑦)2𝑆𝑧〉}] , (S13) 

Here, we take the spin axis so that 𝑆𝑧 is parallel to the [111] axis. 

We first focus on the 𝐾 = 0 case. In this case, 

 𝜒 =
3√3𝛽2𝐷2

2
𝐹(𝛽ℎ), (14) 

𝐹(𝑥)

=
(1 − 𝑥 coth(𝑥))[(2 + 𝑥2)(9 + 2𝑥2) + 𝑥 coth(𝑥) {(𝑥2 + 18)𝑥 coth(𝑥) − 2(18 + 7𝑥2)}]

𝑥7
.       (15) 
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The result is the same for the downward triangles shown in Supplementary Fig. 5b. 

The result of the SSC as a function of temperature at various magnetic fields is 

shown in Supplementary Fig. 5c, which is consistent with the experimental result of the 

high temperature shown in Fig. 2c of the main text. The SSC increases with increasing 

the magnetic field, which is related to the fact that the 𝑆𝑧 terms increases with ℎ, such 

as 〈(𝑆𝑧)3〉 =
𝛽ℎ

5
+ 𝑂(𝛽3ℎ3) . nn the other hand, the terms related to 𝑆𝑥  and 𝑆𝑦 

decreases with ℎ, such as 〈(𝑆𝑥)2〉 =
1

3
−

𝛽2ℎ2

45
+  𝑂(𝛽3ℎ3). Hence, 

𝜒 =
𝛽3𝐷2ℎ

6√3
+ 𝑂(𝛽5). (16) 

We note that this is a general trend for the models with a triangular network of magnetic 

ions. Therefore, we expect a larger chirality at higher magnetic field, when 𝛽𝐷 ≪ 1. 

The expected overall behavior of the SSC connecting the low-temperature and high-

temperature regions is shown in Supplementary Fig. 5d, showing a peak structure at a 

finite temperature as observed in the experiment. 

 

⚫ Effect of easy-plane anisotropy 

We consider the effect of anisotropy on the SSC excitation in this section. The single-

ion anisotropy is incorporated in the thermal average term 〈⋯ 〉 as 

〈⋯ 〉 ≡ ∫
𝑑𝜃𝑑∅ sin 𝜃

𝑧
𝑒𝛽ℎ cos 𝜃+

𝛽𝐾
2

(cos 𝜃)2
(⋯ ) . (17) 

Therefore, the formula in Supplementary Eq. (13) holds with only difference in the 

definition of the thermal average. The leading-order effect from the anisotropy appears in 

the linear order of 𝛽𝐾, which reads 

𝜒 =
3√3𝛽2𝐷2

2
[𝐹(𝛽ℎ) + 𝛽𝐾𝐹1(𝛽ℎ)], (18) 

               𝐹1(𝑥) = − (
342

𝑥9
+

294

𝑥7
+

73

𝑥5
+

4

𝑥3
)

+ (
972

𝑥8
+

569

𝑥6
+

78

𝑥4
) coth(𝑥) − (

864

𝑥7
+

273

𝑥5
+

5

𝑥3
) (coth(𝑥))2

+ (
180

𝑥6
−

15

𝑥4
) (coth(𝑥))3 + (

54

𝑥5
+

3

𝑥3
) (coth(𝑥))4.                           (19) 

Hence, the easy-plane anisotropy (𝐾 > 0) enhances the chirality. When 𝛽ℎ ≪ 1, the SSC 
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reads 

𝜒~
𝛽3𝐷2ℎ

6√3
+

𝛽4𝐷2ℎ𝐾

75√3
. (20) 

Physically, the easy-plane anisotropy cause frustration between the magnetic field; the 

anisotropy tries to keep the spins in 𝑥𝑦 plane while the magnetic field prefers to point 

the spins in the perpendicular direction. The competition of anisotropy and magnetic field 

enhances the noncollinearlity. This observation is consistent with the results discussed in 

Fig. 3 in the main text, where the SSC excitation is enhanced in thinner films, even at low 

temperatures and high magnetic fields.  

Supplementary Figure 5 | Analytical calculations on the scalar-spin chirality (SSC) 

excitation. a, Calculation of SSC in the low-temperature region by non-interacting 

skyrmion and anti-skyrmion strings. The calculation is for 𝐸0 = ℎ − 1 + 0.5𝑇, 𝑑 =

1, 𝛿 = 0.01. The three lines are for different external magnetic fields: ℎ = 1 (blue), ℎ =

1.5 (orange), and ℎ = 2 (green). b, A schematic figure of the fcc lattice model and the 

triangle we consider for the calculation of the SSC in the high-temperature series 

expansion. c, Calculations of the SSC in the high-temperature region. The three lines are 

for different external magnetic fields: ℎ/𝐷 = 1/2  (blue), ℎ/𝐷 = 1  (orange), and 

ℎ/𝐷 = 2  (green). The contour map of the magnitude of SSC (𝜒 ) is also shown. d, 

Schematic figure of the SSC at a constant magnetic field, which connects the low-

temperature and high-temperature regions. The peak structure of SSC resembles that of 

the Hall angle in MnGe. 
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Supplementary Note 6: Monte Carlo simulation of spin textures at high magnetic 

field  

Supplementary Figure 6 | Monte Carlo simulation for chiral magnets at high 

magnetic field above the ferromagnetic transition. The snapshots of the spins at T = 

0.2 (a,b), T = 0.5 (c,d), and T = 1.0 (e,f) at the magnetic field of B = 3.5. The magnetic 

ordering temperature (Tc) and the ferromagnetic transition temperature (Bc) for this model 

are Tc ~ 0.9 and Bc ~ 3.0 , respectively (see Supplementary Ref. S8 & S10 for detail). The 

color bars correspond to the z-component of spins (a,c,e) and the scalar-spin chirality 

(b,d,e), respectively. 

 

We performed a Monte Carlo simulation for chiral magnets to show that the 

topological excitations survive at high magnetic fields well above the FM transition. To 

see how the topological excitations are generated in a high magnetic field in terms of a 
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tractable model, we consider a two-dimensional model for chiral magnetS11. 

𝐻 = −𝐽 ∑ 𝑆(𝑟) ⋅ 𝑆(𝑟 + �̂�) + 𝑆(𝑟) ⋅ 𝑆(𝑟 + �̂�)

𝑟

− 𝐷 ∑ �̂� ⋅ 𝑆(𝑟) × 𝑆(𝑟 + �̂�) + �̂� ⋅ 𝑆(𝑟) × 𝑆(𝑟 + �̂�)

𝑟

− 𝐵 ∑ 𝑆𝑧(𝑟)

𝑟

. (21) 

We take 𝐷/𝐽 = √6 and 𝐵/𝐽 = 3.5 in this manuscript. This model shows three phases 

under the magnetic field: helical phase in the low field, skyrmion crystal phase in the 

intermediate field, and the field-forced FM phase in the high fieldS8. The transition from 

the skyrmion crystal phase to the FM phase occurs at B/J ~ 3 for the parameters mentioned 

aboveS10. 

Supplementary Figs. 6 shows the snapshots taken from the simulation at B =3 .5. 

As shown in Supplementary Figs. 6a,b, the SSC excitation is suppressed at the low 

temperatures, T/J = 0.2. Upon increasing the temperature, the SSC excitation (or 

skyrmionic excitation) emerges as in the snapshots for T/J = 0.5 (Supplementary Figs. 

6c,d). The density of skyrmonic excitations increases monotonically with increasing the 

temperature. However, as the temperature increases, the skyrmionic excitations with the 

opposite chirality (or anti-skyrmionic excitation) also appear, reducing the total SSC 

density (Supplementary Figs. 6e,f). These results are consistent with our experimental 

observation, where the anomalous Hall effect shows a maximum at a finite temperature 

under a fixed magnetic field (Fig. 2c). 
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Supplementary Note 7: Discussion on the normal Hall effect. 

⚫ Fitting 𝝈𝒙𝒚 with single-carrier Drude model 

Supplementary Figure 7 | Fitting the Hall conductivity 𝜎𝑥𝑦 by single-carrier Drude 

model. a, Schematics of the “dispersive resonance” profile of 𝜎𝑥𝑦 following a Drude 

model. The peak position is determined by the inverse of mobility 𝜇. b, Fitting of 𝜎𝑥𝑦 

[2 K, 160nm (sample#1)] by a single-carrier Drude model (red line), while employing 

carrier density and mobility estimated from the peak position (red solid circle). The black 

triangle denotes the ferromagnetic (FM) transition.  

 

 𝜎𝑥𝑦 with a sharp peak structure (“dispersive-resonance” profile), can 

arise from the normal Hall effect when the carrier mobility 𝜇 is sufficiently large, as 

typically observed in Dirac or Weyl semimetalsS12. Here, the profile of 𝜎𝑥𝑦 follows the 

Drude model [𝜎𝑥𝑦 = 𝜇𝑛𝑒 ∙ 𝜇𝐵 (1 + (𝜇𝐵)2)⁄ ], where the peak position (magnetic field) is 

determined by the inverse of 𝜇  (Supplementary Fig. 7a). In the case of MnGe, one 

possibility is that the ferromagnetic phase transition entails the emergence of a high-

mobility carrier pocket, such as the magnetic Weyl points. Although MnGe is a multi-

band system with a relatively large carrier density, the existence of one high-mobility 

pocket might dominate the low-field transport, resulting in the “dispersive-resonance” 

profile. Therefore, we first tried to fit 𝜎𝑥𝑦 with a single-carrier Drude model while fixing 

the peak position, assuming that the peak structure were produced by such high-mobility 

carriers. As shown in Supplementary Fig. 7b, the observed 𝜎𝑥𝑦 largely deviates from the 
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Drude curve.  

 

⚫ Fitting 𝝈𝒙𝒚 with two-carrier Drude model 

Supplementary Figure 8 | Fitting the Hall conductivity 𝜎𝑥𝑦 by two-carrier Drude 

model. The red dashed line shows the result of fitting. 

 

 We also tried fitting 𝜎𝑥𝑦  with two-carrier Drude model [ 𝜎𝑥𝑦 = 𝜇ℎ𝑛ℎ𝑒 ∙

𝜇ℎ𝐵 (1 + (𝜇ℎ𝐵)2)⁄ + 𝜇𝑒𝑛𝑒𝑒 ∙ 𝜇𝑒𝐵 (1 + (𝜇𝑒𝐵)2)⁄  ], assuming the high-mobility hole 

pocket and the low-mobility electron pocket, as shown by the red dashed lines in 

Supplementary Fig. 8. The fitting is performed above the ferromagnetic transition, and 

obtained parameters are 𝑛ℎ = 9.4 × 1020  cm-3, 𝜇ℎ = 690  cm2V-1s-1, 𝑛𝑒 = 1.2 ×

1021 cm-3, 𝜇𝑒 = 250 cm2V-1s-1 at T = 2 K. Multi-carrier Drude model, in general, may 

reproduce any kind of 𝜎𝑥𝑦  as we further increase the number of carriers or fitting 

parameters. Hence we cannot completely exclude the possibility of the normal Hall effect, 

and further experiments such as the direct observation of electronic structure would be 

necessary to discuss the possibility of magnetic Weyl points. However, we assume that 

the normal Hall effect is less likely to dominate the observed large response, based on the 

discussions regarding the comparison between bulk crystals of MnGe as shown below. 
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⚫ Comparison of Hall conductivity between thin film, single crystal, and poly 

crystal 

Supplementary Figure 9 | Hall conductivity at various temperatures for thin film, 

single crytstal, and poly crystal of MnGe. The enhancement of Hall conductivity in the 

ferromagnetic region is not observed in bulk poly crystal of MnGe. 

 

The large enhancement of the Hall response at low temperature is observed only 

in the thin-films and bulk single-crystalsS13, but NnT in bulk poly-crystals of MnGeS4 

(Supplementary Fig. 9). Because the value of 𝜎𝑥𝑥, which reflects the carrier density or 

mobility, is almost identical between thin-films (𝜎𝑥𝑥 = 2.0 × 105 −cm-1 at 2 K) and 

poly-crystals (𝜎𝑥𝑥 = 1.6 × 105 −cm-1 at 2 K), this result suggests that the observed 

large Hall response may NnT be dominated by the normal Hall effect. 

 In terms of the spin-chirality skew-scattering mechanism, we speculate that the 

presence of random crystal domains in poly-crystals may weaken the total SSC excitation.  

 



18 

 

Supplementary Note 8: Chirality domain boundary 

Supplementary Figure 10 | Dark-field TEM measurement on MnGe thin films. a, 

Electron diffraction pattern with [111] incidence. The MnGe domains of interest are found 

by rotating around the [112 ] axis by approximately 22° . b, The diffraction pattern 

observed at such a tilt, with the peaks corresponding to the two chiral domains, labeled A 

and B. c-e, Dark-field TEM images of film-thickness t = 80 nm (c), 160 nm (d), and 300 

nm (e), using diffraction peaks A (upper panels) and B (lower panels), respectively. Bright 

parts correspond to the domains A and B, respectively. 

 

The growth of MnGe layer on the Si(111) substrate leads to the formation of 

enantiomorphic twins in MnGe thin films, which was investigated by the dark-field TEM 

measurement. As shown in Supplementary Figs. 10c-e, we observed a typical domain size 

of ~2-3 m, regardless of the film thickness. These lattice-chirality domain boundaries 

may serve as the pinning potential for the thermal excitation of the SSC, however, we 

conclude that they may have small effects, if any, in the observed Hall effects, since the 

Hall response dramatically changes with the film-thickness while the domain sizes remain 

nearly constant. 
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