DOI: 10.1289/EHP7310

**Note to readers with disabilities:** *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

## Supplemental Material

## Filaggrin Polymorphisms and the Uptake of Chemicals through the Skin – A Human Experimental Study

Emelie Rietz Liljedahl, Gunnar Johanson, Helena Korres de Paula, Moosa Faniband, Eva Assarsson, Margareta Littorin, Malin Engfeldt, Carola Lidén, Anneli Julander, Karin Wahlberg, Christian Lindh, and Karin Broberg

## **Table of Contents**

Table S1. Filaggrin null mutations with rs-id, and primer and probe pairs.

**Table S2.** The mode of ionization and transitions of the analyzed compounds and corresponding internal standards.

**Table S3.** Between-run and between-batch precision of the analytical methods determined at different concentrations.

**Table S4.** Area under the urine excretion rate curve (AUC<sub>(0-40h)</sub>), lag time for dermal absorption and dermal absorption rate constant by *FLG* genotype.

**Table S5.** Area under the urine excretion rate curve  $(AUC_{(0-40h)})$  adjusted for BMI and age, by *FLG* genotype.

**Table S6.** Area under the urine excretion rate curve  $(AUC_{(0-40h)})$ , adjusted BMI and age, by *FLG* null and CNV genotype.

**Table S7.** Lag time for dermal absorption and dermal absorption rate constant by *FLG* null and CNV genotype. Analysis adjusted for BMI, age and sex.

**Table S8.** Volume of the central compartment, rate constant from the central compartment to the peripheral compartment, rate constant from the peripheral compartment to the central compartment, and excretion rate constant by *FLG* genotype.

**Table S9.** Volume of the central compartment, rate constant from the central compartment to the peripheral compartment, rate constant from the peripheral compartment to the central compartment, and excretion rate constant by *FLG* CNV genotype.

**Figure S1.** Residual plots for time point and excretion rate for pyrimethanil. Blue = FLG null, black = wt CNV20–22, green = wt CNV23–24.

**Figure S2.** Residual plots for time point and excretion rate for pyrene. Blue = FLG null, black = wt CNV20–22, green = wt CNV23–24.

**Figure S3.** Residual plots for time point and excretion rate for oxybenzone. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.

**Figure S4.** The predicted vs observed values for excretion rates for pyrimethanil. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.

**Figure S5.** The predicted vs observed values for excretion rates for pyrene. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.

**Figure S6.** The predicted vs observed values for excretion rates for oxybenzone. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.

**Figure S7.** Excretion curves for oxybenzone by *FLG* genotype. Each curve represents an individual. Excretion rates of a) FLG null (blue) carriers, b) wt carriers with CNV20–22 (black) and c) wt carriers with CNV23–24 (green).

**Figure S8.** Excretion curves for pyrene by *FLG* genotype. Each curve represents an individual. Excretion curves for a) *FLG* null (blue), b) wt carriers with CNV20–22 (black) and c) wt carriers with CNV23–24 (green).

**Figure S9.** Examples of individual fits of the toxicokinetic model (purple line) to the excretion rate data (dots) for pyrimethanil. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.

Table S1. Filaggrin null mutations with rs-id, and primer and probe pairs.

| SNP           | Probe functional allele | Probe null allele | Primer pairs                           |
|---------------|-------------------------|-------------------|----------------------------------------|
| R501X         | CAGGCACGAGACAG          | CAGGCATGAGACAG    | Forward: 5'AGCACTGGAGGAAGACAAGGATC3'   |
| (rs61816761)  |                         |                   | Reverse: 5'ACCCTCTTGGGACGCTGAAT3'      |
| 2282del4      | CACAGTCAGTGTCAG         | CACAGTGTCAG       | Forward 1: 5'TCCCGCCACCAGCTCC3'        |
| (rs41370446)  |                         |                   | Forward 2: 5'CCACTGACAGTGAGGGACATTCA3' |
|               |                         |                   | Reverse: 5'GGTGGCTCTGCTGATGGTGA3'      |
| R2447X        | CACGAGACAGCTC           | CATGAGACAGCTC     | Forward: 5'CACGTGGCCGGTCAGCA3'         |
| (rs138726443) |                         |                   | Reverse: 5'TCCTGACCCTCTTGGGACGT3'      |
| S3247X        | CAGTCAAGGCACG           | CAGTAAAGGCACG     | Forward: 5'CCAGAAACCATCGTGGATCTG3'     |
| (rs150597413) |                         |                   | Reverse: 5'TGCCTGATTGTCTGGAGCG3'       |

|                                              | Ionization | Overtifier  | Qualifian   | Auxiliary   | Ion     | Collison |
|----------------------------------------------|------------|-------------|-------------|-------------|---------|----------|
| Chemical                                     | nonization | Quantifier  | Quanner     | gas         | spray   | energy   |
|                                              | mode       | IOIIS       | 10115       | temperature | voltage |          |
| OH-Pyrimethanil                              | +          | 216.1/107.0 | 216.1/159.2 | 650         | 5500    | 36       |
| <sup>2</sup> H <sub>4</sub> -OH-Pyrimethanil | +          | 220.1/111.0 | 220.1/163.2 | 650         | 5500    | 36       |
|                                              |            |             |             |             |         |          |
| Oxybenzone                                   | +          | 229.1/150.9 | 229.1/105.0 | 600         | 4500    | 26       |
| <sup>2</sup> H <sub>3</sub> -Oxybenzone      | +          | 232.1/154.0 | 232.1/105.0 | 105.0 600   |         | 26       |
|                                              |            |             |             |             |         |          |
| 1-hydroxy-pyrene                             | -          | 217.0/189.0 |             | 500         | -4500   | -48      |
| <sup>2</sup> H <sub>9</sub> -1-hydroxy-      |            |             |             | 500         | -4500   | -48      |
| pyrene                                       | -          | 226.0/198.0 |             |             |         |          |

Table S2. The mode of ionization and transitions of the analyzed compounds and corresponding internal standards.

| Precision       | п   | Concentrations (µg/L) | Mean (µg/L) | CV (%) | LOD (µg/L) |
|-----------------|-----|-----------------------|-------------|--------|------------|
|                 |     |                       |             |        |            |
| OH-pyrimethanil |     |                       |             |        | 0.1        |
| Between-run     | 28  | 10                    | 14          | 12     |            |
|                 | 28  | 20                    | 23          | 6.1    |            |
| Between-batch   | 79  | range LOD to 10       | 5.0         | 6.3    |            |
|                 | 446 | range 10 to 200       | 62          | 5.9    |            |
|                 | 102 | range 200 to 2000     | 547         | 3.6    |            |
| Oxybenzone      |     |                       |             |        | 0.2        |
| Between-run     | 32  | 10                    | 7.5         | 12     |            |
|                 | 32  | 20                    | 15          | 13     |            |
| Between-batch   | 119 | range LOD to 10       | 5.5         | 6.3    |            |
|                 | 444 | range 10 to 200       | 60          | 6.8    |            |
|                 | 89  | range 200 to 1860     | 579         | 7.9    |            |
| 1-OH-pyrene     |     |                       |             |        | 0.2        |
| Between-run     | 28  | 5                     | 3.9         | 8.3    |            |
|                 | 28  | 10                    | 7.6         | 9.8    |            |
| Between-batch   | 484 | range LOD to 5        | 1.3         | 5.0    |            |
|                 | 79  | range 5 to 30         | 11          | 4.1    |            |

Table S3. Between-run and between-batch precision of the analytical methods determined at different concentrations.

Table S4. Area under the urine excretion rate curve (AUC<sub>(0-40h)</sub>), lag time for dermal absorption and dermal absorption rate constant by *FLG* genotype.

| Chemical     | Genotype | AUC <sub>(0-40h)</sub> (nmol, | <i>P</i> -value    | Lag time for dermal           | <i>P</i> -value | Dermal absorption                | <i>P</i> -value |
|--------------|----------|-------------------------------|--------------------|-------------------------------|-----------------|----------------------------------|-----------------|
|              |          | geometric mean,               | (t-test)           | absorption (h, mean (ANOVA) 1 |                 | rate constant (h <sup>-1</sup> , | (ANOVA)         |
|              |          | 95% c.i.)                     |                    | ± SD)                         |                 | mean $\pm$ SD)                   |                 |
| Pyrimethanil | FLG null | 1676; 1244, 2259              | 0.171 <sup>a</sup> | $0.20 \pm 0.11$               | 0.003           | $0.20\pm0.05$                    | 0.028           |
|              | FLG wt   | 1279; 995, 1644               |                    | $0.53 \pm 0.32$               |                 | $0.17\pm0.07$                    |                 |
| Pyrene       | FLG null | 28.4; 22.8, 35.3              | $0.430^{b}$        | $0.88 \pm 0.13$               | 0.009           | $0.17\pm0.06$                    | 0.24            |
|              | FLG wt   | 25.3; 21.0, 30.5              |                    | $1.20 \pm 0.25$               |                 | $0.15\pm0.06$                    |                 |
| Oxybenzone   | FLG null | 1160; 889, 1517               | $0.380^{\circ}$    | $0.10 \pm 0.02$               | 0.055           | $0.29\pm0.08$                    | 0.004           |
|              | FLG wt   | 994; 790, 1250                |                    | $0.13 \pm 0.07$               |                 | $0.22 \pm 0.09$                  |                 |

Note: *P*-values are for comparison between *FLG* null (n=22) and wt (n[oxybenzone]=30, n[pyrimethanil and pyrene]=31) using t-test for AUC<sub>(0-40h)</sub> in IBM SPSS and for lag time and dermal absorption rate constant using ANOVA, by default, in Monolix.

 ${}^{a}R^{2}=0.036$ 

 ${}^{b}R^{2}=0.012$ 

 $^{c}R^{2}=0.015$ 

Table S5. Area under the urine excretion rate curve  $(AUC_{(0-40h)})$  adjusted for BMI and age, by *FLG* genotype.

| Chemical     | Genotype | AUC <sub>(0-40h)</sub> (nmol, geometric mean, 95% c.i.) | <i>P</i> -value (ANOVA) |
|--------------|----------|---------------------------------------------------------|-------------------------|
| Pyrimethanil | FLG null | 1671; 1258, 2213                                        | 0.155 <sup>a</sup>      |
|              | FLG wt   | 1279; 1004, 1629                                        |                         |
| Pyrene       | FLG null | 28.6; 23.4, 35.1                                        | 0.370 <sup>b</sup>      |
|              | FLG wt   | 25.4; 21.3, 30.2                                        |                         |
| Oxybenzone   | FLG null | 1153; 899, 1479                                         | 0.381 <sup>c</sup>      |
|              | FLG wt   | 997; 803, 1238                                          |                         |

Note: *P*-values are for comparison between *FLG* null (n=22) and wt (n[oxybenzone]=30, n[pyrimethanil and pyrene]=31).

 ${}^{a}R^{2}=0.194$ 

<sup>b</sup>R<sup>2</sup>=0.209

 $^{c}R^{2}=0.196$ 

| Chemical     | Genotype <sup>a</sup> | AUC <sub>(0-40h)</sub> (nmol, geometric mean, 95% | P-value (ANOVA)      |
|--------------|-----------------------|---------------------------------------------------|----------------------|
|              |                       | c.i.)                                             |                      |
| Pyrimethanil | <i>FLG</i> null       | 1682; 1285, 2202                                  | 0.095 <sup>b,c</sup> |
|              | FLG wt CNV20–22       | 1318; 990, 1753                                   |                      |
|              | FLG wt CNV23–24       | 954; 602, 1510                                    |                      |
| Pyrene       | <i>FLG</i> null       | 28.6; 23.6, 34.6                                  | 0.331 <sup>d</sup>   |
|              | FLG wt CNV20–22       | 26.1; 21.2, 31.9                                  |                      |
|              | FLG wt CNV23–24       | 21.6; 15.5, 29.9                                  |                      |
| Oxybenzone   | <i>FLG</i> null       | 1158; 912, 1475                                   | 0.348 <sup>e</sup>   |
|              | FLG wt CNV20–22       | 995; 765, 1294                                    |                      |
|              | FLG wt CNV23–24       | 831; 552, 1256                                    |                      |

Table S6. Area under the urine excretion rate curve (AUC<sub>(0-40h</sub>)), adjusted BMI and age, by *FLG* null and CNV genotype.

Note: *P*-values for comparisons are between *FLG* null (*n*=22), wt CNV20–22 (*n*[oxybenzone)=19, *n*[pyrimethanil and pyrene]=20) and wt CNV23–24 (*n*=8).

<sup>a</sup>Three participants do not have information about CNV.

<sup>b</sup>Significant pairwise comparison between *FLG* null and wt CNV23–24: *P*=0.037.

 $^{c}R^{2}=0.291$ 

 $^{d}R^{2}=0.275$ 

 $e^{R^2}=0.260$ 

Table S7. Lag time for dermal absorption and dermal absorption rate constant by *FLG* null and CNV genotype. Analysis adjusted for BMI, age and sex.

| Chemical     | Genotype <sup>a</sup> | Lag time (h,    | <i>P</i> -value | Absorption          | <i>P</i> -value |
|--------------|-----------------------|-----------------|-----------------|---------------------|-----------------|
|              |                       | mean $\pm$ SD)  | (ANOVA)         | rate constant       | (ANOVA)         |
|              |                       |                 |                 | $(h^{-1}, mean \pm$ |                 |
|              |                       |                 |                 | SD)                 |                 |
| Pyrimethanil | FLG null              | $0.45\pm0.04$   | 0.00069         | $0.14 \pm 0.03$     | 0.017           |
|              | FLG wt CNV20–22       | $0.55\pm0.10$   |                 | $0.14 \pm 0.04$     |                 |
|              | FLG wt CNV23–24       | $0.75 \pm 0.19$ |                 | $0.11 \pm 0.03$     |                 |
| Pyrene       | FLG null              | $0.89\pm0.15$   | 0.0036          | $0.23 \pm 0.09$     | 0.026           |
|              | FLG wt CNV20–22       | $1.06\pm0.17$   |                 | $0.23 \pm 0.10$     |                 |
|              | FLG wt CNV23–24       | $1.34 \pm 0.32$ |                 | $0.14 \pm 0.05$     |                 |
| Oxybenzone   | FLG null              | $0.14\pm0.18$   | 0.012           | $0.22\pm0.06$       | 0.00069         |
|              | FLG wt CNV20–22       | $0.04 \pm 0.04$ |                 | $0.20 \pm 0.06$     |                 |
|              | FLG wt CNV23–24       | $0.13 \pm 0.17$ |                 | $0.13 \pm 0.04$     |                 |

Note: *P*-values for comparisons are between *FLG* null (*n*=22), wt CNV20–22 (*n*[oxybenzone]=19, *n*[pyrimethanil and pyrene]=20) and wt CNV23–24 (*n*=8).

<sup>a</sup>Three participants do not have information about CNV.

Table S8. Volume of the central compartment, rate constant from the central compartment to the peripheral compartment, rate constant from the peripheral compartment to the central compartment, and excretion rate constant by *FLG* genotype.

| Chemical     | Genotype | Volume of      | <i>P</i> -value | Rate                            | <i>P</i> -value | Rate                            | <i>P</i> -value | Excretion rate                | <i>P</i> -value |
|--------------|----------|----------------|-----------------|---------------------------------|-----------------|---------------------------------|-----------------|-------------------------------|-----------------|
|              |          | central        | (ANOVA)         | constant                        | (ANOVA)         | constant                        | (ANOVA)         | constant K (h <sup>-1</sup> , | (ANOVA)         |
|              |          | compartment    |                 | $K_{21}^{a}$ (h <sup>-1</sup> , |                 | $K_{12}^{b}$ (h <sup>-1</sup> , |                 | mean $\pm$ SD)                |                 |
|              |          | (L, mean $\pm$ |                 | mean $\pm$ SD)                  |                 | mean ±                          |                 |                               |                 |
|              |          | SD)            |                 |                                 |                 | SD)                             |                 |                               |                 |
| Pyrimethanil | FLG null | 69.6±38.8      | 0.10            | $0.006 \pm 0.002$               | 0.78            | $0.29 \pm 0.06$                 | 0.057           | $0.0001 \pm 0.00006$          | 0.21            |
|              | FLG wt   | 93.6±59.5      |                 | $0.006 \pm 0.002$               |                 | $0.33 \pm 0.07$                 |                 | $0.0001 \pm 0.0001$           |                 |
| Pyrene       | FLG null | 942±235        | 0.26            | $0.02 \pm 0.01$                 | 0.38            | 0.13±0.03                       | 0.39            | 0.13±0.04                     | 0.13            |
|              | FLG wt   | 1020±245       |                 | $0.02 \pm 0.0008$               |                 | 0.13±0.02                       |                 | 0.16±0.06                     |                 |
| Oxybenzone   | FLG null | 79.5±34.0      | 0.18            | $0.03 \pm 0.01$                 | 0.59            | $0.17 \pm 0.04$                 | 0.99            | 0.18±0.04                     | 0.31            |
|              | FLG wt   | 94.6±42.3      |                 | 0.03±0.01                       |                 | $0.17 \pm 0.05$                 |                 | 0.20±0.06                     |                 |

Note: *P*-values are for comparison between *FLG* null (*n*=22) and wt (*n*[oxybenzone]=30, *n*[pyrimethanil and pyrene]=31).

<sup>a</sup>From the central to the peripheral compartment.

<sup>b</sup>From the peripheral to the central compartment.

Table S9. Volume of the central compartment, rate constant from the central compartment to the peripheral compartment, rate constant from the peripheral compartment to the central compartment, and excretion rate constant by *FLG* CNV genotype.

| Chemical     | Genotype <sup>a</sup> | Volume of      | <i>P</i> -value | Rate                 | <i>P</i> -value | Rate                            | <i>P</i> -value | Excretion           | <i>P</i> -value |
|--------------|-----------------------|----------------|-----------------|----------------------|-----------------|---------------------------------|-----------------|---------------------|-----------------|
|              |                       | central        | (ANOVA)         | constant             | (ANOVA)         | constant                        | (ANOVA)         | rate constant       | (ANOVA)         |
|              |                       | compartment    |                 | $K_{21}^{b}(h^{-1},$ |                 | $K_{12}^{c}$ (h <sup>-1</sup> , |                 | K ( $h^{-1}$ , mean |                 |
|              |                       | (L, mean $\pm$ |                 | mean $\pm$ SD)       |                 | mean ±                          |                 | ± SD)               |                 |
|              |                       | SD)            |                 |                      |                 | SD)                             |                 |                     |                 |
| Pyrimethanil | FLG null              | 80.5±56.2      | 0.026           | $0.007 \pm 0.003$    | 0.86            | $0.26 \pm 0.04$                 | 0.23            | $0.006 \pm 0.01$    | 0.62            |
|              | FLG wt                | 99.2±51.9      |                 | $0.007 \pm 0.002$    |                 | $0.26 \pm 0.04$                 |                 | $0.004 \pm 0.004$   |                 |
|              | CNV20-22              |                |                 |                      |                 |                                 |                 |                     |                 |
|              | FLG wt                | 156±112        |                 | 0.007±0.003          |                 | 0.29±0.03                       |                 | 0.004±0.003         |                 |
|              | CNV23–24              |                |                 |                      |                 |                                 |                 |                     |                 |
| Pyrene       | FLG null              | 876±344        | 0.12            | $0.02 \pm 0.0008$    | 0.61            | $0.12 \pm 0.04$                 | 0.77            | 0.17±0.02           | 0.48            |
|              | FLG wt                | 954±410        |                 | $0.02 \pm 0.0006$    |                 | 0.12±0.03                       |                 | 0.18±0.04           |                 |
|              | CNV20-22              |                |                 |                      |                 |                                 |                 |                     |                 |
|              | FLG wt                | 1232±541       |                 | $0.02 \pm 0.0005$    |                 | 0.11±0.02                       |                 | 0.18±0.02           |                 |
|              | CNV23–24              |                |                 |                      |                 |                                 |                 |                     |                 |
| Oxybenzone   | FLG null              | 71.5±32.4      | 0.12            | $0.01 \pm 0.006$     | 0.40            | 0.31±0.02                       | 0.78            | 0.05±0.02           | 0.20            |
|              | FLG wt                | 81.5±42.7      |                 | $0.01 \pm 0.008$     |                 | 0.31±0.02                       |                 | 0.05±0.01           |                 |
|              | CNV20-22              |                |                 |                      |                 |                                 |                 |                     |                 |
|              | FLG wt                | 103±52.36      |                 | 0.007±0.003          |                 | 0.32±0.02                       |                 | 0.06±0.04           |                 |
|              | CNV23–24              |                |                 |                      |                 |                                 |                 |                     |                 |

Note: *P*-values for comparisons are between *FLG* null (*n*=22), wt CNV20–22 (*n*[oxybenzone)=19, *n*[pyrimethanil and pyrene]=20) and wt CNV23–24 (*n*=8).

<sup>a</sup>Three participants lack information about *FLG* CNV.

<sup>b</sup>From the central to the peripheral compartment.

<sup>c</sup>From the peripheral to the central compartment.



Figure S1. Residual plots for time point and excretion rate for pyrimethanil. Blue = FLG null, black = wt CNV20–22, green = wt CNV23–24.



Figure S2. Residual plots for time point and excretion rate for pyrene. Blue = FLG null, black = wt CNV20-22, green = wt CNV23-24.



Figure S3. Residual plots for time point and excretion rate for oxybenzone. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.



Figure S4. The predicted vs observed values for excretion rates for pyrimethanil. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.



Figure S5. The predicted vs observed values for excretion rates for pyrene. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.



Figure S6. The predicted *vs* observed values for excretion rates for oxybenzone. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.



Figure S7. Excretion curves for oxybenzone by *FLG* genotype. Each curve represents an individual. Excretion rates of a) FLG null (blue) carriers, b) wt carriers with CNV20–22 (black) and c) wt carriers with CNV23–24 (green).



Figure S8. Excretion curves for pyrene by *FLG* genotype. Each curve represents an individual. Excretion curves for a) *FLG* null (blue), b) wt carriers with CNV20–22 (black) and c) wt carriers with CNV23–24 (green).



Figure S9. Examples of individual fits of the toxicokinetic model (purple line) to the excretion rate data (dots) for pyrimethanil. Blue = FLG null, black = wt CNV 20–22, green = wt CNV 23–24.