SUPPLEMENT

Table of contents					
Supplementary Methods					
Generation of an off-target ROI	page 2				
Supplementary Tables					
Supplementary Table 1. Clinical characteristics of part	icipants in the four subcohorts				
	page 3				
Supplementary Table 2. Between cohort comparisons	page 4				
Supplementary Table 3. Distribution of APOE ϵ 4-genot	ype in males and females				
	page 5				
Supplementary Table 4. Demographics for young parti	cipants (< 65 years)				
	page 6				
Supplementary Table 5. Cohort characteristics and the	rate of A β accumulation in ADNI				
	page 7				
Supplementary Table 6. Results of linear models for Ta	au-accumulation, PVE-corrected				
	page 8				
Supplementary Table 7. Results of linear model for Tau	u-accumulation in				
skull/meningeal "off-target ROI"	page 9				
Supplementary Table 8. Results of linear model for Tau	u-accumulation in basal ganglia,				
putamen and globus palidus	page 10				
Supplementary Table 9. Results of linear model for Tau	u-accumulation in amygdala and				
precuneus/posterior cingulate ROIs	page 11				
Supplementary Table 10. Results of linear model for A	β accumulation in ADNI				
	page 12				

Supplementary Figures

Supplementary Figure 1 - Baseline ¹⁸F-Flortaucipir SUVRs.page 13Supplementary Figure 2 - ¹⁸F-Flortaucipir slopes, full range y-axes.

page 14

Supplementary Figure 3 - Creating an off-target ROI for skull/meninges.

page 15

Supplementary Figure 4 - ¹⁸F-Flortaucipir slopes in off-target ROI. page 16

SUPPLEMENTARY METHODS

Generation of an off-target ROI

The mask for extracting off-target binding outside the FreeSurfer segmented gray matter was constructed via a series of morphological filters. First, the FreeSurfer Grey Matter, White Matter and Cerebrospinal Fluid ROIs were merged and dilated 5 mm (to approximate PET resolution), followed by a fill-hole operation. Eroding 5 mm again and removing the resulting mask voxels from the dilated mask yielded the exterior region used to probe the off-target signal. To compensate for true cortical signal in the off-target ROI dividing the off-target ROI mean SUVR by that of the interior mask yielded a more accurate measure in identifying subjects with primarily artefactual uptake. Dilating and then eroding causes the deep sulci to be excluded from the exterior region.

SUPPLEMENTARY TABLES

Supplementary Table 1. Clinical characteristics of participants in the four subcohorts

ADNI	Αβ- CU	Αβ- ΜCΙ	Aβ+ CU	Αβ+ ΜCΙ	AD	p-value
Number	21	23	46	32	1	
(n=123)						
Age ± SD	76.0 ± 6.5	74.2 ± 7.0	78.8 ± 6.8	75.4 ± 7.0	56.2	d*, i*, j*
Sex (F/M)	12/9	9/14	25/21	14/18	0/1	n.s.
Education ± SD	16.6 ± 2.1	16.4 ± 2.9	16.8 ± 2.3	16.3 ± 2.7	13	n.s.
MMSE ± SD	29.3 ± 1.1	28.0 ± 3.1	28.0 ± 2.4	26.9 ± 3.2	21	c*, d*
APOE E4-	16/5/0	20/3/0	25/18/3	11/15/6	1/0/0	c**, e**, f***, h*
alleles $(0/1/2)$						
AVID	Αβ- CU	Αβ- ΜCΙ	Aβ+ CU	Αβ+ ΜCΙ	AD	p-value
Number	51	35	3	42	26	
(n=157)						
Age ± SD	68.0 ±	69.6 ±	79.7 ± 2.1	72.1 ± 8.3	74.8 ± 10.2	d*
	10.4	10.0				
Sex (F/M)	23/28	17/18	1/2	19/23	15/11	n.s.
Education ± SD	15.7 ± 2.0	15.1 ± 3.1	14.7 ± 2.3	16.3 ± 2.8	15.2 ± 2.9	n.s.
MMSE ± SD	29.5 ± 0.5	28.4 ± 1.7	29.3 ± 0.6	27.5 ± 1.9	21.6 ± 3.9	c***, d***, g***, i***, j***
<i>APOE</i> ε4-	38/9/1	22/10/1	2/1/0	18/15/7	7/13/6	c***, d***, f*, g**
alleles (0/1/2)						
Expedition 3	Αβ- CU	Αβ- ΜCΙ	Αβ+ CU	Αβ+ ΜCΙ	AD	p-value
Number	0	0	0	0	82	N/A
(n=82)						
Age ± SD	-	-	-	-	73.3 ± 8.4	N/A
Sex (F/M)	-	-	-	-	45/37	N/A
Education ± SD	-	-	-	-	14.2 ± 3.2	N/A
MMSE ± SD	-	-	-	-	23.1 ± 1.7	N/A
<i>APOE</i> ε4-	-	-	-	-	23/42/15	N/A
alleles (0/1/2)						
BioFINDER	Αβ- CU	Αβ- ΜΟΙ	Αβ+ CU	Αβ+ ΜCΙ	AD	p-value
(n=57)	1.6	2	1.6		10	
Number	16	0	16	7	18	
Age ± SD	74.6 ± 4.3	-	74.8 ± 6.9	72.7 ± 6.6	69.8 ± 10.5	n.s.
Sex (F/M)	5/11	-	11/5	5/2	7/11	n.s.
Education ± SD	12.5 ± 4.1	-	10.6 ± 3.2	11.1 ± 2.7	13.5 ± 3.3	n.s.
MMSE ± SD	29.2 ± 0.9	-	29.1 ± 1.2	25.6 ± 2.9	22.1 ± 5.2	0 ^{***} ,1 ^{***}
APOE ɛ4-	16/0/0	-	6/9/1	3/3/1	7/7/4	D***, C**, d ***
alleles (0/1/2)						
				1		1

Table legend. Statistical comparisons between ^a Aβ- CU and Aβ- MCI; ^b Aβ- CU and Aβ+ CU; ^c Aβ- CU and Aβ+ MCI; ^d Aβ- CU and AD; ^e Aβ- MCI and Aβ+ CU; ^f Aβ- MCI and Aβ+ MCI; ^g Aβ- MCI and AD; ^h Aβ+ CU and Aβ+ MCI; ⁱ Aβ+ CU and AD; ^j Aβ+ MCI and AD. * p < 0.05; ** p < 0.01; *** p < 0.001. Aβ- -β amyloid negative; Aβ+ -β amyloid positive; AD – Alzheimer's Disease dementia; CU – cognitively unimpaired; F – female; M – male; MCI – mild cognitive impairment; SD – standard deviation.

	ADNI	AVID	Expedition 3	BioFINDER	p-value
Number	123	157	82	57	
Age ± SD	76.4 ± 7.2	70.7 ± 9.9	73.3 ± 8.4	72.9 ± 7.8	a***
Sex (F/M)	60/63	76/81	45/37	28/29	n.s.
Education ± SD	16.5 ± 2.5	15.6 ± 2.6	14.2 ± 3.2	12.1 ± 3.6	a*, b***, c***, d**, e***, f***
MMSE ± SD	27.9 ± 2.8	27.4 ± 3.4	23.1 ± 1.7	26.5 ± 4.5	a*, b***, c***, d**, e***, f***
APOE ε4- alleles (0/1/2)	73/41/9	87/48/15	23/42/15	32/19/6	b***, d***, f**

Supplementary Table 2. Between cohort comparisons

Table legend. Statistical comparisons between ^a ADNI and AVID; ^b ADNI and Expedition 3; ^c ADNI and BioFINDER; ^d AVID and Expedition 3; ^e AVID and BioFINDER; ^f Expedition 3 and BioFINDER. * p < 0.05; ** p < 0.01; *** p < 0.001. F – female; M – male; SD – standard deviation.

11 5							
	Number with	No APOE ε4 allele	One APOE ε4 allele	Two <i>APOE</i> ε4			
	available data			allele			
Males	210	118	69	20			
Females	207	97	81	25			

Supplementary Table 3. Distribution of *APOE* ε4-genotype in males and females

Kruskal-Wallis test p = 0.09

	AR- CU				AD
	Ap- CO	10			22
Number (n=69)	20	13	3	11	22
Age ± SD	57.2 ± 4.3	58.7 ± 3.9	62.2 ± 1.3	60.2 ± 4.3	58.3 ± 5.7
[median (IQR)]	[57.5	[59 (5)]	[62 (1.25)]	[62 (3.5)]	[59.1 (6.3)]
	(7.25)]				
Sex (F/M)	7/13	10/3	3/0	9/2	14/8
Education ± SD	14.8 ± 1.8	14.5 ± 3.1	12.3 ± 3.5	15.8 ± 1.9	14.8 ± 3.5
[median (IQR)]	[16 (3.25)]	[14 (6)]	[12 (3.5)]	[16 (0.5)]	[15 (4)]
MMSE ± SD	29.5 ± 0.5	28.1 ± 1.8	29.0 ± 1.7	27.2 ± 2.5	22.2 ± 3.7
[median (IQR)]	[29.5 (1)]	[29 (2)]	[30 (1.5)]	[28 (2)]	[23 (2.5)]
APOE ε4-alleles	14/4/1	5/7/0	1/2/0	4/4/3	8/8/5°
(0/1/2)					, ,
Baseline tau					
Temporal meta-ROI	1.12 ± 0.08	1.09 ± 0.07	1.17 ± 0.09	1.66 ± 0.48	1.93 ± 0.36
$SUVR$ (mean \pm SD)	[1.11	[1.07 (0.04)]	[1.16 (0.09)]	[1.39	[2.0 (0.48)]
[median (IOR)]	(0.08)]			(0.91)]	
Neocortical ROI	1.06 ± 0.09	1.0 ± 0.05	1.10 ± 0.09	1.44 ± 0.37	1.67 ± 0.36
SUVR (mean \pm SD)	[1.06	[1.0 (0.06)]	[1.06 (0.08)]	[1.31	[1.77 (0.44)]
[median (IOR)]	(0.12)]			(0.68)]	
				(
Tau slopes					
Temporal meta-ROI	-0.002 \pm	0.001 ± 0.022	0.021 ± 0.012	0.136	0.085 ± 0.204
(SUVR/year) mean \pm	0.023	[0.006	[0.017	± 0.169	[0.059
SD	[-0.002	(0.034)]	(0.012)]	[0.133	(0.134)]
[median (IQR)]	(0.027)]			(0.153)]	
Neocortical ROI	0.001	0.004 ± 0.037	0.040 ± 0.054	0.098	0.062 ± 0.158
(SUVR/year) mean ±	± 0.022	[0.013	[0.017	± 0.146	[0.031
SD	[0.001	(0.035)]	(0.050)]	[0.076	(0.126)]
[median (IQR)]	(0.019)]			(0.160)]	

Supplementary Table 4. Demographics for young participants (< 65 years)

Table legend. A β - - β amyloid negative; A β + - β amyloid positive; AD – Alzheimer's Disease dementia; CU – cognitively unimpaired; F – female; M – male; MCI – mild cognitive impairment; SD – standard deviation. ° One individual with missing data.

ADNI	Αβ- CU	Αβ- ΜCΙ	Αβ+ CU	Αβ+ ΜCΙ	AD	p-value
Number	155	145	101	204	34	
Age	73.5 ± 6.5	70.6 ± 8.0	74.8 ± 6.5	72.3 ± 7.0	75.4 ±7.1	a**, e***, g**, h*
Sex (F/M)	67/88	66/79	35/66	89/115	20/14	b***, e**, h***
APOE ε4- status (neg/pos)	127/28	113/32	56/45	74/130	4/30	b***, c***, d***, e***, f***, g***, h**, i***, j**
Aβ Slopes ± SD	0.0032 ± 0.0094	0.0019 ± 0.0088	0.0112 ± 0.0162	0.0089 ± 0.0164	0.0095 ± 0.0183	b***, c***, e***, f***, g*

Supplementary Table 5. Cohort characteristics and the rate of $A\beta$ accumulation in ADNI.

Table legend. Statistical comparisons between ^a Aβ- CU and Aβ- MCI; ^b Aβ- CU and Aβ+ CU; ^c Aβ- CU and Aβ+ MCI; ^d Aβ- CU and AD; ^e Aβ- MCI and Aβ+ CU; ^f Aβ- MCI and Aβ+ MCI; ^g Aβ- MCI and AD; ^h Aβ+ CU and Aβ+ MCI; ⁱ Aβ+ CU and AD; ^j Aβ+ MCI and AD. * p < 0.05; ** p < 0.01; *** p < 0.001. Aβ- -β amyloid negative; Aβ+ -β amyloid positive; AD – Alzheimer's Disease dementia; CU – cognitively unimpaired; F – female; M – male; MCI – mild cognitive impairment; SD – standard deviation.

Additional statistics:

Comparison to ¹⁸F-Flortaucipir demographics (Main manuscript Table 1).

Comparisons were performed within diagnostic groups (i.e. A β - CU in the tau cohort versus A β - CU in the A β cohort etc.). Age: A β - CU p<0.05; A β + CU p<0.01. Sex: no significant differences. *APOE* ϵ 4-status: AD p<0.05.

Coefficient	Estimate ± SE	T value	P value
Temporal			
meta-ROI			
APOE E4 status	-0.0041 ± 0.011	-0.374	0.708
Aβ Status	0.0430 ± 0.0138	3.100	0.002 **
Age	-0.0015 ± 0.0006	-2.504	0.013 *
Sex	0.0255 ± 0.0100	2.540	0.011 *
Baseline tau	0.0571 ± 0.0144	3.952	<0.001 ***
Study Avid 05	0.021 ± 0.013	1.597	0.111
Study Exp 3	-0.008 ± 0.022	-0.355	0.723
Study BF1	0.028 ± 0.017	1.659	0.098
CU	0.002 ± 0.022	0.088	0.930
MCI	0.012 ± 0.020	0.608	0.543
Neocortical			
ROI			
APOE E4 status	-0.0017 ± 0.0080	-0.216	0.829
Aβ Status	0.0199 ± 0.0101	1.968	0.049 *
Age	-0.0005 ± 0.0005	-1.202	0.230
Sex	0.0192 ± 0.0073	2.626	0.009 **
Baseline tau	0.0835 ± 0.0153	5.470	<0.001 ***
Study Avid 05	0.019 ± 0.010	1.977	0.049 *
Study Exp 3	0.008 ± 0.017	0.480	0.631
Study BF1	0.021 ± 0.012	1.722	0.086
CU	-0.002 ± 0.015	-0.136	0.891
MCI	0.004 ± 0.015	0.242	0.809

Supplementary Table 6. Results of linear models for Tau-accumulation, PVE-corrected

Table legend. Linear models were analyzed for each region using the slopes of tau accumulation. Statistical model: Tau slopes ~ *APOE* ε 4 status + A β status + Age + Sex + Study + Diagnosis + Baseline tau SUVR. CU – cognitively unimpaired; MCI – mild cognitive impairment; SE – standard error. * p < 0.05; ** p < 0.01; *** p < 0.001.

Coefficient	Estimate ± SE	T value	P value
Off-target ROI			
<i>APOE</i> ε4 status	0.0105 ± 0.0060	1.740	0.083
Aβ status	-0.0077 ± 0.0062	-1.253	0.211
Age	0.0002 ± 0.0004	0.492	0.623
Sex	0.0087 ± 0.0057	1.511	0.132
Baseline	-0.0912 ± 0.0214	-4.245	<0.001 ***
retention			

Supplementary Table 7. Results of linear model for Tau-accumulation in skull/meningeal "off-target ROI"

Table legend. Linear models were analyzed for each region using the slopes of tau accumulation. Statistical model: Slope off-target ROI ~ *APOE* ε 4 status + A β status + Age + Sex + Study + Baseline retention.

SE – standard error. * p < 0.05.

Coefficient	Estimate ± SE	T value	P value
Putamen			
<i>APOE</i> ε4 status	-0.0093 ± 0.0078	-1.192	0.233
Aβ status	0.0185 ± 0.0088	2.113	0.035 *
Age	0.0001 ± 0.0004	0.291	0.772
Sex	0.0032 ± 0.0071	0.455	0.650
Baseline tau	-0.0525 ± 0.0205	-2.555	0.011 *
Globus			
pallidus			
<i>APOE</i> ε4 status	-0.0138 ± 0.0087	-1.595	0.111
Aβ status	0.0092 ± 0.0096	0.950	0.343
Age	0.0005 ± 0.0005	1.095	0.274
Sex	0.0065 ± 0.0079	0.815	0.416
Baseline tau	-0.0743 ± 0.0205	-3.623	<0.001 ***
Choroid			
plexus			
<i>APOE</i> ε4 status	-0.0060 ± 0.0079	-0.764	0.445
Aβ status	-0.0165 ± 0.0089	-1.862	0.063
Age	-0.00005 ± 0.0004	-0.107	0.915
Sex	0.0012 ± 0.0072	0.170	0.865
Baseline tau	$-0.0\overline{441 \pm 0.0151}$	-2.915	0.004 **

Supplementary Table 8. Results of linear model for Tau-accumulation in basal ganglia, putamen and globus palidus

Table legend. Linear models were analyzed for each region using the slopes of tau accumulation. Statistical model: Tau slopes ~ *APOE* ε 4 status + A β status + Age + Sex + Study + Diagnosis + Baseline tau SUVR. A β - β amyloid; SE – standard error. * p < 0.05; ** p < 0.01; *** p < 0.001. Supplementary Table 9. Results of linear model for Tau-accumulation in amygdala and precuneus/posterior cingulate ROIs

Coefficient	Estimate ± SE	T value	P value
Amygdala			
<i>APOE</i> ε4 status	-0.0052 ± 0.0094	-0.551	0.582
Aβ status	0.0254 ± 0.0114	2.227	0.027 *
Age	-0.0010 ± 0.0005	-2.054	0.041 *
Sex	0.0276 ± 0.0083	3.313	0.001 **
Baseline tau	-0.0350 ± 0.0178	-1.966	0.050
Precuneus/			
Posterior			
cingulate			
cortex			
<i>APOE</i> ε4 status	-0.0085 ± 0.0084	-1.011	0.312
Aβ status	0.0270 ± 0.0105	2.581	0.010 *
Age	-0.0007 ± 0.0005	-1.404	0.161
Sex	0.0261 ± 0.0076	3.411	<0.001 ***
Baseline tau	0.0701 ± 0.0137	5.129	< 0.001 ***

Table legend. Linear models were analyzed for each region using the slopes of tau accumulation. Statistical model: Tau slopes ~ *APOE* ε 4 status + A β status + Age + Sex + Study + Diagnosis + Baseline tau SUVR. A β - β amyloid; SE – standard error. * p < 0.05; ** p < 0.01; *** p < 0.001.

Coefficient	Estimate ± SE	T value	P value
Neocortical			
composite			
<i>APOE</i> ε4 status	0.0024 ± 0.0012	1.980	0.0482 *
Aβ status	0.0057 ± 0.0012	4.818	<0.001 ***
Age	0.00019 ± 0.00008	2.445	0.0148 *
Sex	0.00075 ± 0.0011	0.692	0.4894

Supplementary Table 10. Results of linear model for $A\beta$ accumulation in ADNI

Statistical model: A β Slope ~ *APOE* ε 4 status + A β status + Age + Sex. SE – standard error. * p < 0.05; ** p < 0.01; *** p < 0.001.

SUPPLEMENTARY FIGURES

Supplementary Figure 1

Baseline ¹⁸F-Flortaucipir SUVRs.

Baseline ¹⁸F-Flortaucipir SUVRs in a) the temporal meta-region SUVRs, b) the neocortex meta-ROI. Red dots indicate $A\beta$ + participants; grey dots indicate $A\beta$ - participants. AD – Alzheimer's Disease Dementia; CU – cognitively unimpaired; MCI – mild cognitive impairment; SUVR – standardized uptake value ratio. Boxplots depict median value and the interquartile range.

Supplementary Figure 2

¹⁸F-Flortaucipir slopes, full range y-axes.

¹⁸F-Flortaucipir SUVR/year slopes in a) the temporal meta-ROI, b) the neocortical ROI. Boxplots depict median value and the interquartile ranges. Red dots indicate $A\beta$ +; grey dots indicate $A\beta$ -. AD – Alzheimer's Disease Dementia; CU – cognitively unimpaired; MCI – mild cognitive impairment; SUVR – standardized uptake value ratio.

Supplementary Figure 3

Creating an off-target ROI for skull/meninges.

Supplementary Figure 3 shows an example of the off-target ROI used to control for binding in meninges and skull. The ROI was created as detailed in the eMethods section. The aim was to capture possible off-target binding in structures overlying the cortex and possibly influencing the cortical signal.

Supplementary Figure 4

¹⁸F-Flortaucipir slopes in off-target ROI.

Tau PET slopes in off-target (skull/meningeal) ROI adjusted for within brain signal across diagnostic groups. Red dots indicate $A\beta$ +; grey dots indicate $A\beta$ -. AD – Alzheimer's Disease Dementia; CU – cognitively unimpaired; MCI – mild cognitive impairment.