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APPENDIX A: INFERENCE OF MLDA
In this appendix, the update rule of MLDA is explained. MLDA can be optimized through the parameters
θ and ϕ by inferring the concept z using Gibbs sampling. Gibbs sampling of concept z is carried out by
the following formula.

P (zmij = k|W,Z\mij , α, βm) ∝ (n
\mij
k,j + α)

(n
\mij
m,wm,k + βm)

(n
\mij
m,k +Wmβm)

, (A-1)

where Wm and W denote the number of dimensions of the m-th modality and the observed multimodal
information, respectively. nm,wm,k,j represents the number of times the j-th data modality m is wm and
category k has been allocated. The subscript ”\” in Eq.(A-1) indicates that the information is excluded.
In other words, Z\mij is the remainder set of concepts after removing category zmij assigned to the i-th
information of the modality m of the j-th data. According to the above equation, the category is assigned
to the i-th information of the modality m in j-th data. Repeat this until n∗ converges. From the finally
converged values, the model parameters θ∗ and ϕ∗ are obtained as follows:

θkj =
nk,j + α

nj +Kα
, (A-2)

ϕmwm,k =
nm,wm,k + βm

nm,k +Wmβm
, (A-3)

where K is the total number of categories.

APPENDIX B: PREDICTION IN MLDA
This appendix describes prediction of category for novel input data using a learned MLDA model. The
following equation estimates the concept ẑ in the observed new data wobs.

ẑ ∼ P (z|wobs) =

∫
P (z|θ)P (θ|wobs)dθ, (A-4)

where P (θ|wobs) is obtained by recalculating θ while fixing the parameters estimated during the learning
and applying the Gibbs sampling described above. The category is estimated by selecting the category k

that maximizes the concept probability as;

k = argmax
z

P (z|wobs). (A-5)

By using the learned model, it is possible to predict unobserved information. The unobserved information
w is estimated from the observed information wobs as

P (w|wobs) =

∫ ∑
z

P (w|z)P (z|θ)P (θ|wobs)dθ, (A-6)

where P (θ|wobs) is obtained by recalculating θ applying Gibbs sampling described above with the
parameters estimated during learning process.
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APPENDIX C: LANGUAGE LEARNING
We explain how to realize language learning in this appendix. First, the sentences are divided into
words, and a multimodal categorization is conducted, using mMLDA, on the assumption that all words
belong to all concept classes. We then update mMLDA and computing the association between words
w and category k of concept C ∈ {Object,Motion,Reward} using mutual information. The mutual
information is calculated as,

I(w; k|C) =
∑
K,W

P (W,K|C) log
P (W,K|C)

P (W |C)P (K|C)
, for K ∈ (k, k̄) and W ∈ (w, w̄), (A-7)

where k̄ represents all categories excluding k, and w̄ represents the words except w. Words with large
amounts of mutual information are considered to be related to the concept, and the words with small
amounts of mutual information are considered to be functional words. By this calculation, the robot can
find out the relationship between words and POS s ∈ {C, functional} including concept classes C and
functional words (functional). The word information wwC can be estimated from real-world observation
wobs ∈ {wO, wM , wR} as

P (wwC |wobs, s) ∝ max
k

P (wwC |s)P (wwC |k)P (k|wobs, s), (A-8)

where P (wwC |k) and P (k|wobs, s) can be calculated using MLDA. It should be noted, for functional
words, P (wwC |k) and P (k|wobs, s) are treated as uniform distribution, since the relationship with the
concept is small. P (wwC |s) is the output probability ξ of the word from POS, and the learning method is
explained next.

We use the mutual information as the BHMM’s initial value and estimated POS using the BHMM. By
this, the concept formation of mMLDA affects the learning of the BHMM. The transition probability ρ
and the output probability ξ of the BHMM parameters are shown below.

ρb,b−1 = P (sb|sb−1) =
nsb−1,sb + γ∑

sb
nsb−1,sb +Nsγ

, (A-9)

ξwb,sb = P (wb|sb) =
nsb,wb

+ µ∑
wb

nsb,wb
+Nwµ

, (A-10)

where nsb−1,sb and nsb,wb
are the number of transitions from sb−1 to sb, and the number of times the word

wb has been output from sb, respectively, Ns and Nw are the total number of POS and total number of
words, respectively, and γ and µ are hyperparameters of the BHMM. The parameters of the BHMM are
updated by Gibbs sampling from the following equation,

P (sb = s|wb, sb+1, sb−1) ∝ P (sb = s|sb−1)P (sb+1|sb = s)P (wb|sb = s). (A-11)

As we mentioned earlier, the BHMM estimates the POS. The result of concept selection for each word
through the mMLDA is used as the initial guess of the BHMM. Here, grammar is represented as the
transition probability among the concept classes in the learned BHMM. It should be noted that the number
of classes must be determined manually in advance.

By updating the BHMM, the word output probability P (ww|s) from each POS s considering syntactic
information can be obtained. By using this as a bias, word information wwC corresponding to each concept
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C is found from observation ww;
wwC ∝ wwP (ww|s). (A-12)

Using the word information wwC obtained by the above equation as the word input for each concept of
mMLDA, the mMDLA is updated again. By iterating the above procedure several times, the robot can
acquire the POS (i.e., the connection of concept class and word), grammar, and concepts.

APPENDIX D: SENTENCE GENERATION
By using the learned model, sentences can be generated from observation wobs = {wO, wM , wR}. This
appendix shows the algorithm that generates a sentence using observations.

First, N concept class sequences from begin of sentence “BOS” to end of sentence “EOS” are sampled
according to Eq.(A-9). Let sn = {sn1 , · · · , snt , · · · , snTn} be the n-th sample excluding “BOS” and “EOS”,
where Tn represents the length of the concept class sequence and corresponds to the length of the
sentence. Then, from the POS snt , the word corresponding to the concept class is estimated according
to Eq.(A-8). Here, for given observation wobs ∈ {wO, wM , wR}, the top K words with high probability
wn

t = {wn
t1, w

n
t2, · · · , wn

tK}, corresponding to the POS snt are selected, and the set of all the words is
represented by W n = {wn

1 ,w
n
2 , · · · ,wn

Tn
}. That is, KTn patterns of sentences can be generated from

these concept sequences and words, and the probability of sentence Sn is defined as follows;

P (Sn|sn,W n,wobs) ∝
∏
b

P (snb |snb−1)P (wn
b |wobs, s

n
b )P (wn

b |wn
b−1), (A-13)

where P (wn
b |wn

b−1) represents the word bigram and can be calculated as

P (wb|wb−1) =
nwb−1,wb

+ ϵ∑
wb

nwb−1,wb
+Nw × ϵ

. (A-14)

b and nwb−1,wb
represent the index of order in words, and the frequency of the occurrence of wb−1 to wb

consecutively, and ϵ is a coefficient to be determined in advance. Note, P (wn
b |wobs, s

n
b ) in Eq.(A-13) is

calculated by Eq.(A-8).

From the sentences generated from N concept sequences and words sampled for a given observation,
the sentence with the highest probability is selected. First, from each concept sequence, the sentence Ŝn

that maximizes Eq.(A-13) is searched using Viterbi algorithm. Here, let Ŝ = {Ŝ1, · · · , Ŝn, · · · , ŜN}
be the set of sentences with the highest probability for each of N concept class sequences. Finally, the
sentence with the highest probability is selected from Ŝ. Because the longer the sentence is, the lower the
probability is, the following adjustment factor ℓ(Ŝn) is introduced.

ℓ(Ŝn) =
(Lmax − LŜn)∑N

n LŜn

N∑
n

logP (Ŝn|sn,W n,wobs), (A-15)

where LŜn and Lmax represent the length of the sentence Ŝn, and the maximum length of the sentence in
Ŝ. Using Eq.(A-15), the score of the sentence is redefined as

log P̄ (Ŝn|sn,W n,wobs) = logP (Ŝn|sn,W n,wobs) + ωℓ(Ŝn), (A-16)
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where ω is a weight to adjust the length of the sentence. The larger the weight is, the longer the sentence
is. Therefore, final sentence S is obtained by

S = argmax
Ŝn∈Ŝ

log P̄ (Ŝn|sn,W n,wobs). (A-17)
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