Analytical and Bioanalytical Chemistry

Electronic Supplementary Material

Development and validation of a sensitive liquid chromatography tandem mass spectrometry assay for the simultaneous determination of ten kinase inhibitors in human serum and plasma

Fatemeh Aghai, Sebastian Zimmermann, Max Kurlbaum, Pius Jung, Theo Pelzer, Hartwig Klinker, Nora Isberner, Oliver Scherf-Clavel **Table S1** Chemical structure of the analytes. Mass transitions of analyte and internal standard were achieved by optimizing the parameters for ionization, fragmentation, and MRM-detection. Colored atoms indicate where protons/carbon-atoms are substituted by 2 H/ 13 C in the stable isotope labeled internal standards

province and a compare province of the compare province and the province of the compare province of th	
0	Afatinib (AFA)
$\left\langle \begin{array}{c} & \\ \end{array} \right\rangle$	
\sim	
F	
Ci	
Mass transition analyte	$486.0 \rightarrow 371.0$
Mass transition isotopically marked internal standard	492.1 → 3/1.0
Retention time (\mathbf{R}_t) (min)	3.04
Declustering potential (volts)	100.0
Enterance potential (volts)	5.0
Collision energy (volts)	34.0
Collision cell exit potential (volts)	11.0
	Axitinib (AXI)
Ĭ	
HNO	
S N	
N	
\sim	
Mass transition analyte	387.1 → 356.0
Mass transition isotopically marked internal standard	391.3 → 356.1
Retention time (R _t) (min)	1 84
	1.01
Declustering potential (volts)	80.0

Collision energy (volts)

Collision cell exit potential(volts)

27.0

16.0

CI H	Bosutinib (BOS)
Mass transition analyte	530.4 → 141.3
Mass transition isotopically marked internal standard	539.4 → 150.3
Retention time (R_t) (min)	2.82
Declustering potential (volts)	80.0
Enterance potential(volts)	10.0
Collision energy (volts)	22.0
Collision cell exit potential (volts)	14.0

Mass transition analyte	502.2 → 323.1
Mass transition isotopically marked internal standard	506.4 → 391.4
Retention time (R_t) (min)	3.42
Declustering potential (volts)	50.0
Enterance potential (volts)	10.0
Collision energy (volts)	35.0
Collision cell exit potential (volts)	14.0

Cabozantinib (CAB)

Dabrafenib (DAB)

Lenvatinib (LEN)

Mass transition analyte	520.1 → 307.1
Mass transition isotopically marked internal standard	529.0 → 316.1
Retention time (R_t) (min)	1.50
Declustering potential (volts)	80.0
Enterance potential (volts)	10.0
Collision energy (volts)	30.0
Collision cell exit potential (volts)	14.0

On 13		
Mass transition analyte	428.1 → 371.0	
Mass transition isotopically marked internal standard	433.1 → 371.0	
Retention time (R_t) (min)	1.55	
Declustering potential (volts)	50.0	
Enterance potential (volts)	10.0	
Collision energy (volts)	43.0	
Collision cell exit potential (volts)	14.0	
•		

H H H H H H H H H H	Nilotinib (NIL)
Mass transition analyte	530.0 → 289.1
Mass transition isotopically marked internal standard	536.1 → 295.0
Retention time (R_t) (min)	3.30
Declustering potential (volts)	100.0
Enterance potential (volts)	10.0
Collision energy (volts)	30.0
Collision cell exit potential (volts)	14.0

Collision cell exit potential (volts)

Osimertinib (OSI)

14.0

H ₂ C NH H H H		
Mass transition analyte	500.2 → 72.1	
Mass transition isotopically marked internal standard	504.2 → 72.0	
Retention time (R_t) (min)	3.81	
Declustering potential (volts)	50.0	
Enterance potential (volts)	10.0	
Collision energy (volts)	47.0	
	14.0	

~	
Mass transition analyte	307.0 → 186.0
Mass transition isotopically marked internal standard	316.0 → 186.0
Retention time (R_t) (min)	1.24
Declustering potential (volts)	80.0
Enterance potential (volts)	10.0
Collision energy (volts)	30.0
Collision cell exit potential (volts)	14.0

Trametinib (TRA)

Mass transition analyte	616.0 → 490.9
Mass transition isotopically marked internal standard	622.0 → 496.9
Retention time (R_t) (min)	3.89
Declustering potential (volts)	125.0
Enterance potential (volts)	7.0
Collision energy (volts)	46.0
Collision cell exit potential (volts)	12.0

Analyte	Sensitivity (n=9)	S/N-ratio ^b (n=9)	Selectivity (n=6) (analyte)	Selectivity (n=6) (IS)	Carry-over (n = 5) (analyte)	Carry-over (n = 5) (IS)	Dilution integri	ty (n = 6)
	Acceptance Factor ^a	_b	(%)	(%)	(%)	(%)	Accuracy (%)	CV%
AFA	$0.25 \pm 0.20 \ (0.05 - 0.84)$	20.7 ± 5.7	1.75	0.19	6.83	0.05	102.0 ± 1.33	1.39
AXI	$0.13 \pm 0.07 \ (0.01 - 0.31)$	77.0 ± 32.6	0.15	0.01	1.84	0.01	88.4 ± 4.02	3.70
BOS	$0.35 \pm 0.24 \ (0.09 - 0.91)$	11.9 ± 4.4	3.52	0.05	3.36	0.02	95.0 ± 2.77	2.82
CAB	$0.14 \pm 0.10 \ (0.02 - 0.34)$	51.6 ± 18.7	2.79	0.11	4.06	0.08	89.9 ± 2.21	2.20
DAB	$0.06 \pm 0.03 \ (0.02 - 0.14)$	34.9 ± 12.6	0.65	0.08	0.48	0.01	94.1 ± 2.64	2.80
LEN	$0.02 \pm 0.02 \ (0.01 - 0.08)$	46.5 ± 14.0	0.23	0.03	0.84	0.02	100.0 ± 2.15	2.39
NIL	0.20 ± 0.18 (0.02-0.86)	47.5 ± 19.1	2.60	0.23	7.33	0.05	98.0 ± 3.35	3.53
OSI	0.03 ± 0.01 (0.01-0.06)	25.2 ± 10.3	1.35	0.26	12.3	0.16	109.0 ± 4.31	4.87
RUX	$0.03 \pm 0.02 \ (0.01 - 0.11)$	79.4 ± 33.5	0.28	0.30	0.71	0.36	109.0 ± 2.36	2.32
TRA	$0.04 \pm 0.04 \ (0.02 - 0.16)$	47.0 ± 18.9	0.31	0.004	0.94	0.01	95.4 ± 1.91	1.75

Table S2 Validation results for sensitivity, selectivity, carry-over and dilution integrity (with saline solution)

a b

 $\begin{array}{l} \text{mean} \pm \text{SD} \text{ (range)} \\ \text{S/N-ratios calculated for the lowest calibration level expressed as mean} \pm \text{SD} \end{array}$

Analyte	Sample	Accuracy (%)	CV (%)	Accuracy (%)	CV (%)	Accuracy (%)	CV (%)
		Hemolytic		Icteric		Lipemic	
AFA	QC high	96.1 ± 4.90	5.10	102.3 ± 7.36	7.19	101.2 ± 0.95	0.94
	QC low	99.4 ± 0.84	0.84	92.8 ± 3.35	3.61	92.3 ± 6.78	7.35
AXI	QC high	88.1 ± 0.44	0.50	96.3 ± 0.59	0.61	93.7 ± 0.15	0.16
	QC low	96.5 ± 1.71	1.77	96.6 ± 1.00	1.04	92.1 ± 8.12	8.81
BOS	QC high	95.9 ± 4.17	4.35	99.6 ± 1.34	1.35	99.8 ± 0.45	0.45
	QC low	89.4 ± 6.5	7.28	90.5 ± 5.08	5.61	88.6 ± 7.62	8.60
CAB	QC high	90.2 ± 2.42	2.67	96 ± 2.91	3.03	92.6 ± 2.90	3.14
	QC low	96.6 ± 0.99	1.03	91.4 ± 0.99	1.09	92.1 ± 2.65	2.87
DAB	QC high	100.2 ± 1.49	1.49	103 ± 0.49	0.48	104 ± 2.98	2.87
	QC low	105.2 ± 6.44	6.12	100.2 ± 2.03	2.03	102.1 ± 2.71	2.66
LEN	QC high	103.9 ± 8.89	8.56	110 ± 3.95	3.59	110.5 ± 1.27	1.15
	QC low	104.8 ± 5.77	5.51	96 ± 5.87	6.11	94.6 ± 0.96	1.02
NIL	QC high	95.6 ± 0.99	1.03	103 ± 2.47	2.40	102.2 ± 0.49	0.48
	QC low	96.3 ± 1.35	1.41	94.8 ± 2.71	2.86	94.8 ± 2.03	2.14
OSI	QC high	99.2 ± 0.00	0.00	97.5 ± 1.18	1.21	109.6 ± 5.30	4.84
	QC low	100.6 ± 0.82	0.82	101.5 ± 1.23	1.22	96.5 ± 1.64	1.70
RUX	QC high	92.2 ± 3.72	4.03	91.6 ± 3.12	3.41	93.8 ± 2.08	2.22
	QC low	99.1 ± 3.24	3.27	95 ± 7.90	8.32	96.8 ± 2.74	2.82
TRA	QC high	95.1 ± 1.30	1.36	100 ± 0.14	0.14	98.2 ± 1.30	1.32
	QC low	94.2 ± 3.05	3.24	89.3 ± 1.57	1.76	88.4 ± 1.67	1.89

Table S3 Accuracy and precision of quality control (QC) samples prepared in hemolytic, icteric and lipemic serum, quantified against a calibration curve prepared in plasma (n = 2)

Analyte	Sample	Sample Accuracy (%)	
Δ.Γ.Δ.	QC high	100.4 ± 2.33	2.32
АГА	QC low	99.3 ± 0.76	0.77
A VI	QC high	96.5 ± 2.18	2.26
ΑΛΙ	QC low	97.7 ± 1.29	1.32
DOG	QC high	104.7 ± 3.06	2.92
DO2	QC low	97.9 ± 3.91	3.99
CAP	QC high	96.2 ± 2.75	2.86
CAD	QC low	99.8 ± 1.95	1.95
	QC high	101.9 ± 3.70	3.63
DAB	QC low	100.4 ± 4.37	4.35
I ENI	QC high	98.4 ± 2.21	2.25
LEN	QC low	92.3 ± 0.61	0.66
NII	QC high	101.9 ± 3.10	3.04
INIL	QC low	98.2 ± 5.10	5.20
051	QC high	103.0 ± 3.00	2.91
051	QC low	101.0 ± 0.45	0.45
	QC high	98.8 ± 2.02	2.04
NUA	QC low	97.0 ± 6.02	6.21
Т ДА	QC high	103.2 ± 4.31	4.18
1 KA	QC low	97.33 ± 2.93	3.01

Table S4 Accuracy and precision of quality control (QC) samples prepared in serum, quantified against a calibration curve prepared in plasma (n = 3)

Analyte	QC level	Freeze-thaw cycle 1		Freeze-thaw cycle 2		Freeze-thaw cycle 3		Long-term stability –20 °C (3 months)		Long-term stability –80 °C (3 months)	
7 mary to		Accuracy (%)	CV%	Accuracy (%)	CV%	Accuracy (%)	CV%	Accuracy (%)	CV%	Accuracy (%)	CV%
AFA	QC-H	106.6 ± 3.98	3.73	106.2 ± 3.28	3.09	105.9 ± 2.26	2.14	86.2 ± 4.66	5.40	102.1 ± 1.83	1.79
	QC-L	107.9 ± 6.57	6.09	108.5 ± 6.11	5.63	111.7 ± 3.32	2.97	103.4 ± 0.00	0.00	107.8 ± 4.57	4.24
AXI	QC-H	95.6 ± 1.94	2.02	95.9 ± 1.47	1.53	102.6 ± 1.68	1.64	91.3 ± 4.68	5.13	99.4 ± 0.70	0.71
	QC-L	97.4 ± 1.45	0.98	102.3 ± 1.45	1.41	97.6 ± 1.12	1.15	104.8 ± 0.13	0.12	105.0 ± 5.72	5.45
BOS	QC-H	105.4 ± 1.73	1.64	103.9 ± 3.22	3.10	106.3 ± 0.79	0.75	96.3 ± 8.26	8.58	104.7 ± 3.94	3.77
	QC-L	101.2 ± 2.04	2.01	99.4 ± 0.74	0.74	101.2 ± 5.04	4.98	101.8 ± 2.34	2.30	105.0 ± 6.21	5.92
CAB	QC-H	98.2 ± 4.50	4.58	98.5 ± 2.05	2.09	99.6 ± 2.16	2.17	89.7 ± 4.57	5.10	97.9 ± 2.02	2.07
	QC-L	103.5 ± 1.48	1.43	102.8 ± 2.89	2.81	105.6 ± 1.96	1.86	103.7 ± 1.27	1.22	102.0 ± 3.70	3.63
DAB	QC-H	98.1 ± 2.47	2.52	98.4 ± 1.26	1.28	100.3 ± 3.33	3.32	92.4 ± 8.79	9.51	100.1 ± 0.95	0.95
	QC-L	98.5 ± 6.74	6.84	101.5 ± 2.70	2.66	102.8 ± 0.37	0.36	99.0 ± 3.03	3.06	104.3 ± 2.97	2.85
LEN	QC-H	105.6 ± 0.63	0.59	106.0 ± 2.55	2.41	107.5 ± 3.02	2.81	92.5 ± 3.99	4.32	100.5 ± 2.44	2.43
	QC-L	103.8 ± 4.83	4.65	109.0 ± 6.64	6.09	105.3 ± 2.77	2.64	98.4 ± 1.48	1.50	97.8 ± 0.80	0.82
NIL	QC-H	97.0 ± 7.29	7.52	100.9 ± 2.94	2.91	100.6 ± 4.21	4.18	92.3 ± 5.27	5.71	98.9 ± 1.65	1.67
	QC-L	97.5 ± 6.31	6.48	98.3 ± 4.01	4.08	102.3 ± 5.93	5.79	99.4 ± 4.76	4.79	98.6 ± 2.45	2.49
OSI ^a	QC-H	93.5 ± 1.47	1.57	92.8 ± 2.97	3.20	89.5 ± 1.02	1.14	89.8 ± 1.47	1.63	89.5 ± 0.49	0.55
	QC-L	91.8 ± 1.49	1.63	90.5 ± 2.36	2.61	81.5 ± 2.46	3.02	92.4 ± 3.31	3.58	91.9 ± 4.82	5.25
RUX	QC-H	98.6 ± 2.02	2.05	96.3 ± 7.12	7.40	98.4 ± 2.35	2.39	92.3 ± 6.13	6.64	96.1 ± 0.50	0.52
	QC-L	98.6 ± 4.65	4.72	102.5 ± 1.76	1.72	103.3 ± 2.38	2.31	95.8 ± 1.04	1.08	101.8 ± 1.40	1.38
TRA	QC-H	100.4 ± 0.50	0.50	103.7 ± 0.28	0.89	100.9 ± 1.33	1.32	93.6 ± 9.69	10.3	100.5 ± 1.00	0.99
	QC-L	100.8 ± 3.70	3.67	96.9 ± 1.47	5.72	101.5 ± 0.82	0.81	102.6 ± 7.16	6.98	101.1 ± 4.98	4.93
a 1	long term stability was only assessed for four weaks in the case of OSI: 20 °C and 80 °C										

Table S5 Validation results for freeze-thaw stability cycles and long-term stability (n = 3)

long term stability was only assessed for four weeks in the case of OSI: - 20 °C and -80 °C

A	WSL in methan	ol for 4 months	SL in DMSO for 4 months		
Analyte	Accuracy [%]	CV% (n=3)	Accuracy [%]	CV% (n=3)	
AFA	87.6 ± 0.51	0.58	82.8 ± 1.23	1.49	
BOS	102.2 ± 3.04	2.97	99.2 ± 1.25	1.26	
CAB	95.1 ± 3.78	3.97	89.2 ± 2.89	3.24	
DAB	92.0 ± 2.89	3.14	88.2 ± 4.33	4.91	
LEN	108.1 ± 2.93	2.71	109.0 ± 3.47	3.18	
NIL	96.8 ± 5.09	5.26	99.6 ± 2.40	2.41	
OSI	109.4 ± 2.45	2.24	105.3 ± 5.05	4.80	
RUX	93.8 ± 5.03	5.36	95.0 ± 3.82	4.02	
1 KA	100.0 ± 2.71	2.71	103.2 ± 0.85	0.82	

Table S6 Validation results for stock solution (SL) in DMSO and working solution in methanol (WSL) stability

Table S7 Co-medication and additional condition of the patients taking OSI and AFA

	Patient 1	Candesartan 24 mg QD, Hydrochlothiazide 12.5 mg QD Crizotinib 250 mg BID (8/14)* Zolendronat every 8 weeks	Arterial hypertension	
OSI		Zolendronate every 6 weeks Crizotinib 250 mg BID (3/11)*		
	Patient 2	Zolendronate every 6 weeks Enoxaparin sodium (50.000 IE/5 mL) 0.4 mL BID	No additional conditions	
	Levothyroxine 100 µg		Condition after thyroidectomy after papillary carcinoma of the	
AFA	Doxycycline	50 mg QD (short-time therapy)	thyroid, arterial hypertension and	
	no further me	dication documented	mitral regurgitation (Grade II classified by Carpentier)	

* ratio of samples (x/total) taken during the combination of the two kinase-inhibitors (osimertinib and crizotinib)

Fig. S1 Chromatographic traces of all monitored MRM transitions in a blank sample

Fig. S2 Chromatographic traces of all monitored MRM transitions in a blank sample containing internal standards

Fig. S3 Chromatographic traces of all monitored MRM transitions in an LLOQ sample