
Supplementary Information: Graphical analysis for phenome-wide causal

discovery in genotyped population-scale biobanks

Supplementary Figures

Supplementary Figure 1. Mean number of discoveries and empirical false discovery rates
(FDR) of Mendelian randomization methods in simulated data from graphs with 15 continuous
traits. The underlying causal diagram was generated such that the expected in- and out-going
degrees of the traits were 1.5. All simulated graphs contained cycles. For each trait we added
between 10 and 20 binary instruments (uniformly, iid). To add horizontal pleiotropy, for each
instrument we decided whether it is horizontally pleiotropic or not with probability ppleio, and
if so, we added between 1 and 10 links into additional traits (uniformly, iid). When generating
datasets, the traits had standard normal noise, causal quantities were randomly and uniformly
sampled such that their absolute value was between 0.1 and 0.9, and binary instruments were
generated randomly with a probability between 0.05 and 0.4. The plots show the mean results
of the simulations for different ppleio values (e.g., the mean of the empirical FDR over the
simulated graphs). Discoveries from each statistical test were done at a 0.01 significance level
after adjusting for FDR using the BY algorithm. When two methods have a similar empirical
FDR, greater number of predictions correspond to greater power. a Results with p1 = 0.001

and p2 = 0.01. b Results with p1 = 1x10−05 and p2 = 0.001.

1



Supplementary Figure 2. Mean number of discoveries and empirical false discovery rates
(FDR) of ExSep-based methods in simulated data from graphs with 15 continuous traits. The
underlying causal diagram was generated such that the expected in- and out-going degrees of
the traits were 1.5. All simulated graphs contained cycles. For each trait we added between 10
and 20 binary instruments (uniformly, iid). To add horizontal pleiotropy, for each instrument
we decided whether it is horizontally pleiotropic or not with probability ppleio, and if so,
we added between 1 and 10 links into additional traits (uniformly, iid). When generating
datasets, the traits had standard normal noise, causal quantities were randomly and uniformly
sampled such that their absolute value was between 0.1 and 0.9, and binary instruments were
generated randomly with a probability between 0.05 and 0.4. The plots show the mean results
of the simulations for different ppleio values (e.g., the mean of the empirical FDR over the
simulated graphs). Discoveries from each statistical test were done at a 0.1 significance level
after adjusting for FDR using the BY algorithm. When two methods have a similar empirical
FDR, greater number of predictions correspond to greater power. Naive counts results were
obtained with p1 = 1x10−05 and p2 = 0.001. Note that the results here are not presented
together with the MR methods (i.e., Figure 3 in the main text) because both the y-axes scale
is different, and unlike the MR methods the ExSep test was applied only to skeleton edges
and thus the total number of discoveries are not comparable between the two analyses.
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Supplementary Figure 3. Overlap matrix of the MR cGAUGE results with different p1
and p2 parameters. Each entry shows the Jaccard coefficient between the set of pairs inferred
(size of intersection / size of union) at 0.1 FDR with MR-PRESSO as the base MR method,
and UniqueIV as the instrument filter.
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Supplementary Figure 4. Inferred GT with p1 = 1X10−06. The edges represent phenotype
pairs that remain associated at p < 1X10−06 when conditioned on other phenotypes. Clusters
detected by MCODE are presented below the main network.
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Supplementary Note 1: A formal explanation of cGAUGE

1 Notation and background

We start with an overview of the theoretical results that provide the foundation for our algo-
rithms. For a more thorough background on theory of causal inference see [1, 2].

General notation. We generally use the following notations unless stated otherwise. Graphs:
calligraphic uppercase (e.g., G). Distributions (including empirical): blackboard bold typeface
(e.g., P). Italic uppercase: a random variable. Italic bold uppercase: a set. Lowercase letter:
a scalar or a realization of a random variable.

Graphs. A graph G is an ordered pair G =< V ,E >, where V is a set of nodes (or vertices)
and E is a set of pairs of nodes. When two nodes are connected by an edge we say that they
are adjacent. In an undirected graph, E is a set of unordered pairs, whereas in a directed
graph E is a set of ordered pairs and an edge < X,Y > can also be marked as X → Y . If
G is directed and < X,Y >∈ E then we say that X is a parent of Y . We denote the set of
parents of a node Y as Pa(Y ). In this paper we consider directed graphs without self loops,
that is ∀X ∈ V , X 6∈ Pa(X). Generalizing parent-child relationships, we can naturally define
descendants and ancestors.

An undirected path π between X and Y is a set of consecutive edges (independent of their
orientation) connecting the variables such that no vertex is visited more than once. A directed
path from X to Y is a set of consecutive directed edges from X to Y in the direction of the
edges. A (directed) cycle in the graph occurs when there is a (directed) path from X to Y ,
and Y and X are also adjacent (i.e., Y → X in the directed case). A non-endpoint variable
X in a path π is called a collider if and only if the edges around it have their arrowheads into
X (i.e., Z → X ← Y ).

Causal models. We use the structural equation model with independent errors (SEM-IE) to
describe a causal model [1]. This fits the standard assumptions made by current methods for
genetic data analysis. Briefly, a causal model M is a pair < D,ΘD > with a directed graph D
over a set of variables V . ΘD is a parameterization that assigns a function xi = fi(Pa(Xi), εi)

for each Xi ∈ V , where εi is an error term (also called disturbance) distributed independently
of other error terms according to a distribution P (εi). Given all variables and distributions in
a causal model, the observed data follow a joint distribution P.

DAG factorization. The causal diagram D is the underlying graph that represents the direct
causal interactions between the variables represented by the vertices V (some may be unob-
served). If D is directed and acyclic (DAG) we say that a distribution P satisfies that Markov
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property if it factorizes over D such that f(X) =
∏|X|

i=1 fi(Xi|Pa(Xi)), where f marks density
functions. A similar definition can be used for discrete variables using probability functions
instead of densities.

D-separation. Early work had established that some conditional independencies can be inferred
from the graph structure alone regardless of the parameterization of the entire causal model [1].
When found, such discoveries constraint the set of possible distributions that are compatible
with the underlying causal structure. The graphical rule is called d-separation and it is defined
as follows. A set of variables S (possibly an empty set) d-separates a set of variables X from
another set Y , where X,Y , and S are all disjoint, if and only if every path from a node in
X to a node in Y is blocked by S. A path π between two nodes X and Y is blocked by a set
of nodes S, X,Y 6∈ S if and only if at least one of the following is satisfied: (1) S contains a
node m that emits an edge in π (i.e., there is an edge m→ m′ in π), (2) there is a collider X ′

in π such that not X ′ nor any of its descendants are in S.

We use (X ⊥⊥ Y |S)D to mark the event that S d-separates two nodes X and Y in the
graph D. We use (X ⊥⊥ Y |S)P to denote the case in which two random variables X and Y are
conditionally independent given a set of variables S according to their joint distribution P. The
d-separation property of DAGs can be succinctly written: if (X ⊥⊥ Y |S)D then (X ⊥⊥ Y |S)P

in any distribution P that is compatible (i.e., satisfies the Markov property) with D.

D-separation in graphs with cycles. Although originally proven for causal models with DAG
diagrams, the d-separation criterion was later proven for diagrams with cycles in two cases: (1)
discrete finite variables in positive distributions [3], and (2) linear SEM-IEs [4]. Of note, the
Markov property does not necessarily hold when cycles are introduced. Therefore, additional
assumptions must be used. For example, in both cases above, the proofs require the assumption
that the observed distribution is an equilibrium. Roughly, an equilibrium in this context is
reached from an SEM when we start with a random sample of the errors and then simulate
the SEM repeatedly until we achieve convergence. The set of values achievable in this process
is called the equilibrium distribution. Fisher’s fixed point method can be used to simulate the
equilibrium distribution from an SEM-IE, but there is a closed form solution for simulating
from a linear SEM-IE. In the discrete case, stronger assumptions are required as the process
depends on the order of the equations [5]. Nevertheless, once the equilibrium is well-defined,
d-separation holds [5, 6].

Causal discovery. The tight connection between causal diagrams and conditional independen-
cies has been used to propose causal discovery algorithms. For DAGs, we used the Markov
condition mentioned above, which also means that each variable X is independent of its non-
descendants given its parents. For diagrams with cycles, while this property does not hold,
the d − separation rule is still used. However, two additional fundamental assumptions that
seem plausible in practice and can be treated as axioms are used as well [2]: minimality, and
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faithfulness. Minimality is the causal inference analog to Occam’s Razor: we prefer simpler
models when we consider alternatives that can explain the data. More formally, a causal
diagram D satisfies the minimality condition with respect to a distribution P if the Markov
property does not hold for every < H,P >, where H is a proper sub-graph of D. Finally,
faithfulness, (also called stability) assumes that all independencies embedded in the observed
distribution P are stable and are invariant to changes in parameterization. Thus, it implies
(together with d-separation) that (X ⊥⊥ Y |Z)P ⇐⇒ (X ⊥⊥ Y |Z)D.

The assumptions above are especially important if we are to propose causal discovery ap-
proaches in the present of confounding by latent variables. We generally say that the effect of
X on Y is confounded if there exists a third variable U such that X ← U → Y . If U is unob-
served the standard notation is X ↔ Y . We use X↔̈Y instead to avoid confusion with having
a cycle X → Y and X ← Y . Presence of unobserved confounding adds complexity to the
inference problem and limits our discovery power. Nevertheless, conditional independencies
inferred from observed distribution are still powerful enough to constraint the set of plausible
causal diagrams. When enough constraints are accumulated we can partially or completely
infer causal diagrams.

It is important to note the fundamental difference between this algorithmic approach and stan-
dard statistical inference algorithms that optimize a global objective function such as training
a Bayesian network using maximum a posteriori (MAP) or maximum likelihood (MLE) objec-
tives. Here, the basic assumptions and the theoretical results are used as constraints in order
to narrow down the set of possible causal diagrams. Thus, these algorithms rely heavily on
the ability to statistically detect conditional independencies, and their output may be an only
partially oriented diagram. Notable algorithms to perform such analyses are PC [4], IC* [1],
FCI [2, 7], and CCD [8, 2]. Another notable example is the SAT-based optimization algorithm
of [9] that extended the basic ideas to address the inference task as an optimization problem.

A few notable drawbacks of the algorithms above should be highlighted, especially for the case
of analysis of large biobanks. First, these algorithms require exponential running times as
results from all conditional independencies may be required. Second, most of these algorithms
assume that the input contains a statistical oracle for testing conditional independence. Al-
ternatively, this assumes that in practice there are no statistical errors, although some recent
approaches had attempted to mitigate this issue by addressing the FDR of inferred edges
[10, 11]. Nevertheless, the sequential nature by which these algorithms update the inferred
structure implies that errors are propagated and accumulated. These two issues are crucial
when biobanks are considered as we may need to analyze data from thousands of weak genetic
variants and dozens of phenotypes. Our algorithms below build upon the main principles of
these methods, integrating them with prior biological information about the nature of genetic
variables.
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Instrumental variable analysis. A special set of causal inference algorithms can be defined
once instrumental variables are present. A variable Z is instrumental relative to (X,Y ) if
it is not independent of X and is independent of all variables that have influence on Y that
is not mediated by X [1]. Using instrumental variables, we can use path-analysis methods
to quantify causal effects associated with the edges of an SEM [12, 13]. In the genetic and
epidemiological literature such analyses are often called Mendelian Randomization (MR), and
the recent availability of genetic biobanks has led to increased interest in new MR methods.
These methods are appealing for their ability to handle many instruments, reverse causality
in some situations, and confounding effects [14]. Another common approach is to compute
the overall genetic correlation (GC) between phenotypes. The recently proposed LCV method
[15], uses higher moments of inferred summary statistics to move beyond standard GC to
causal inference under a specific parametric model.

Using genetic instruments for causal inference process is promising as they act as markers that
carry causal information flow. This is a unique property not generally achievable in causal
inference from observational data, which explains the high popularity of MR and GC methods.
However, extant methods are limited in that: (1) they assume that the instruments are known
and are not confounded themselves (i.e., by population bias), (2) they are typically based on
a parametric linear model, (3) they are sensitive to horizontal pleiotropy : confounding effects
caused by the genetic instruments, and (4) these methods are limited to analysis of GWAS
summary statistics and are therefore limited in the ability to utilize conditional independencies.
In addition, for causal discovery these methods explore only a single type of graphical pattern.
In our analysis we make use of constraint-based methodology to alleviate these issues and
guide the causal inference process in large genetic biobanks.

2 Graphical analysis for causal discovery in genetic biobanks

2.1 Input data

We formalize our input as follows. We have two sets of features V (instruments), and T

(phenotypes/traits/diseases) measured in n independent subjects. We denote the empirical
distribution of the data as P̂. V is a set of genetic variants (typically SNPs) that are used as
instruments for the causal inference process. T is a set of phenotypes, that are typically com-
plex traits and diseases. Generally, |V | is large initially (>500,000), but can be substantially
reduced once relevant variants are detected and LD-clumped (or pruned) per phenotype. |T |
is much smaller. In our case we used the UK Biobank to obtain data of 337,198 white British
subjects. We selected 96 phenotypes by taking those covered in [15] and some additional ones
that had large sample sizes, see Supplementary Table 1. In addition, we assume that sex,
age, and genetic principal components are exogenous variables. We denote their collective set
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as W , and assume that W
⋂
T = ∅.

Our analyses depend on three additional parameters: a test for conditional independence
and the thresholds to make a decision about the results of such tests. Let ci(X,Y,S) be
a statistical test for conditional independence (i.e., a function that returns a p-value). The
null hypothesis of this test is that (X ⊥⊥ Y |S)P̂, and low p-values serve as evidence for the
alternative (X 6⊥⊥ Y |S)P̂. By default, we use linear regression or logistic regression (for binary
variables) for conditional independence tests. The two additional parameters are p1, and p2.
When ci(X,Y,S) ≤ p1 we conclude that (X 6⊥⊥ Y |S)P̂. When ci(X,Y,S) ≥ p2 we conclude
that (X ⊥⊥ Y |S)P̂. P-values in (p1, p2) represent ambiguous cases.

2.2 Assumptions

We first make two general assumptions about the data. First, we assume that there is no
directed path going from a member of T to a member of V . This assumption is biological and
states that at a specific generation, the observed phenotypes do not change the DNA of the
subjects. Second, we assume that the dataset is not under some collider bias. This implies
that if we observe (X 6⊥⊥ Y |∅)P̂ then it truly reflects (X 6⊥⊥ Y |∅)P (as the sample sizes goes to
infinity).

Low statistical power or small sample size can lead to partial faithfulness fit : when multiple
unblocked paths exist between an instrument G and a variable Y , some may manifest observed
(conditional) association, and some do not. In other words, when (G ⊥⊥ Y |S)G , where S ⊂
T \ {Y }, then ci(G, Y,S) will follow the null distribution. However, if (G 6⊥⊥ Y |S)G then
ci(G, Y,S) may follow some distribution that is too similar to the null distribution. Such
partial faithfulness fit is problematic for standard causal discovery algorithms as they heavily
rely on a sequential process that uses faithfulness to make decisions. Thus, errors due to
partial fit may propagate and distort the output.

While faithfulness may be a reasonable assumption when analyzing variables from T , it is
problematic when we consider weak instruments. We address this issue by introducing a
relaxed assumption about conditional independence between variables from V and T , which
we denote as local faithfulness of order k, for some integer k ≥ 1. Standard faithfulness dictates
that if G is a genetic instrument, X ∈ T (following the assumptions above), S,S′ ⊂ T are two
sets such that X 6∈ S, X 6∈ S′, and we observed (G 6⊥⊥ X|S)P̂ ∧ (G ⊥⊥ X|S′)P̂ then every path
in G between G and X that is unblocked given S becomes blocked given S′. We alternatively
assume that if |S \S′| ≤ k ∧ |S′ \S| ≤ k and we observed (G 6⊥⊥ X|S)P̂ ∧ (G ⊥⊥ X|S′)P̂ then
there exists a path π in G that is unblocked given S but is blocked given S′. In this work
we consider k = 1 only.
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In words, if we observed an association between G and X given a set S such that a small
change to S renders G and X independent then the paths between G and X that manifested
the association before are now blocked in G given the new set S. Thus, we ease faithfulness
in that we do not assume that (G ⊥⊥ X|S′)P̂ ⇒ (G ⊥⊥ X|S′)G necessarily. We alternatively
require some local information first that is dependent on observed patterns in the data. Note
that the observed association still indicates the existence of an unblocked path between G and
X given S, regardless of faithfulness. Given local faithfulness we can now search for evidence
for alternating associations that have provable properties that can be used for causal discovery.

2.3 cGAUGE: an overview

We first analyze all phenotypes while ignoring the genetic data. This step separates the pheno-
type pairs into two groups that are each treated differently for extracting causal information.
The four steps of the algorithm are as follows:

1. Single GWAS: perform a genome-wide association study for each phenotype, adjust
for sex and genetic principal components (5). Clump the variants from each phenotype
and merge the list.

2. Skeletons graphs: identify associations that are robust to conditioning.

3. Analysis of skeleton non-edges: analyze phenotype pairs that are unlikely to be
under genetic confounding effects, and produce a set of instruments for each pair.

4. Analysis of skeleton edges: search for skeleton edges that have evidence for a specific
direction hinted by disappearing associations.

For (1) we perform standard association analysis using PLINK [16]. We also avoid an ex-
ponential number of statistical tests using practical heuristics. These enables powerful and
robust algorithmic strategies. The subsequent analyses are discussed below.

2.4 Skeleton graphs

Inference of a skeleton graph is the initial step that most causal discovery algorithms perform.
A skeleton graph is an undirected graph G over a set of observed variables such that an edge
e = (X,Y ) is added only if there is no evidence that X and Y can be rendered independent
by conditioning on a set S (which can be empty) of other observed variables. In other words,
skeleton graphs represent associations that are robust to conditioning. Under our assumptions
above, these graphs represent a set of candidate pairs that contain the true direct causal links
in the underlying causal diagram.
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As implied above, the construction of a skeleton depends on a search algorithm that scans
through the space of possible sets on which we condition. Naturally, going over all possible
sets is not feasible in our case. We deal with this issue using two strategies. First, we limit the
number of tested sets per pair of variables to O(|T |2). Second, we define two skeleton graphs:
GT and GV,T . GT is a standard skeleton inferred by analyzing the phenotypes alone and ignoring
the genetic information. GV,T is a bipartite graph: here we examine the associations between
genetic variables and phenotypes.

GT is constructed as follows. We start with a complete graph. For each pair X,Y ∈ T we go
over all sets S ⊆ T \ {X,Y } such that |S| ≤ 2. For each such S we compute two conditional
independence tests: ci(X,Y,S) and ci(X,Y,S ∪W ). If at least of these p-values is ≥ p1 then
we remove the edge between X and Y from GT .

GV,T is constructed as follows. We start with an empty bipartite graph between V and T .
We then add an edge between a genetic variable G and a phenotype X if the GWAS result
marked G as associated with X at a significant level p1. For each such G,X pair we then go
over all sets S ⊆ T \ {X} such that |S| ≤ 1. For each such S we compute two conditional
independence tests: ci(X,G,S) and ci(X,G,S ∪W ). If at least one of these p-values is ≥ p2
then we remove the edge between X and G from GV,T .

In the next section we assume that GV,T and GT correctly reflect the skeletons of the true
underlying causal mechanism.

2.5 Analysis of non-edges

Horizontal pleiotropy is a biological phenomenon in which a genetic factor affects two or more
biological processes in parallel (and their downstream phenotypes). This poses a fundamental
problem for MR methods as it contradicts their basic assumptions. We say that the horizontal
pleiotropic confounding is direct if the effect of the genetic variable is not mediated by other
measured phenotypes in the study (note that additional directed pathways may occur as well).
Trait pairs not connected in GT have a unique property as explained in the lemma below.

Lemma 2.1. Given the skeleton of the phenotypes GT inferred using conditional independence
tests among the traits only, a pair X,Y ∈ T that is disconnected in GT cannot have direct
(horizontal) pleiotropic effects.

Proof. Had X and Y been directly affected by genetic variables then under the faithfulness
assumption there could not have been a conditional independence test to separate them and
thus X and Y would have been connected in GT , a contradiction

This lemma implies that non-edges in GT are good candidates for using MR methods, however
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it does not indicate that they are not under any horizontal pleiotropy nor does it tell us which
instruments to use. The following results provide practical filters that we call ImpIV and
UniqueIV.

Definition 2.1. Given a directed graph G = (V ,E), a pair of nodes X,Y ∈ V , and a set
S ⊂ V such that X,Y 6∈ S and (X ⊥⊥ Y |S)G we say that S is a minimal separating set of X
and Y if there is no subset of it S′ ⊂ S such that (X ⊥⊥ Y |S′)G .

Definition 2.2. Given a directed graph G = (V ,E) and a pair of nodes X,Y ∈ V , let
msep(X,Y ) be the set of all minimal separating sets of X and Y .

Note that these definitions slightly deviate from our notation above as V represents the node
set of a general graph and not necessarily our genetic variables. This distinction should be
clear from the context.

Definition 2.3. Given GV,T the true V − T skeleton of the underlying causal diagram G =

(V ∪ T ,E) and X ⊂ T , let Neisk(X) be the set of all instruments in V that are linked to at
least one member of X in GV,T , and let Nei(X) be the set of all instruments in V that are
linked to at least one member of X by an unblocked pathway in G (i.e., when conditioning on
S = ∅).

Theorem 2.1. (ImpIV) Given a pair of phenotypesX,Y ∈ T not adjacent in the true skeleton
GT and (X 6⊥⊥ Y |∅)G , the variants in Neisk(msep(X,Y )) are not proper instruments relative
to (X,Y ).

Proof. X and Y are not linked in GT and (X 6⊥⊥ Y |∅)G , thus msep(X,Y ) contains at least
one non-empty set required for blocking the active paths between X and Y (i.e., active paths
when conditioning on ∅). Let S be such a minimal separating set. To prove the theorem it is
enough to show that every member of S has at least one active path to Y (conditioned on ∅)
that does not contain X.

Note that by definition, any U ∈ S cannot be a collider on all paths between X and Y that
contain it, as otherwise it can be removed from S, contradicting S being a minimal separating
set. Thus, U has an outgoing edge in at least one path between X and Y . If at least one of
these paths is active when conditioned on ∅ then we are done. Otherwise, all of the paths with
an outgoing edge from U are blocked (conditioned on ∅) and therefore must have at least one
collider. Thus, there must exist a path p in which U has an outgoing edge and all colliders
are members of S. If all colliders appear in the subpath between X and U , then again we
are done. Otherwise, let V1 be the closest collider to U in the subpath of p from U to Y . As
V1 ∈ S, then by the same arguments above it either (1) blocks an active path between X and
Y (conditioned on ∅), or (2) has a path p1 in which it has an outgoing edge and all colliders
are members of S and at least one of them is in the subpath of p1 between V1 and Y . If
(1) occurs then we are done as we can now concatenate U ’s collider-free path to V1 with the
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active path between V1 and Y . Otherwise, we can now create an active path (conditioned on
∅) between U and V1, and we are left with showing that V1 has an active path to Y . By the
same argument about p, p1 has a collider V2 on its subpath from V1 to Y .

We can now repeat the arguments that we used above for U = V0 and V1 for a new node V2
and repeat the process to create a series of nodes V1, V2, . . . , Vk, such that there is an active
path between U and V1 and between each Vi to Vi+1. However, we need to show that there
is a way to construct this series to be acyclic and therefore final. Indeed, if at some point in
the process of creating the series we try to add a new collider Vi in a path pi that we have
seen before and pi has no additional colliders between Vi−1 and Y , then again we are done as
we now have an active path from U to Y through V1, . . . , Vi−1. Otherwise, we update Vi to
be the next new collider in the path. As the series is either terminated or extended by a new
node it is final and must end, and so does our constructed active path from U to Y that is
not through X

The theorem above provides a way to remove genetic variables that are not instruments relative
to X,Y . However, the implied criterion does not cover all improper instruments as we prove
below.

Lemma 2.2. Given a pair of phenotypes X,Y ∈ T not adjacent in GT and (X 6⊥⊥ Y |∅)G ,
the variant set Nei({X}) \Neisk(msep(X,Y )) may contain improper instruments relative to
(X,Y )

Proof. We prove this by example. Consider a simple graph with a single genetic variable
G and four phenotypes: X,Y, V1, V2. The phenotype graph has the following three paths:
U → V1 → X, U → V2 → Y , and X → U ← Y . In addition we have the edge G → U .
Note that in our example, X and Y are separated only via the set {V1, V2}. Thus, U , which
is connected to G, is not a member of any minimal separating set. Moreover, (X 6⊥⊥ G|∅)G ,
and (Y 6⊥⊥ G|∅)G , implying that G is a member of Nei({X}).

Definition 2.4. Given the bipartite skeleton GV,T and X ∈ T , let Nei1(X) be the set of all
neighbors of X that are not linked to any other member of T .

Theorem 2.2. (UniqueIV) Given a pair of phenotypes X,Y ∈ T not adjacent in GT , and
such that |Nei1(X)| > 0, the variants in Nei1(X) are proper instruments relative to (X,Y ).

Proof. By assumption about the correctness of GV,T , members of Nei1(X) cannot have out-
going edges to members of T other than X. Similarly, there cannot be an unobserved variable
U (a confounder) that has paths going to both a member of Nei1(X) and Y . Finally, by our
assumption that genetic variants cannot be affected by members of T , there cannot be either
directed pathways from X or Y to members of Nei1(X), nor is there another member Z ∈ T

that affects X or Y and is a member of Nei1(X).
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To summarize, the two theorems in this section provide practical methods to either remove
improper instruments or to select a potentially small set of proper instruments. The trade-off
between the two approaches is that the first one is likely to result in larger instrument set
sizes, but without the guarantees of the second approach. If the resulting set indeed contains
only proper instruments, then the first approach will likely have greater statistical power as
compared to the second approach as it will contain proper instruments whose effect on X may
be mediated by other observed variables.

2.6 Analysis of skeleton edges

In the analysis above we excluded the detected edges in GT . These edges are a mixture of
(by assumption) a few errors, confounding effects, and direct causal links. We next discuss
situations in which the conditional independence observed relative to skeleton edges can be
used as evidence for identifying causal direction.

Theorem 2.3. (ExSep) Let G be a genetic variable and (X,Y ) be an edge in GT . If (G 6⊥⊥
Y |∅)P̂, and (G ⊥⊥ Y |X)P̂, then under the assumption of local faithfulness and no collider bias
of the input dataset there exists a directed path from X to Y .

Proof. By the assumptions and the observed dependence (G 6⊥⊥ Y |∅)P̂ there is a path pY

from G to Y that has no colliders, has X with an outgoing edge (to create the independence
(G ⊥⊥ Y |X)P̂), and there is no directed path from X into G. Thus, the subpath from X to Y
must be a directed path without ↔̈ edges (i.e., confounded by a common cause) or an outgoing
edge from Y , as both of these imply the existence of a collider on the subpath between X and
Y that cannot explain the newly created independence when conditioning on X.

In the proof above we used the local faithfulness assumption. Practically, since we already
observed (G 6⊥⊥ X|∅)P̂ and (G 6⊥⊥ Y |∅)P̂ we can reasonably assume that there is enough
detection power for associations in the examined local area of the causal diagram and thus use
local faithfulness as evidence for a blockage of a path. In addition, note that we did not make
any assumptions about G (e.g., G ∈ Nei1(X)). This is used in the next section to develop a
statistical test for identifying graphical patterns with the properties above. Finally, in practice
we check if (G 6⊥⊥ X|W )P̂, (G 6⊥⊥ Y |W )P̂, and (G ⊥⊥ Y |{X} ∪W )P̂, as by assumption W are
exogenous (the proof remains similar).

3 Empirical Bayes analysis

Using Theorem 2.3 in practice requires identifying cases with (G 6⊥⊥ Y |∅)P̂ and (G ⊥⊥ Y |X)P̂
in real data, which we call ExSep (Exposure-base Separation) events in the main text. In
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this section we utilize the two-groups empirical Bayes framework to develop statistical tests
with a null hypothesis that no such cases exist for a given X and Y . We start with a brief
introduction of the two-groups model, for a full description and background see [17].

Given a large set of N hypotheses tested in a large-scale study, the two-groups model provides
a simple Bayesian framework for multiple testing: each of the N cases (e.g., genes in a gene
expression study) are either null or non-null with prior probability π0 and π1 = 1 − π0, and
with z-scores (or p-values) having density either f0(z) or f1(z). When the assumptions of the
statistical test are satisfied, f0 is a standard normal (or a uniform distribution for p-values),
and is called the theoretical null. However, the Bayesian framework can be used to infer the
parameters of f0 from the data, as they can be slightly different than those of the theoretical
null [17]. The mixture density and probability distributions are:

f(z) = π0f0(z) + π1f1(z)

F (z) = π0F0(z) + π1F1(z)

For a rejection area Zy = (−∞, y), using Bayes rule we get:

Fdr(Zy) ≡ Pr{null|z ∈ Zy} = π0F0(y)/F (y)

We call Fdr the (Bayes) false discovery rate for Zy: this is the probability we would make a
false discovery if we report Zy as non-null. The Bayesian framework of the model allows us to
define a local version of the FDR. That is, if Zy is a single point z0 we define the local (Bayes)
false discovery rate as:

fdr(z0) ≡ Pr{null|z = z0} = π0f0(z0)/f(z0)

Moreover, we can also define the local (Bayes) true discovery rate as:

tdr(z0) ≡ Pr{non− null|z = z0} = 1− fdr(z0)

3.1 Problem definition

In the first step of cGAUGE we perform a GWAS analysis: we quantify the association
between all genetic variables in V and Y ∈ T , adjusting for the set of exogenous variables
W . This step produces a set of |V | p-values that we can transform to |V | z-scores, denoted
as z1 = (z11 , z

2
1 , . . . , z

|V |
1 ). However, to test for the existence of the ExSep graphical patterns

(of Theorem 2.3), we repeat the analysis, adding X to the set of variables that are adjusted
for. This analysis produces another vector of z-scores z2 = (z12 , z

2
2 , . . . , z

|V |
2 ). We assume that

zi1 and zi2 each follows a two-groups mixture model as explained above. However, we do not
know their joint distribution.
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Let h1 and h2 be the binary vectors that represent the true unknown group assignments for
each genetic variable, in each of the tests above. Using the two-groups notation, the ExSep
graphical pattern can be read as follows: there exists a genetic variable G with hG1 = 1 and
hG2 = 0. Thus, under the null hypothesis that there are no such patterns: (hi1 = 1)⇒ (h12 = 1).

3.2 ExSep: Model selection based LRT

We start with a simplifying assumption that the two groups models of z1 and z2 are mixtures of
two normal distributions. Similar models were explored in [18, 19], and were shown to provide
a fast and robust approximation. Thus, we assume that f0 is a normal distribution N (µ0, σ0)

and f1 is another normal distribution N (µ1, σ1). Inference of the parameters µ0, µ1, σ0, σ1, π0
is done using the znormix Expectation-Maximization (EM) algorithm, as explained in [18, 19].
We do not set constraints for f0 to follow the theoretical null, but set µ1 > 3 as we expect
genetic data to have the non-null p-values at a very significant level (e.g., p < 0.001).

We fit a two-groups mixture model for z1 and z2 separately. We denote the parameters for z1
as θ1 = (π1,0, µ1,0, µ1,1, σ1,0, σ1,1) and the parameters for z2 as θ2 = (π2,0, µ2,0, µ2,1, σ2,0, σ2,1).
We assume for the rest of this section that the means (all µ parameters) and the variances
are estimated correctly and hold them fixed. We now move on to model joint distribution of
(z1, z2) which is a mixture of up to four bivariate Gaussian distributions:

N1 : N

((
µ1,0

µ2,0

)
,

(
σ21,0 ρ0,0σ1,0σ2,0

ρ0,0σ1,0σ2,0 σ22,0

))

N2 : N

((
µ1,0

µ2,1

)
,

(
σ21,0 ρ0,1σ1,0σ2,1

ρ1,0σ1,0σ2,1 σ22,1

))

N3 : N

((
µ1,1

µ2,0

)
,

(
σ21,1 ρ1,0σ1,1σ2,0

ρ1,0σ1,1σ2,0 σ22,0

))

N4 : N

((
µ1,1

µ2,1

)
,

(
σ21,1 ρ1,1σ1,1σ2,1

ρ1,1σ1,1σ2,1 σ22,1

))

N1 is the density of genetic variables that are null in both z1 and z2, that is, cases for which
hi1 = 0 ∧ hi2 = 0. Similarly, N2 represents cases for which hi1 = 0 ∧ hi2 = 1, N3 represents
cases for which hi1 = 1 ∧ hi2 = 0, and N4 represents cases for which hi1 = 1 ∧ hi2 = 1. Under
our simplifying assumptions the unknown parameters of the model above are the correlation
parameters ρ of each bivariate distribution and the prior of each of the four densities.

We estimate these parameters using a simple grid search over the four ρ parameters, testing all
possible combinations along a four dimensional grid with values 0, 0.1, 0.2, . . . , 0.9. For each
combination, all parameters above are fixed and we can therefore estimate both the priors and
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the likelihood of the model using a simple variation of the EM algorithm.

Under the null hypothesis z′ can be modeled as a mixture of N1,N2, and N4, without the N3

density component. We therefore utilize the same grid-search algorithm as above, this time
ignoring the N3 cluster. The log-likelihood from the full model l and the log-likelihood from
the null model l0 are then used for a likelihood ratio test with the statistic λ = −2(l0− l) ∼ χ2

2

(under the null hypothesis).

Quantifying the improvement in fit as a function of the number of clusters is a standard
approach in model selection. However, in the general case, a likelihood ratio test approximation
that relies on EM-based estimates may not approximate the true null hypothesis well. Our
grid search approach is faster and robust as it searches through the entire space of potential
within distribution correlations, and apply the EM in a very specific case where all parameters
but the prior are hold fixed. Future studies can try to improve this method using parametric
bootstrap to compute conservative empirical p-values. However, this approach is slow and
requires many bootstrap repeats to achieve reasonable estimates that will survive adjustment
for multiple testing. Moreover, parametric bootstrap tests are very sensitive to errors in the
estimation of the true null distribution.

3.3 As an additional score for MR analysis

For each analyzed phenotype pair, we used the two-groups model to examine the p-value
distribution of the variants of the exposure with the outcome. Note that for inference of
causal diagrams alone, instruments can point out potential flow of causal information without
necessarily trying to estimate effects using a parametric model as MR methods do. In theory,
under faithfulness, if X is a cause of Y then all instruments of X have an unblocked path
to Y and should therefore be statistically associated with it. Thus, we can simply ask if a
set of instruments relative to X,Y is statistically associated with Y in a consistent way. We
quantify this by computing the proportion of non-null p-values, using the local FDR method
implemented in the limma R package as it is very fast and unlike znormix can also handle a
small set of instruments [20, 21].

4 Simulations

4.1 Full causal models

We generated random causal graphs with p = 15 nodes as follows. Let B represent the
adjacency matrix of a randomly generated graph. For each possible directed edge (the off-
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diagonal entries in B), we added its entry in B to the set of edges with probability d/p, where
d marks the expected outgoing degree of each node. Then, for each edge we set its non-zero
entry in B by sampling from a uniform distribution U [(−0.95. − 0.1] ∪ (0.1, 0.95)]. We then
added a set of causal instruments for each node and extended B to hold both the traits and
the instruments. The number of instruments per node was selected from a uniform discrete
distribution U [10, 20]. At this step B contains a causal graph between 15 traits and a set of
instruments for each node, such that each instrument is directly linked to a single node. For
each instrument, we then flip a "coin" with probability ppleio to decide if it will be linked to
other traits as well. If the result is tails, then we add direct edges from the instrument to a
set of randomly selected traits, with the set size selected from a uniform distribution U [1, 10].
We tested different combinations of d and ppleio to simulate graphs of different complexity:
d ∈ {1, 1.25, 1.5, 1.75, 2}, and ppleio ∈ {0, 0.1, 0.2, 0.3, 0.4}.

Given the graph above B, we move now to generate the data over N = 2000 samples. We
used the linear SEM framework to simulate

Xi =

nrow(B)∑
j=1

Bi,jXj + εi

where nrow(B) is the total number of nodes in B (instruments and traits), and εi ∼ N (0, 1).
Note that all instruments are exogenous and have no incoming arrows. Thus, when simulating
a single sample, each instrument was generated by sampling a random binary vector with
probability pmaf selected from a uniform distribution U [0.05, 0.4] (set for each instrument
before starting to simulate the samples). As we are simulating from a linear SEM, using the
exogenous variables, the ε variables, and B to generate samples is trivial as the data vector of
a sample X satisfies:

X = (I −B)−1e

where e represents all exogenous values randomly selected for the sample (e.g., instruments
and ε variables). Note that this simulation step is valid even if B contains cycles, see the
introduction for more details on cycles. Also, note that for non-linear SEMs Fisher’s fixed
point method can be used to simulate data, but we did not explore this approach in this work
[22].

To run the cGAUGE algorithms we repeated the simulations above and tested different values
of p1 and p2: p1 ∈ {0.01, 0.001.10−04, 10−05} and p2 = p1, 10 ∗ p1, 100 ∗ p1. Combined with
the different combinations of d and ppleio above, for each combination of d, ppleio, p1, p2 we
generated 40 different graphs with their synthetic datasets. This amounted to 12, 000 synthetic
datasets on which we tested our methods and others.
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4.2 Testing local faithfulness and MR failures

We tested the simple graph structures of Figure 2 in the main text to illustrate the limitations
of MR methods when latent confounders have many genetic instruments and to illustrate the
local faithfulness assumption. For simplicity, we use the simple notation from the main text: let
G be a binary genetic variable, X,Y two observed continuous variables, and U an unobserved
continuous variable. We tested three cases in which all genetic variables were linked to a single
non-genetic variable. In the first case (denoted as C1), we had 30 genetic variables, 20 that
directly affect U (denoted as Gu,j , j = 1, . . . , 20), and 10 that directly affect X (denoted as
Gx,j , j = 1, . . . , 10). In the second and third cases (denoted as C2,and C3 respectively) we had
a single genetic variable connected only to X.

All three cases had U as a common cause of X and Y but differed in the relationships among
X,Y :

C1 : X 6→ Y ∧ Y 6→ X

C2 : X → Y ∧ Y 6→ X

C3 : X → Y ∧ Y → X

All simulated cases followed linear relationships between the variables as explained above.

Datasets were simulated using standard normal errors for continuous variables and sampling
G from a Bernoulli distribution with a different probability to simulate different minor allele
frequencies. Then, each edge had a coefficient that determined its added value in the structural
equation. For example, the model of C3 can be written:

u = εu

g = εg

x = α1g + α3u+ εx

y = α2x+ α3u+ εy

where εg ∼ Bernoulli(p), and εu, εx, εy ∼ N(0, 1) i.i.d.

For C1 we sampled p and the causal quantities as explained in the previous section. In the
other cases we used p = 0.05 to simulated relatively rare instruments and set α2 = α3 = 0.5.
For each graph, we simulated 100 datasets with 2,000 samples. Conditional independence was
tested using generalized likelihood tests via either linear regression or logistic regression (e.g.,
if G was considered as the dependent variable).

For C2 and C3 we were interested in the performance of conditional independence tests and
their fit with the theory. We computed the frequencies of mixed results for each case. That is,
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we compared how many instruments had: (1) disappearing correlations - (G 6⊥⊥ X|∅)P̂sim
, (G 6⊥

⊥ Y |∅)P̂sim
, and (G ⊥⊥ Y |X)P̂sim

, (2) emerging correlations - (G 6⊥⊥ X|∅)P̂sim
, (G ⊥⊥ Y |∅)P̂sim

,
and (G 6⊥⊥ Y |X)P̂sim

, and (3) consistent correlations - (G 6⊥⊥ X|∅)P̂sim
, (G 6⊥⊥ Y |∅)P̂sim

, and
(G 6⊥⊥ Y |X)P̂sim

. Here, P̂sim, is the empirical distribution of a single simulated dataset.
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