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1. Transparent Methods 

2. Supplementary Figures 
 
 
 
Transparent methods 
Cell culture 
RAW264.7 cells were maintained in DMEM media (Sigma) containing 10% FBS (Life 
technologies), 1000U/ml penicillin/streptomycin (Sigma). HEK293T cells were cultured 
in DMEM media (Sigma) supplemented with 10% FBS (Sigma). Cells were grown at 
370C under 5% CO2. 
 
Primary osteoclast and Osteoclast progenitors  
Bone marrow cells (BM) were harvested from murine tibias and femurs of C57BL/6 
male mice, washed with PBS. Red cells were lysed with RCL (eBioscience)  and 
washed again with PBS. To obtain osteoclast progenitors (OCP), BM cells were 
stained with anti-CD11b PerCP, -CD3e FITC, -CD115 PE, -B220 FITC and -cKIT APC 
(from BD Pharmingen) using standard protocols and flow-sorted as described in (Hu 
et al., 2011) using a BD FACSAriaII flow-sorter. 
 
BM cells were cultured in α-MEM (Life technologies) containing 10% FBS (Life 
technologies) and 1% penicillin-streptomycin (Sigma) and 20 ng/ml M-CSF 
(Preprotech) overnight at a density of 1×106 cells/ml. Non-adherent BM cells were 
harvested the next day as source of primary osteoclasts. 
 
Osteoclast assays  
Osteoclast progenitors (OCP) and non-adherent BM cells were seeded into 24/48 or 
96 well/plates in complete media with 20 ng/ml M-CSF (Preprotech) and 50 ng/ml 
RANKL (Preprotech) at a density of 1×106 cells/ml (1ml per 24 w, 500ul /48w and 200 
ul/ 96 well). RAW264.7 cell were seeded at a density of 1×106 cells/ml (1ml per 24 w, 
500ul /48w and 200 ul/ 96 well) and cultured in presence of 50ng/ml RANKL 
(Preprotec)  
 
For all the cultures, after 2-3 days of culture, media was changed. After 6-7 dyas the 
cells were fixed and stained for TRAP activity using the TRAP assay kit (Sigma). 
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Multinucleated cells with 3 or more nuclei were counted as  TRAP+ cells. Images were 
acquired using EVOS cell imagine system (Thermofisher) (Ersek et al., 2015). 
 
 
shRNA constructs and lentivirus production 
ShRNA oligoes were phosphorylated and annealed and cloned, using the AgeI and 
EcoRI sites into a modified lentiviral pLKO.1 vector (Sigma), in which the puromycin 
gene had been replaced with eGFP. A scrambled shRNA was used as control. The 
following oligoes were used for the shRNA cloning:  
-Sh Mm MYC Forward primer: 5’- 
CCGGGACTCCGTACAGCCCTATTTCCTCGAGGAAATAGGGCTGTACGGAGTCTTTTTG-3’ 
-Sh Mm MYC Reverse primer: 5’-
AATTCAAAAAGACTCCGTACAGCCCTATTTCCTCGAGGAAATAGGGCTGTACGGAGTC 
-3’  

 
Recombinant lentiviruses were produced by co-transfecting the pLKO.1-GFPshRNA 
plasmid with helper plasmids (pRSV.REV, pMDLgpRRE and pMD2.VSVG) into 
HEK293T cells using the calcium phosphate method. After 24h of transfection, the 
medium was replaced. Viral supernatant was collected at 48h and 72h post 
transfection. Lentiviruses were concentrated by ultracentrifugation at 23000rpm for 
1.5h at 40C. Cells were transduced in the presence of polybrene (8µg/ml final 
concentration; Sigma). Two days post-transduction, GFP positive cells were FACS-
sorted  using a BD FACSAriaII flow-sorter. 
 
 
Reverse transcription PCR and qRT-PCR 
Total RNA was isolated from cultured cells using the ReliaPrep RNA cell Miniprep 
System (Promega). cDNA was synthesized with RevertAid cDNA synthesis kit 
(Thermoscientific). qRT-PCR was performed with Taqman probes (Applied 
Biosystems) using an AB StepOne Plus Real-Time PCR (Applied Biosystems). Gene 
expression was normalized to the expression of HPRT housekeeping gene using the 
ΔCt method. Taqman probes:  Myc (Mm00487804_m1), Brd2 (Mm01271171_s1), Brd4 

(Mm00480394_m1), Nfatc1 (Mm00479445_m1), Irf8 (Mm00492567_m1), Ocstamp 
(Mm00512445_m1), Dcstamp (Mm04209236_m1) and Hprt (Mm00446968_m1). 

 
RNA-seq 
Total RNA was isolated from RAW264.7 cells at 0, 4, 14 and 24h after RANKL, 
RANKL/I-BET, I-BET- treatment (two independent experiments per time point and 
condition) using the Nucleospin RNA kit (Macherey-Nagel). RNA quantity was 
determined with Qubit using the Qubit RNA Assay kit (Life Technologies) and RNA 
quality was assessed on the Bioanalyser using the RNA pico kit (Agilent). Libraries 
were prepared using the NEBNext poly(A) mRNA Magnetic Isolation Module and the 
NEBNext Ultra RNA Library Prep kit for Illumina (NEB), following manufacturer’s 
instructions. Library quantity was determined using the Qubit High Sensitivity DNA kit 
(Life Technologies) and library size was determined using the Bioanalyser High 
Sensitivity DNA kit (Agilent). Libraries were quantified using the Universal Library 
Quantification Kit for Illumina (Kapa Biosystems) and run on AB StepOne Plus Real-
Time PCR (Applied Biosystems). Libraries were diluted to 2nM and sequenced using 
the Illumina HiSeq 2500 platform to obtain paired-end 100bp reads. Two replicate per 
time point and treatment were made. 
 
Chromatin immunoprecipitation 
Chromatin immunoprecipitation (ChIP)-qPCR was performed as described in (Caputo 
et al., 2013). Specifically, after 4 h treatment RAW264.7 cells were washed with PBS 
and crosslinked with 1% formaldehyde (SIGMA) for 15 min at room temperature. 



 3 

Crosslinking was stopped by the addition of glycine (1.25M) to a final 125 mM 
concentration.  Subsequently, the cells were washed 3 times with ice cold PBS and 
pelleted at 300g. The crosslinked cells were lysed for 20 min on ice, and the nuclei 
were sonicated for 5 times for 5 min each time using a 30sec/30 sec off cycles,  at 40C, 
under high intensity in a Bioruptor UCD-200 (Diagenode).  
Sonicated fragments ranged 500-300bp in length. The sonicated chromatin was 
diluted at least ten times with ChIP dilution buffer (0,01%SDS, 1,1% Triton X-100, 
1,2mM EDTA, 16,7mM Tris-HCL pH 8, 167mM NaCl) with freshly added proteinase 
inhibitors (Sigma). To avoid unspecific binding, the diluted chromatin was pre-cleared 
for 1h at 40 C with magnetic beads (Dynabeads Protein A+G form Invitrogen).  3-5ug 
of antibody was added to pre-cleared chromatin aliquots and incubated overnight at 
40C on a rotating wheel. 
Immunoprecipitation was achieved by addition of protein A+G (50% each) magnetic 
beads and incubating for 2-4h at 40C on a rotating wheel. Immunoprecipitated 
complexes were washed for 5 min with salt buffer (0.1% SDS, 1% Triton X-100, 2mM 
EDTA, 20mM Tris-HCl pH 8, 150mM NaCl), high salt buffer (0.1% SDS, 1% Triton X-
100, 2mM EDTA, 20mM Tris-HCl pH 8, 500mM NaCl), LiCl buffer (0,25M LiCl, 1 % 
IGEPAL, 1% sodium deoxicolate, 1mM EDTA, 10mM Tris-HCl pH 8) and TE. All the 
washed were perform twice at 40C on a rotating wheel. 
Elution and un-crosslinking were achieved by incubating the immoprecipitated 

complexes with 150l elution buffer (50mM Tris-HCl pH 8, 50mM NaCl, 1mM EDTA 
and freshly added 1% SDS and 20mg/ml of RNaseA) at 650C overnight and again a 
second time for 30 min. Eluted complexes were treated with proteinase K 
(Thermoscientific) for 45 min at 450C. 
DNA was purified by phenol extraction and ethanol DNA precipitation. Q-PCR was 
performed using SYBR Select Master Mix (Lifetechnologies) on a StepOne Plus Real-
Time PCR (Applied Biosystems). Enrichment of the target sequence was assessed 
against INP DNA and IgG control (C1111), cMYC (sc764),  Max (SC197), Brd2 (Bethyl 
A302-582A). Brd3 (Bethyl A302-368A) and Brd4 (Bethyl A301-985150), H3K27ac 
(ab4729). 
 
ChIP-seq  
Treated and untreated cells were cultured using DMEM medium.107 cells per ChIP 
were cross-linked with 1% formaldehyde for 15min. Chromatin immunoprecipitation 
was performed as described above. The ChIP DNA was purified with AMPure beads 
(Beckman). ChIP and input DNA libraries were prepared using the NEBNext ChIP-seq 
Library Prep Master Mix for Illumina (NEB) following manufacturer’s protocols. The 
quantity was determined using the Qubit High Sensitivity DNA kit (Life Technologies) 
and library size was determined using the Bioanalyser High Sensitivity DNA kit 
(Agilent). Libraries concentration was quantified using the Universal Library 
Quantification Kit for Illumina (Kapa Biosystems) using a AB StepOne Plus Real-Time 
PCR (Applied Biosystems). Libraries were diluted to a final concentration of 2nM and 
sequenced at the MRC Imperial facility using the Illumina HiSeq 2500 platform to 
obtain single-end 50bp reads. 
 
ATAC-seq 
ATAC seq was performed as described in (Buenrostro et al., 2015). Briefly, 50.000 
cells were collected and washed at 500g at 40C for 5 min with PBS. The cell pellet was 
resuspended in ATAC lysis buffer and immediately spun for 10 min at 500g at 40C. 
The nuclei were then subjected to Tn reaction for 30 min at 370C; the reaction was 
terminated and the DNA purified immediately using a MinElute Kit (Qiagen). The 
purified DNA was amplified with NEBNext High-Fidelity 2x PCR Master Mix (NEB). 
The PCR amplified product was cleaned with AMPure beads (Beckman). The quality 
of the libraries was assessed with the Bioanalyser High Sensitivity DNA kit (Agilent). 
The library was quantified with using the Universal Library Quantification Kit for 

http://www.thermofisher.com/us/en/home/life-science/pcr/real-time-pcr/real-time-pcr-reagents/sybr-green-real-time-master-mixes/sybr-select-master-mix.html
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Illumina (Kapa Biosystems) on a StepOne Plus Real-Time PCR (Applied Biosystems). 
The libraries were sequenced at the Genomics Facility at MRC/LIMS of ICL using the 
Illumina HiSeq 2500 platform to obtain paired-end 100bp reads. 
Bioinformatic analysis 
 
ChIP-Seq  
ChIP-Seq normalisation and analysis 
Bowtie 2.3.4.1 (64 bit) was used to map ChIP-Seq reads to the mm10 mouse reference 
genome using default parameters and samtools 1.2 was used to convert SAM files, 
sorting and indexing BAM files. The Picard package was used to remove duplicated 
reads and the reads mapped on unknown and random chromosomes, in BAM files. 
MACS2 (v2.1) was used for peaks calling for each sample (Brd, Myc, Max, and 
H3K27ac) against their corresponding control input DNA. Significant peaks were 
obtained by applying an appropriate q-value cutoff (Brds, broad peaks calling at 
q<0.05; Myc, narrow peaks calling at q<0.1; Max, narrow peaks calling at q<0.01; 
H3K27ac, broad peaks calling at q<0.01). The significant ChIP-Seq peaks from 
MACS2 were annotated using the ChIPpeakAnno (Zhu, 2013; Zhu et al., 2010) and 
Homer package against the built-in mm10 mouse genome with the default settings. 
The R/Bioconductor package Diffbind (Ross-Innes et al., 2012) was used to obtain 
differential binding sites (DBS) across different conditions (R, RI, I, S) for samples (Brd 
and H3K27ac). For this purpose, three pseudo-replicates per ChIPseq sample were 
obtained by down-sampling to the minimum read depth; only peaks detected 
consistently in 2 out of 3 pseudo-replicates were used for DBS analysis. Furthermore, 
bedops tools were used on Brd2 and Brd4 DBS to generate Venn diagrams (Figure 
2E) for different comparisons. The ChIPpeakAnno package was also used to annotate 
all significant DBS (FDR<0.05) and identify overlaps between H3K27ac annotated 
regions with the Brds significant DBS (FDR<0.05).  
 
In addition, the Homer tools findMotifsGenome function was used to perform known 
and de-novo motifs analysis against the built-in mm10 mouse genome for the 
significant ChIP-Seq peaks (Figure 4E). 
 
Super-enhancer calling 
To identify the list of super-enhancers (SE) for each condition (S,R,RI,I), the 
significantly enriched H3K27ac peaks obtained from MACS2 were analysed further 
using the  Ranking Of Super Enhancers (ROSE) package (Whyte et al., 2013) (Loven 
et al., 2013) (Figure 3D). Correspondingly, the SE regions were annotated using the 
ChIPpeakAnno package 
 
Genomic regions visualization 
The IGV Genome Browser was used for genomic regions visualization. The DeepTools 
toolkit (Ramirez et al., 2016) was used to generate heatmaps and metagene plots of 
the Brd2,3,4 signal over the significant DBS(FDR<0.05: -10kb - +10kb region around 
the peak center) (Figure 2D), and the choromatin analysis and exploration (ChAsE) 
(Younesy et al., 2016) tool was applied to visualize Input, Myc and Max ChIPseq 
signals (±2 kb around the peak center) (Figure 4C).  
 
RNA-Seq  
The pair-end reads from the RNA-Seq experiments for all the 4 conditions (S/R/Ri/I) 
across the different time points (0, 4, 14 and 24h) were aligned to the GRCm38 (mm10) 
reference genome by STAR (version 2.5.3a) with 10,000 as the max number of 
different alignments per read to consider (--alignTranscriptsPerReadNmax 100000). 
To ensure the large reads files to be processed smoothly, the limits settings in STAR 
were increased (--limitGenomeGenerateRAM 20000000000). The “Rsubread” 
(version 1.24.2) R/Bioconductor package was used to obtain the raw read counts per 
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library using the GRCm38 reference genome.  The “DESeq2” (version 1.16.1)  (Love 
et al., 2014) R/Bioconductor package was used for normalising the counts and 
implementing the Differential Gene Expression (DGE) analysis across timepoints and 
treatments. The R package “pheatmap” was used to draw the initial clustered 
heatmaps for the selected differential expressed genes (|lfc|>0.8 and padj<0.05) of 
each contrast across conditions. The correlation was computed as the dissimilarity 
between the selected DEGs in order to capture their expression changes across all 
the time points (h0, h4, h14 and h24). Then an R package for performing Weighted 
Gene Co-expression Network Analysis (WGCNA) (Langfelder and Horvath, 2008) 
(Zhang and Horvath, 2005) was used to find clusters (modules) of highly correlated 
genes based on the dendrogram tree of the initial clustered heatmaps.  Comparative 
PCA and MA plots were generated using the PCA and maPlot functions in R. Gene 
set enrichment analysis (enriched GO, pathways, etc.) was performed for the clusters 
using enrichR (Chen et al., 2013; Kuleshov et al., 2016)  
 
ATAC-Seq 
ATAC-Seq reads were trimmed using TrimGallore (--paired -q 30 --nextera) and 
aligned against the mm10 mouse reference genome using Bowtie 2.3.4.1( -X 2000).  
SAM files conversion and BAM files sorting and indexing were performed using 
samtools. The picard and samtools packages were used to remove duplicate reads 
and reads mapped on chrUn, chr_random and chrM chromosomes, respectively. Peak 
calling was performed using MACS2 (-B –nomodel –call-summits -q 0.01) and 
deepTools functions were used to obtain pileup tracks. The ENCODE backlisted 
regions for mm10 were removed using bedtools 
(https://www.nature.com/articles/s41598-019-45839-z). The pyDNAse (Wellington) 
algorithm was used for TF footprinting; the genome-wide Tn5 cut site tracks (bigwig), 
the Tn5 signal per TF and the predicted TF biding sites were obtained using the default 
package parameters. TF motif calling on significant footprints (cutoff=20) was 
performed using Homer against HOCOMOCOv11 core database. To remove 
redundant and overlapping motifs, motif similarity was determined using TomTom from 
the MEME suite, and grouped into highly similar motif-classes (q<0.01). To predict the 
most likely candidate TF responsible for each footprint, all TF within the motif-class 
detected in the footprint region were ranked by an overall score of expression level 
and change in osteoclastogenesis (-log10(padj)*|log2FC|*log2(RPKM+1)), and highest 
scoring TF selected. Only TF genes were considered for GRN visualization, as plotted 
with the igraph package. 
 
Integrative Analysis 
  
Integrative analysis on ChIPseq and RNAseq data 
The Beta package (Binding and Expression Target Analysis) was applied to integrate 
the Myc ChIP-Seq data with Differential Expressed (DE) genes from RNA-Seq data 
across different time points (4, 14, and 24 h). Also, ChIP-Seq data (Brd, and H3K27ac) 
and their differential binding sites (Brd DBS and H3K27ac DBS) were annotated to the 
closest differentially expressed gene. 
  
Published datasets usage 
The previously published RNA-Seq data (SRP096890) and Irf8/Pu.1 ChIPseq were 
used for additional comparisons and validation (Langlais et al., 2016).  
 
Data availability 
 All data are accessible from Gene Expression Omnibus database (Acc. Number:   

GSE160840).  

  
 

https://www.nature.com/articles/s41598-019-45839-z
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Supplementary Figure Legends  
 
Figure S1, Related to Figure 1. Transcriptional and cellular responses of 
RAW264.7 and primary precursor cells to RANKL and I-BET151. (A) Flow 
cytometry strategy for identification and isolation of osteoclast progenitors.  (B) Top: 
TRAP staining of RAW264.7, bone-marrow OC precursors (BM OCP) and purified 
osteoclast progenitors upon treatment with RANKL (50ng/ml) and RANKL/I-BET151 
(500nM); n=2-6 independent experiments in triplicates.  Bottom: quantification of 
TRAP+ cells/well per condition. Results represent mean and SEM t test; ***, p=0.0001; 
****, p< 0.0001 (C) Correlation matrix comparing overlap between significantly up- and 
down- regulated genes identified in RAW264.7 cells 24h post RANKL-induction with 
those of primary OC at 48h (WT Myc R vs S, (Bae et al., 2017)). Color key represents 
corresponding odds ratios. (D) Time course qPCR profiling of Myc, Irf8, Dcstamp and 
Ocstamp expression in murine primary bone marrow-derived pre-osteoclast cells; (n=3 
mice). Results represent mean and SEM (One-way ANOVA: **, p<0.01; ***, p<0.001; 
****, p<0.0001). (E) RNA-seq analysis in RAW264.7 cells. Top: PCA analysis of 
differentially expressed genes (12 clusters derived from R vs S analysis) across time 
points (4,14,24hr) and comparisons (RvsS, IvsS, RvsI and RvsRI); bottom: MA plot of 
12 gene clusters across comparisons at 24h after treatments.  
 
Figure S2. Related to Figure 1. Dynamic transcriptional alterations during early 
osteoclast development in response to RANKL and I-BET151. (A) Time course 
profiling of Nfatc1 expression after RANKL-, I-BET151- or RANKL/I-BET151 treatment 
(left, qRT-PCR; right, RNAseq); values were normalized to time 0. (B) Enrichment 
analysis (left: ChEA, right: Mouse Gene Atlas) on 156 genes included in Cluster 7 
(displayed in Fig1B). (C) Heatmap illustration of pairwise treatment comparisons (R vs 
S, I vs. S, RI vs R) at 0,4,14 and 24h, as analysed by RNA-Seq in RAW 264.7 cells. 
(D) qPCR profiling of Myc, Irf8, Dcstamp and Ocstamp expression in murine primary 
bone marrow-derived pre-osteoclast cells 4h after no treatment (S), treatment with 
RANKL (R), RANKL/I-BET151 (RI) or I-BET151; (n=3 mice). Results represent mean 
and SEM (One-way ANOVA: *, p<0.05; **, p<0.01) 
 

Figure S3, related to Figure 2. Time course profiling of BET proteins expression 
after RANKL-, IBET151- or RANKL/I-BET151 treatments. (A) RNA-Seq and (B) 
qRT-PCR time course experiments. 

 
Figure S4, related to Figure 3. Functional annotation of transcriptional 
responses associated with Brd2,4 chromatin binding. (A) Line plots indicating 
expression patters of all predicted target genes with increased associated Brd2,4 
binding in RANKL treated cells. (B) IGV snapshot illustrating the Brd4 and H3K27ac 
enrichment, along with the identified super-enhancer, across S,R,I conditions on the 
Fos genetic locus. Overrepresentation analysis of differentially expressed genes at 4 
(C) and 14h (D) associated with super-enhancer (SE) and typical enhancer (E) 
regulation. EnrichR analysis using databases: ChEA, KEGG pathways, Gene 
ontology, WIKI pathways and NCI nature. 

 
Figure S5, related to Figure 4. The gene regulatory network of the early 
developmental events during osteoclast development. (A) Genome-wide Tn5 
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footprinting profiles for each transcription factor. (B) Time course profiling of Myc 
expression at 0, 4, 14 and 24h after RANKL, I-BET151 or RANKL/I-BET151 treatment 
using qRT-PCR and RNA-seq (C). Individual regulatory modules for indicated TF. 
Arrow width indicates footprint score for originating TF at target gene 
promoter/enhancer, colour indicates direction of expression change for originating TF. 
Node size indicates strength of expression change (-log10(padj)*|log2FC|) and colour 
indicates direction of change at 14h post-RANKL treatment, (Red=upregulated and 
blue=downregulated).  

 

Figure S6, related to Figure 4. Phenotypic and epigenomic characterization of 
Myc at the early stages of osteoclast development. Myc mRNA, TRAP OC assay 
and TRAP+ OC numbers/well after treatment shRNA-mediated Myc knock-down 
(shMyc) in RAW 274.7 cells (A) or (B) their treatment with the Myc-Max inhibitor 
10058-F4 (F4 50mM). Myc expression is shown relative to Hprt and scrbl or un-treated 
cells, respectively; n=3-5 independent experiments with triplicate technical replicates. 
(C) The epigenomic landscape of the 560 Myc-bound regions in developing 
osteoclasts. Violin plots displaying the relative enrichment (log2 scale) of H3K27ac and 
Brd2-4 on the Myc-bound regions across S, R, RI and I conditions. (D) EnrichR 
overrepresentation analysis of differentially expressed genes (14h post RANKL-
induction) with associated Myc and Brd2,4 binding sites. EnrichR analysis (ChEA, 
KEGG pathways, Gene ontology, WIKI pathways and NCI nature). *, p<0.05; 
***, p<0.001; ****, p<0.0001.  
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