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Figure S2:  evolutionary genealogy of genes - non-supervised orthologous groups

(eggNOG)  annotation  structure. The eggNOG  annotation  [1]  is  divided  into  three

categories  and  21  pathways  into  which  the  clusters  of  orthologous  groups  of  genes

(COGs) are grouped.



Figure  S3:  Metagenome  sequence  coverage  of  functional  categories. A)  protist

sequences. B) bacterial sequences. Pathways with less than 1% coverage were removed

for  clarity.  Background  highlighting  represents  grouping  of  pathways  into  categories

according to the eggNOG hierarchy (Figure S2).  More than half  (64.3%) of the protist

metagenome  were  assigned  to  “cellular  process  and  signaling”.  In  the  bacterial

metagenome sequences with annotations related to metabolic functions comprised the

major group (49.7%). Error bars represent standard deviation across all samples.

Functional potential of protist and bacterial metagenomes

The  largest  group  of  functions  encoded  by  the  protist  metagenome  were  related  to

signaling (Figure S3A). In particular, ABC-transporters were abundant. ABC-transporters

can transport a large variety of substrates in and out of the cell [2]. In parasitic protists,



ABC transporters are essential for drug resistance and nutrient salvation [3]. They also

play an important role in several insect-microbe-symbioses, in particular, when metabolic

pathways are split  between partners and intermediate metabolites have to be shuttled

between  organisms  [4].   Therefore,  we  speculate  here  that  shuttling  of  molecules  is

important to protists in the termite gut because they occupy a mediator position between

their  intracellular  endosymbiotic  bacteria  and  the  termite  host.  Metabolites  and  other

molecules  cannot  be  directly  exchanged  between  termites  and  intracellular  bacteria,

instead transport through the protist is required. This in return requires transmembrane

transporters and might explain their abundance.

In  contrast  to  the  prevalence  of  transporters  in  protists,  the  largest  fraction  of

bacterial sequences had metabolic functions (Figure S3B). The most common metabolic

category  was 'amino acid  metabolism'  including  nitrogen metabolism.  The microbiome

plays a  central  role  in  nitrogen uptake and recycling  because the  host's  primary food

source,  wood,  is  poor  in  nitrogen  [5–7].  The  second  most  common  pathway  was

carbohydrate metabolism. In this pathway, we identified a total of 99 glycoside hydrolases

from 31 different families (Table S12). These are the primary enzymes responsible for

lignocellulose degradation.  Thus,  our  results  support  a  growing body of  evidence that

bacteria play a fundamental role in lignocellulose degradation that was formerly mainly

attributed to protists in lower termites [8–11].



Figure S4: Cluster dendrograms of the functional profiles of the protist community.

Community  distances are based on Bray-Curtis Dissimilarities.  A) all  functions (25,795

sequences). B) category “cellular process and signaling” (17,098 sequences). C) category

“information storage and processing” (4,527 sequences). D) category “metabolism” (4,498

sequences).  Cd  (red)  C.  domesticus  colonies;  Cs  (orange)  C.  secundus  colonies;  Ps

(green)  P.  simplex  colonies;  Rf  (blue)  R.  flavipes  colonies;  Rg  (lightblue)  R.  grassei

colonies. All  functional  profiles show a strong phylogenetic imprint.  However,  functions

involved in “information storage and processing” were more similar between hosts of the

same ecological life type. 



Figure  S6:  Venn  diagram  of  COGs  in  the  pathways  of  the  eggNOG  category

“information  storage  and  processing”  in  the  protist  metagenoms.  Shown  are

numbers  and  percentages  of  over-represented  and shared  COGs found  in  the  protist

metagenomes of wood-dwelling (green) and foraging (blue) termite species. 



Figure  S7:  Cluster  dendrograms  of  the  functional  profiles  of  the  bacterial

community. Community  distances  are  based  on  Bray-Curtis  Dissimilarities.  A)  all

functions (21,215,480 sequences). B) category “cellular process and signaling” (4,742,380

sequences). C) category “information storage and processing” (5,954,188 sequences). D)

category  “metabolism”  (10,586,058  sequences).  Cd  (red)  C.  domesticus  colonies;  Cs

(orange)  C.  secundus  colonies;  Ps  (green)  P.  simplex  colonies;  Rf  (blue)  R.  flavipes

colonies; Rg (lightblue)  R. grassei  colonies. Similar to the protist set, bacterial functional

metagenome  showed  a  strong  phylogenetic  imprint.  However,  the  metabolic

metagenomes clustered according to host ecology (life type). 



Figure S8: Frequency of bacterial genera. Cd = colony replicates of C. domesticus; Cs

= colony replicates of  C. secundus;  Ps = colony replicates of  P. simplex;  Rf = colony

replicates of  R. flavipes;  Rg = colony replicates of  R. grassei.  Shown are only the 20

bacterial genera with the highest sequence coverage. Treponema was the most abundant

genus (14.2% (Rg2) – 80.9% (Ps6)), followed by Desulfovibrio (0.1% (Ps2) - 50.3% (Rf3)),

Enterococcus  (0% (Cs7) – 29.9% (Cs%)) and  Bacteroides (0.8% (Rf1) – 34.4% (Cs8)).

Like already observed in a previous study with the same samples [12],  Rg2 and Rg4

showed an unusual community structure. 



Figure  S11:  Venn  diagram  of  COGs  in  the  pathways  of  the  eggNOG  category

“metabolism” in the bacterial metagenoms.  Shown are numbers and percentages of

over-represented and shared COGs found in the bacterial metagenomes of wood-dwelling

(green) and foraging (blue) termite species. 



Supplement section S13. Supplementary Material and Methods

DNA extraction 

Entire guts of three workers per colony were extracted and immediately transferred to 100

µl of CTAB solution (0.75 M NaCl, 0.05 M Tris, 0.01 M EDTA, 2% CTAB). Guts were

homogenized (zirconia and glass beats, 3 min at 25*1/s), using a Tissue Lyser II (Qiagen).

Additional 400 µl of CTAB solution were added and samples were incubated for 1h at

65°C  and  800  rpm  on  a  Thermomixer  Comfort  (Eppendorf).  After  addition  of  2  µl

Proteinase K (Thermoscientific, concentration: ~20 mg/mL) samples were incubated for 2h

at 55°C and 800 rpm. The proteinase K reaction was terminated by heating to 98°C for 15

min. DNA was extracted with 500 µl of chloroform:isoamylic alcohol (24:1) followed by

centrifugation for 15 min at 10000 rpm. DNA, was precipitated with 325 µl  of  ice cold

isopropanol and overnight incubation at -20°C. Samples were washed with 300 µl of 100%

ethanol and twice with 300 µl 70% ethanol, centrifuging for 15 min at 4°C at 14.000 rpm

between each washing step. The DNA pellet was air dried and resuspended in 50µl of

water.



Figure S14: Analysis workflow. Of note, sequences were not assembled, since resulting

contigs were not significantly longer than individual reads, likely due to the complexity of

the microbiomes (data not shown). As a first filtering step, raw sequences were mapped

against a host reference, using BBMap (version 37.02, [13]), with standard settings.  C.



secundus and  C.  domesticus samples  were  mapped  against  the  C.  secundus [14]

genome. P. simplex samples were mapped against the P. simplex transcriptome [15], R.

flavipes and R. grassei samples against the R. santonensis transcriptome (provided by the

1KITE consortium (www.1kite.org, BioSample SAMN04005235 (for details on sequencing

and removal of non-termite contaminants and cross-contaminants from the 1kite data, see

[16]).  Only sequences that  did  not  match the host  reference (“unmapped sequences”)

were  used  for  further  analysis.  Taxonomic  and  functional  annotation  of  unmapped

sequences was performed using Diamond (version 0.8.37.99, [17]) and Megan (MEGAN

Community Edition (version 6.7.18, [18]). As a second filtering step, only sequences with

taxonomic classification “bacteria” or “parabasalia” were exported into two separate files

for each sample. Therefore, contaminants such as left over host sequences, archaea, or

virus sequences were removed from the datasets. In order to compare the bacterial and

protist  metagenomes  of  all  samples,  they  were  normalized  to  1,386,882  and  2,781

sequences  per  sample,  respectively.  See  also  Supplementary  section  15  below  for

detailed analysis steps.

Supplement section S15. Metagenomic Shotgun Data Analysis Workflow

All  computing  steps  in  this  script  were  performed on  a  High  Performance  Computing

Cluster (bwForCluster BinAC, Eberhard Karls University of Tuebingen, High Performance

and Cloud Computing Group at the Zentrum fuer Datenverarbeitung of the University of

Tuebingen, the state of Baden-Wuerttemberg through bwHPC and the German Research

Foundation (DFG) through grant no INST 37/935-1 FUGG).

Please note that the sequences were not assembled (see Material  and Methods main

text), but directly annotated using the following workflow. 



1.) Mapping raw input sequences against reference genomes with BBMap (version 37.02,

[13]).

Sequences  of  Cryptotermes  secundus and  Cryptotermes  domesticus were  mapped

against the C. secundus genome [14], sequences of Prorhinotermes simplex against the

P.  simplex transcriptome  ([15],  NCBI  Bioproject  ID:  219597,  Assembly  version

GASE02000000)  and  sequences  of  Reticulitermes  flavipes and  Reticulitermes  grassei

against the  R. santonensis (syn.  R. flavipes [19]) transcriptome provided by the 1KITE

consortium (www.1kite.org,  BioSample SAMN04005235 (for  details  on sequencing and

removal  of  non-termite  contaminants  and cross-contaminants  from the  1kite  data,  see

[16]). 

>module load devel/java_jdk/1.8.0u112 #load required Java 
environment
>cd path/to/directory #change to working directory
>/path/to/software/bbmap.sh 
ref=reference_genome_or_transcriptome.fa 
in1=Sample1_Read1.fastq.gz in2=Sample1_Read2.fastq.gz 
outm1=Sample1_Read1_mapped.fastq.gz 
outm2=Sample1_Read2_mapped.fastq.gz 
outu1=Sample_Read1_unmapped.fastq.gz 
outu2=Sample1_Read2_unmapped.fastq.gz #run BBMap with standard 
settings, do for all samples

This  will  produce  four  output  files:  Sample_Read1_mapped.fastq.gz,

Sample_Read1_unmapped.fastq.gz,Sample_Read2_mapped.fastq.gz,

Sample_Read2_unmapped.fastq.gz. Only “unmapped” sequences, that did not match the

host reference, were used for further analysis.

2.) SYNTAX for Diamond and Megan6

This script is following the Syntax tutorial as provided by the BinAC HPC. For Diamond

(version 0.8.37.99, [17]), the non-redundant NCBI database was used as reference, for



functional classification with Megan6 (MEGAN Community Edition (version 6.7.18, [18]),

the  mapping  files  prot_acc2tax-May2017.abin.gz,  acc2eggnog-Oct2016X.abin.gz,

acc2interpro-Nov2016XX.abin and acc2seed-May2015XX.abin (download details  below)

were used.

>wget ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz #download NCBI 
nr.gz database
> diamond makedb --in nr.gz --db nr #build Diamond index for the 
nr database, will generate a new file called nr.dmnd

The  mapping  files  for  Megan6  were  downloaded  from  the  Megan6  download  page

(http://ab.inf.uni-tuebingen.de/data/software/megan6/download/welcome.html)

>mkdir path/to/wanted/directory/00fastq #put unmapped BBMap output
files in here
>mkdir path/to/wanted/directory/10daa #will contain daa files 
generated by Diamond
>mkdir path/to/wanted/directory/20rma #will contain rma files 
generated by Megan6

For each file fastq.gz in the 00fastq directory, run Diamond as follows:

>module load bio/diamond/0.8.37 #load diamond environment 
>module load bio/megan/6.7.18 #load Megan6 environment
>cd path/to/working/directory #change to working directory
>diamond blastx --query 00fastq/Sample1_Read1_unmapped.fastq.gz 
--db nr.dmnd --daa 10daa/Sample1_Read1_unmapped.daa #run Diamond, 
will generate a daa Diamond output file in the /10daa directory

For each daa file in your 10daa directory, run Megan’s daa2rma as follows:

>module load devel/java_jdk/1.8.0u112 #load required Java 
environment
>module load bio/diamond/0.8.37 #load Diamond environment
>module load bio/megan/6.7.18 #load Megan6 environment
>cd path/to/working/directory # change to working directory
>daa2rma -p -ps 1 -i 10daa/Sample1_Read1_unmapped.daa 
10daa/Sample1_Read2_unmapped.daa -o 20rma/Sample1_p_unmapped.rma 
-a2t prot_acc2tax-May2017.abin -a2eggnog acc2eggnog-Oct2016X.abin 
-a2seed acc2seed-May2015XX.abin -a2interpro2go acc2interpro-
Nov2016XX.abin -fun EGGNOG SEED INTERPRO2GO #the -p function is 
used for a paired read input and will generate a merged rma6 
output file in the /20rma directory. This file can be used as 
input for the Megan6 graphical user interface.

Further analysis using the Megan6 graphical user interface was performed locally. Each

rma6 file of each sample was imported in Megan6 individually. Then bacterial and protist

reads were extracted into separate files using the “Extract reads..” function in Megan6 (see



also Material and Method section). To compare the bacterial and protist datasets of all

samples, they were imported into Megan6 using the “Compare...”  function. During this

step, the bacterial  and protist datasets were normalized to 1,386,882 and 2,781 reads

respectively.

3.) PvClust Cluster Dendrograms

Cluster dendrograms were generated in Rstudio (version 3.3.1, [20]) using the PvClust

package  and  an  external  script

(https://github.com/hallamlab/mp_tutorial/blob/master/taxonomic_analysis/code/mp_tutoria

l_taxonomic_analysis.R) to add the Bray-Curtis dissimilarity index. Functional abundance

tables were extracted from Megan6 using the “Export...” function.

In Rstudio, execute:
>library(pvclust)
>source('path/to/working/directory/pvclust_bcdist.R')  #source  to
downloaded R script
>setwd("/path/to/working/directory") #set working directory
>read.csv("FunctionalAbundance.csv",header=TRUE,sep=",",row.names
= 1)→dat #read in input
>clust_dat  <-  pvclust(dat,  method.hclust="average",
method.dist="bray–curtis", n=1000) #use pvclust
>plot(clust_dat,cex=0.8) #plot
>pdf(“clust_dat.pdf") #export as pdf
>plot(clust_dat,cex=0.8) 
>dev.off()

4.) RDA and model selection

Functional abundance tables were exported from Megan6 using “Export...” > “Text (CSV)

format...” > “eggnogPath_to_count”. Bacterial functional abundances were rarefied to at

least 1,000 sequences per COG, protist functional abundances to at least 10 sequences

per  COG.  Functional  abundances  were  subsequently  transformed  using  Hellinger

transformation. RDA and ordistep/ordiR2step for model selection were performed with the

vegan package in R [21] and compared with ANOVA using the following commands: 

#set Nullmodel



>rda0 <- rda(functional_abundance_table ~ 1, data = metadata)
#set model with 1 explanatory variable
>rda2  <-  rda(functional_abundance_table  ~  host_family,data  =
metadata)
>rda3  <-  rda(functional_abundance_table  ~  host_lifetype  ,data  =
metadata)
#set model with both explanatory variables for modelselection
>rda1  <-  rda(functional_abundance_table  ~  host_family  +
host_lifetype ,data = metadata)
#model selection via ordistep
>model_selection <- ordistep(rda0, scope = formula(rda1))
#model selection via ordiR2step
model_selection_inf  <-  ordiR2step(rda0_inf,  scope  =
formula(rda1_inf), trace = TRUE, permutations = how(nperm = 499),
Pin = 0.05, R2scope = FALSE)
#comparison against Nullmodel
>anova.cca(rda0,rda2)
>anova.cca(rda0,rda3)

Removing outlier samples from the datasets (outlier samples were Rg2, Cs2 and Cs8 in

the category “information storage and processing” of the protist functional set and Rg2,

Rg4  in  the  category  “metabolism”  in  the  bacterial  set,  and  Rg2,  Rg4  and  Cs7  in  all

bacterial functions) did not change significant results.

5.) LEfSe

Functional abundance tables were exported from Megan6 using the “Export...”  > “Text

(CSV) format...” > “eggnogPath_to_count”. To use this file as input for LEfse [22], a row

with the “class” “wooddweller” or “forager” was added above the sample names.

>python  format_input.py  FunctionalAbundance.csv
FunctionalAbundance.lefse.in  -c  1  -s  -1  -u  2  -o  1000000  #will
create the .in file
>python  run_lefse.py  FunctionalAbundance.lefse.in
FunctionalAbundance.lefse.res #will create the .res file

6.) Circular dendrogram of LEfse results using GraPhlAn [23]

Only significant overrespresented fuctions (LDA > 2.0, q-value < 0.05) were used as input.

>python  export2graphlan.py  -i  FunctionalAbundance.csv  -o
FunctionalAbundance.lefse.res  -t  tree.txt  -a  annot-txt  --title



"Functional  Abundance"  --external_annotations  4  --fname_row  0
--skip_rows 1
>python graphlan_annotate.py --annot test_annot.txt test_tree.txt
test_outtree.txt
>python  graphlan.py  --dpi  150  test_outtree.txt  test_outimg.png
--external_legends

7.)  CAZy pathway analysis.

Full  CAZy  reference  database  was  downloaded  from

http://csbl.bmb.uga.edu/dbCAN/index.php  (newest  version  CAZyDB.07202017.fa).

Bacterial reads were blasted against the reference using Diamond:

>diamond makedb --in CAZyDB.07202017.fa -d cazy_full
>diamond  blastx  -d  cazy_full  -q  bacteria_sampleXY.fasta  -o
matches.m8 -k 1 -e 0.00001 --max-hsps 1

Read matches for GHs of interest* were counted by piping the wc -l function after a grep

search command.

*Read matches for GHs of interest: cellulose:
endo-ß-1,4-glucanase (cellulase): GH5,8
cellobiohydrolase: GH6,7,9,48,74
ß-glucosidase: GH1,3,4,5,9,13,17,30,31,63,65,97,116,122,133
hemicellulose (see [24]):
xylan:
endo-ß-1,4-xylanase: GH5,8,10,11,43
exo-ß-xylosidase: GH3,39,43,52,54
mannan:
endo-ß-1,4-mannanase: GH5,26
exo-ß-1,4-mannosidase: GH1,2,5
arabinofuranosyl containing hemicellulose:
alpha-L-arabinofuranosidase: GH3,43,51,54,62
endo-alpha-1,5-arabinanase: GH43
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