Supporting Information

Instantaneous adsorption of synthetic dyes from the aqueous environment using kaolinite

nanotubes; equilibrium and thermodynamic studies

Mostafa R. Abukhadra*+, Merna Mostafa +, Ahmed M. El-Sherbeeny ***, Mohammed A. El-Meligy*, Ahmed Nadeem&

[†]Geology Department, Faculty of Science, Beni-Suef University, Beni –Suef city, Egypt

[‡]Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.

[§] Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

*Advanced Manufacturing Institute, King Saud University, Riyadh-11421, Saudi Arabia

* Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

Content

1.	Figure S1. TEM image of raw kaolinite mineral	S2	
2.	Figure S2. The nitrogen adsorption/desorption isotherm curves of KNTs	S2	
3.	Figure S3. the uptake capacity of KNTs at different concentrations of SF, MG, CR, and MO dyes		
		S3	
4.	Figure S4. Fitting of the dyes adsorption results with Elovich kinetic model	S3	
5.	Figure S5. fitting of the dyes adsorption results with Van't Hoff Hof equation	S4	
6.	Figure S6. the removal percentages of SF, MG, CR, and MO dyes at the recyclability tests	of	
	KNTs	S4	
7.	Figure S7. the FT-IR spectra of KNTs after the adsorption of SF (A), MG (B), CR (C), and MO dy	/es	
	(D)	S5	
8.	Table S1. the representative equations of the studied kinetic and isotherm model and the	ieir	
	parameters	36	

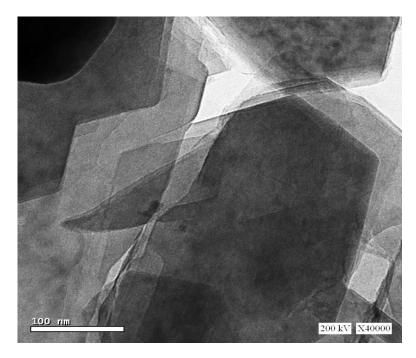


Figure S1. TEM image of raw kaolinite mineral

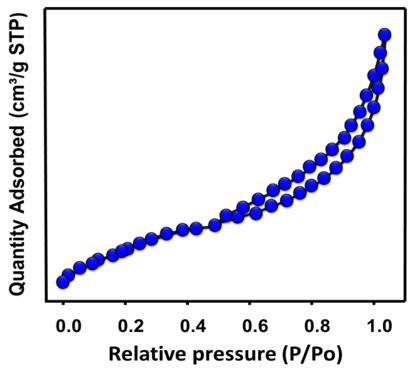


Figure S2. the nitrogen adsorption/desorption isotherm curves of KNTs

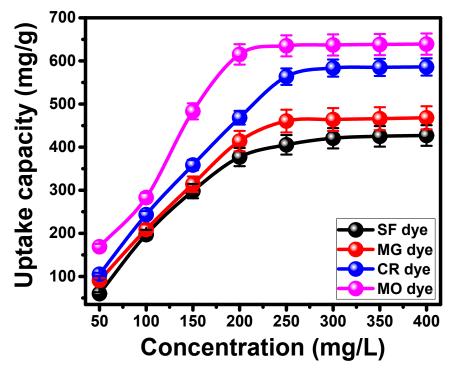


Figure S3. the uptake capacity of KNTs at different concentrations of SF, MG, CR, and MO dyes

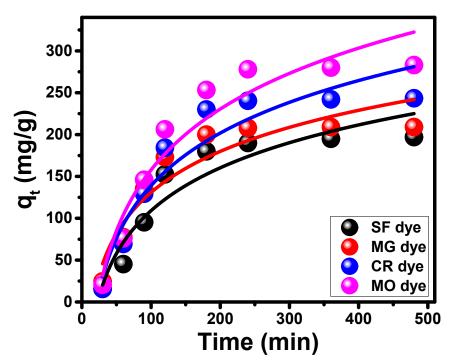


Figure S4. Fitting of the dyes adsorption results with Elovich kinetic model

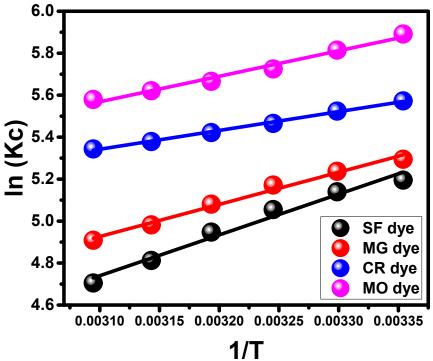


Figure S5. fitting of the dyes adsorption results with Van't Hoff Hof equation

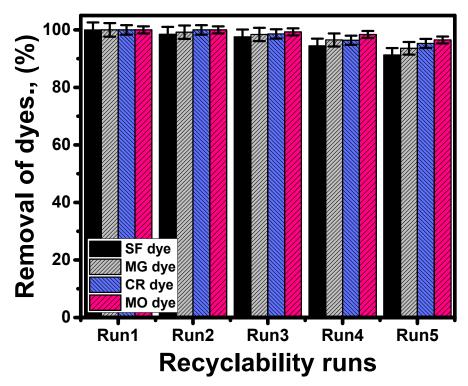


Figure S6. the removal percentages of SF, MG, CR, and MO dyes at the recyclability tests of KNTs

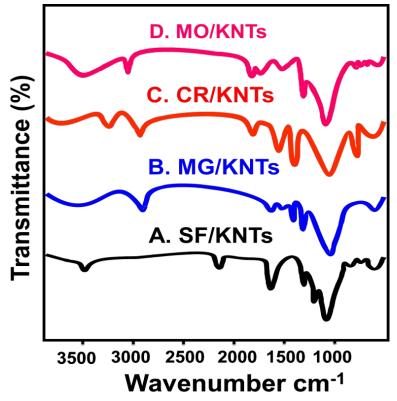


Figure S7. the FT-IR spectra of KNTs after the adsorption of SF (A), MG (B), CR (C), and MO dyes (D)

Kinetic models				
Model	Linear equation	Parameters		
Pseudo-first-order	$\ln (q_e - q_t) = \ln q_e - k_1 t \text{ (linear)}$ $q_t = q_e (1 - e^{-k_1 t}) \text{ (Nonlinear)}$	q_t (mg/g) is the $\;$ adsorbed ions at time (t), and K_1 is the rate constant of the first-order adsorption (min^1)		
Pseudo-second-order	$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e} (Linear)$ $q_t = \frac{q_e^2 k_2 t}{1 + q_e k_2 t} (Nonlinear)$	qe is the quantity of adsorbed ions after equilibration (mg/g), and K_2 is Lagergren model rate constant (g/mg min).		
Elovich model	$q_t = \frac{1}{\beta} \ln (\alpha \beta) + \frac{1}{\beta} \ln (t) (Linear)$	α is the initial adsorption rate (mg/min) and $~\beta$ is the surface saturation (g/mg)		
Intra-particle diffusion	$q_t = \frac{1}{\beta} \operatorname{Ln} (1 + \alpha \beta_t) \text{(Nonlinear)}$ $q_t = K_P t^{1/2} + C \text{(Linear)}$ $q_t = k t^{0.5} + C \text{(Nonlinear)}$	$k_{\rm p}~(mg~g^{\text{-1}}$ min $^{\text{-0.5}})$ is the intraparticle diffusion rate constant and C is the intercept of the line		
	Isotherm models			
Model	Equation	Parameters		
Langmuir	$\frac{C_{e}}{q_{e}} = \frac{1}{bq_{max}} + \frac{C_{e}}{q_{max}} (Linear)$ $q_{e} = \frac{q_{max} bC_{e}}{(1 + bC_{e})} (Nonlinar)$	C_e is the rest ions concentrations (mg/L), q_{max} is the theoritical maximum adsorption capacity (mg/g), and <i>b</i> is the Langmuir constant (L/mg)		
Freundlich	Log $qe = (1/n) \log Ce + \log K_f$ (Linear) $q_e = K_f C_e^{1/n}$ (Nonlinear)	K_{F} is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities		
Dubinin–Radushkevich	$\ln (qe) = \ln (q_m) - \beta \varepsilon^2 (Linear)$ $q_e = q_m e^{-\beta \varepsilon^2} (Nonlinear)$	β (mol²/KJ²) is the D-R constant, $\epsilon~(KJ^2/mol^2)$ is the polanyil potential, and q_m is the adsorption capacity		

Table S1. the representative equations of the studied kinetic and isotherm model and their parameters