
Supplementary figure 1. Variants associations with overall breast cancer risk identified using standard logistic regression (n = 133,384 cases, n = 
113,789 controls). a) Manhattan plot showing -log10P values for variant associations with breast cancer risk. b) Manhattan plot after excluding 
previous known regions (Online Methods) c) Quantile-Quantile (Q-Q) plot of observed P-values versus expected P-values for all variants. d) QQ 
plot1 after excluding previous known regions. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was used to account 
for multiple testing (cut off P-value = 5x 10-8).  
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Supplementary figure 2. Variant associations with breast cancer risk using a mixed-effect two-stage model (Oline Methods) accounting for tumor 
heterogeneity according to the ER, PR, HER2, and grade (n = 106,278 invasive cases, n = 91,477 controls). a) Manhattan plot showing -log10P values 
for variant associations with breast cancer risk. b) Manhattan plot showing -log10P values for variant associations with breast cancer risk after 
excluding previously known regions (Online Methods) and 22 loci identified through standard logistic regression analysis (Supplementary Figure 2). 
c) QQ plot1 of observed P-values versus expected P-values for all variants. d) QQ plot of observed P-values versus expected P-values for remaining 
variants after excluding previously known regions and 22 loci identified through standard logistic regression analysis. P-values are raw p-values 
from two-tailed z-test statistics. Bonferroni correction was used to account for multiple testing (cut off P-value = 5 x 10-8). 
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Supplementary figure 3. Variant associations with breast cancer risk using a fixed-effect two-stage model (Oline Methods) accounting for tumor 
heterogeneity according to the ER, PR, HER2, and grade (n = 106,278 invasive cases, n = 91,477 controls). a) Manhattan plot showing -log10P values 
for variant associations with breast cancer risk. b) Manhattan plot showing -log10P values for variant associations with breast cancer risk after 
excluding previously known regions (Online Methods) and 22 loci identified through standard logistic regression analysis (Supplementary Figure 2). 
c) QQ plot1 of observed P-values versus expected P-values for all variants. d) QQ plot of observed P-values versus expected P-values for remaining 
variants after excluding previously known regions and 22 loci identified through standard analysis. P-values are raw p-values from two-tailed z-test 
statistics. Bonferroni correction was used to account for multiple testing (cut off P-value = 5x 10-8). 
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Supplementary figure 4. Variant association with triple-negative  breast cancer risk using a fixed-effect meta-analysis of results between BCAC TN 
and CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 carriers: n = 9,414 cases, n = 9,494 
controls). a) Manhattan plot showing -log10P values for variant associations with triple-negative  breast cancer risk. b) Manhattan plot showing -
log10P values for variant associations with triple-negative  breast cancer risk after excluding previously known regions (Online Methods). c) QQ plot1 
of observed P-values versus expected P-values for all variants d) QQ plot of observed P-values versus expected P-values for remaining variants after 
excluding previously known regions. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was used to account for 
multiple testing (cut off P-value = 5x 10-8). 
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Supplementary figure 5. Regional plots of the 32 identified breast cancer variants. The first 22 variants were 
identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the following eight 
variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, n = 91,477 
controls), the last two variants were identified through meta-analysis of BCAC triple-negative  and CIMBA 
BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 carriers: n = 
9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified susceptibility 
variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was used to account 
for multiple testing (cut off P-value = 5x 10-8). 
 

 

 

 
 

 
 
  



Supplementary figure 5 continued. Regional plots of the 32 identified breast cancer variants. The first 22 
variants were identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the 
following eight variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, 
n = 91,477 controls), the last two variants were identified through meta-analysis of BCAC triple-negative and 
CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 
carriers: n = 9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified 
susceptibility variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was 
used to account for multiple testing (cut off P-value = 5x 10-8). 

 
 

 

 

 
 
  



Supplementary figure 5 continued. Regional plots of the 32 identified breast cancer variants. The first 22 
variants were identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the 
following eight variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, 
n = 91,477 controls), the last two variants were identified through meta-analysis of BCAC triple-negative and 
CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 
carriers: n = 9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified 
susceptibility variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was 
used to account for multiple testing (cut off P-value = 5x 10-8). 
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Supplementary figure 5 continued. Regional plots of the 32 identified breast cancer variants. The first 22 
variants were identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the 
following eight variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, 
n = 91,477 controls), the last two variants were identified through meta-analysis of BCAC triple-negative and 
CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 
carriers: n = 9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified 
susceptibility variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was 
used to account for multiple testing (cut off P-value = 5x 10-8). 

  

 
 

 
  



Supplementary figure 5 continued. Regional plots of the 32 identified breast cancer variants. The first 22 
variants were identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the 
following eight variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, 
n = 91,477 controls), the last two variants were identified through meta-analysis of BCAC triple-negative and 
CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 
carriers: n = 9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified 
susceptibility variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was 
used to account for multiple testing (cut off P-value = 5x 10-8). 
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Supplementary figure 5 continued. Regional plots of the 32 identified breast cancer variants. The first 22 
variants were identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the 
following eight variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, 
n = 91,477 controls), the last two variants were identified through meta-analysis of BCAC triple-negative and 
CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 
carriers: n = 9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified 
susceptibility variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was 
used to account for multiple testing (cut off P-value = 5x 10-8). 
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Supplementary figure 5 continued. Regional plots of the 32 identified breast cancer variants. The first 22 
variants were identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the 
following eight variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, 
n = 91,477 controls), the last two variants were identified through meta-analysis of BCAC triple-negative and 
CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 
carriers: n = 9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified 
susceptibility variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was 
used to account for multiple testing (cut off P-value = 5x 10-8). 

 

 

 

 

 

  



Supplementary figure 5 continued. Regional plots of the 32 identified breast cancer variants. The first 22 
variants were identified through standard logistic regression (n = 133,384 cases, n = 113,789 controls), the 
following eight variants were identified through two-stage polytomous regression (n = 106,278 invasive cases, 
n = 91,477 controls), the last two variants were identified through meta-analysis of BCAC triple-negative and 
CIMBA BRCA1 carriers (BCAC: n = 8,602 effective triple-negative cases, n = 91,477 controls; CIMBA BRCA1 
carriers: n = 9,414 cases, n = 9,494 controls). Plotted area is showing ±500 KB region around the identified 
susceptibility variant. P-values are raw p-values from two-tailed z-test statistics. Bonferroni correction was 
used to account for multiple testing (cut off P-value = 5x 10-8). 

  

 

 

 
  



Supplementary figure 6. Country Specific sensitivity analysis of eight novel genome-wide significant loci identified using the two-stage regression 
models (n = 106,278 invasive cases, n = 91,477 controls), and chr22:40042814 which was dropped since the signal was observed only in studies 
from the USA.  

 



 



Supplementary Figure 7. Associations1 between novel susceptibility variants identified using standard logistic 
regression with intrinsic-like breast cancer subtypes2 (right panel, n = 106,278 invasive cases, n = 91,477 
controls) and the second-stage heterogeneity p-values from the two-stage polytomous logistic regression 
model (left panel, n = 106,278 invasive cases, n = 91,477 controls). 

1 Per-minor allele odds ratio (95% confidence limits) 
2. Luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); luminal B/HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); luminal B-like (ER+ and/or PR+, HER2+); 
HER2-enriched-like (ER- and PR-, HER2+); triple-negative (ER-, PR-, HER2-) 
3. Based on a mixed-effect two-stage polytomous model testing for heterogeneity between susceptibility variants and ER, PR, HER2, and grade, where ER was 
entered into the model as a fixed-effect term and PR, HER2, and grade were entered into the model as random-effect terms. 
4. Results from second stage case-case parameters from a fixed effect two-stage polytomous model testing for heterogeneity between susceptibility variants 
and ER, PR, HER2, and grade, where ER, PR, HER2, and grade are mutually adjusted for each other 
5. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) 
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Supplementary Figure 7 continued. Associations1 between novel susceptibility variants identified using 
standard logistic regression with intrinsic-like breast cancer subtypes2 (right panel, n = 106,278 invasive cases, 
n = 91,477 controls) and the second-stage heterogeneity p-values from the two-stage polytomous logistic 
regression model (left panel, n = 106,278 invasive cases, n = 91,477 controls). 

         Luminal A-like           Luminal B/HER2-negative-like          Luminal B-like           HER2-enriched-like           Triple-negative          BRCA1 mutation carriers 
1 Per-minor allele odds ratio (95% confidence limits) 
2. Luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); luminal B/HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); luminal B-like (ER+ and/or PR+, HER2+); 
HER2-enriched-like (ER- and PR-, HER2+); triple-negative (ER-, PR-, HER2-) 
3. Based on a mixed-effect two-stage polytomous model testing for heterogeneity between susceptibility variants and ER, PR, HER2, and grade, where ER was 
entered into the model as a fixed-effect term and PR, HER2, and grade were entered into the model as random-effect terms. 
4. Results from second stage case-case parameters from a fixed effect two-stage polytomous model testing for heterogeneity between susceptibility variants and 
ER, PR, HER2, and grade, where ER, PR, HER2, and grade are mutually adjusted for each other 
5. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) 
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Supplementary Figure 8 Risk1 of breast cancer subtypes defined by intrinsic-like subtypes2 (n = 106,278 
invasive cases, n = 91,477 controls) among loci identified using the two-stage polytomous logistic regression 
model and the CIMBA / BCAC triple-negative meta-analysis.  

1 Per-minor allele odds ratio (95% confidence limits) 
2. Luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); luminal B/HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); luminal B-like (ER+ and/or PR+, HER2+); 
HER2-enriched-like (ER- and PR-, HER2+); triple-negative (ER-, PR-, HER2-) 
3. Based on a mixed-effect two-stage polytomous model testing for heterogeneity between susceptibility variants and ER, PR, HER2, and grade, where ER was 
entered into the model as a fixed-effect term and PR, HER2, and grade were entered into the model as random-effect terms. 
4. Results from second stage case-case parameters from a fixed effect two-stage polytomous model testing for heterogeneity between susceptibility variants 
and ER, PR, HER2, and grade, where ER, PR, HER2, and grade are mutually adjusted for each other 
5. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) 
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Supplementary figure 9. a) Enrichment analysis1 results for 24 non-cell-type-specific, publicly available annotations for luminal A-like subtypes  and 
triple-negative  subtypes (n = 45,253 effective luminal A-like cases, n = 8,602 effective triple-negative cases, n = 91,477 controls). b) Enrichment 
analysis1 results for 24 main annotations with ±500 bp extension for luminal A-like subtypes and triple-negative  subtypes. No significant 
differences were found between luminal A-like and triple-negative  after adjusting for multiple testing. 
 
a)           b) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Error bars represent Jackknife standard errors around the estimates of enrichment. 
 



 
Supplementary figure 10. Enrichment analysis results for 220 cell-type-specific annotations of four histone 
marks - H3K4me1, H3K4me3, H3K9ac and H3K27ac – in the luminal A-like and triple-negative  subtypes. Both 
luminal A-like and triple-negative  subtypes were enriched for gastrointestinal cell types and suppression of 
central nervous system cells.  
 
a) Heatmap showing patterns of cell-type specific enrichment for histone marks H3K27ac in luminal A-like 
tumors and TN tumors 
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b) Heatmap showing patterns of cell-type specific enrichment for histone marks H3K4me1 in luminal A-like 
tumors and triple-negative  tumors 

 

 
 
 
 
  



 
c) Heatmap showing patterns of cell-type specific enrichment for histone marks H3K4me3 in luminal A-like 
tumors and triple-negative  tumors 

 

 
 
 
  



d) Heatmap showing patterns of cell-type specific enrichment for histone marks H3K9ac in luminal A-like 
tumors and triple-negative  tumors 
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Supplementary Note 

 

eQTL Analysis 

Data from breast cancer tumors and adjacent normal breast tissue were accessed from The 

Cancer Genome Atlas (TCGA)1. Germline variant genotypes (Affymetrix 6.0 arrays) were processed 

and imputed to the 1000 Genomes reference panel (October 2014) and European ancestry 

ascertained as previously described2. Tumor tissue copy number was estimated from the Affymetrix 

6.0 and called using the GISTIC2 algorithm3. Complete genotype, RNA-seq and copy number data 

were available for 679 genetically European patients (78 with adjacent normal tissue). Further, RNA-

seq for normal breast tissue and imputed germline genotype data were available from 80 females 

from the GTEx Consortium4. Genes with a median expression level of 0 RPKM across samples were 

removed, and RPKM values of each gene were log2 transformed. Expression values of samples were 

quantile normalized. Genetic variants were evaluated for association with the expression of genes 

located within ±2Mb of the lead variant at each risk region using linear regression models, adjusting 

for ESR1 expression. Tumor tissue was also adjusted for copy number variation, as previously 

described5. eQTL analyses were performed using the MatrixEQTL program in R6. 

 

INQUISIT target gene analysis 

 Logic underlying INQUISIT predictions: Details of the INQUISIT pipeline have been 

previously described1. Briefly, genes were evaluated as potential targets of candidate causal variants 

through effects on: (1) distal gene regulation, (2) proximal regulation, or (3) a gene's coding 

sequence. We intersected CCV positions with multiple sources of genomic information, chromatin 

interaction analysis by paired-end tag sequencing (ChIA-PET)7 in MCF7 cells, and genome-wide 

chromosome conformation capture (Hi-C) in HMECs8. We used breast cell line computational 

enhancer–promoter correlations (PreSTIGE9, IM-PET10, FANTOM511) breast cell super-enhancer12, 

breast tissue-specific expression variants (eQTL) from multiple independent studies (TCGA (normal 



breast and breast tumor) and GTEx breast, See eQTL Methods), transcription factor and histone 

modification chromatin immunoprecipitation followed by sequencing (ChIP-seq) from the ENCODE 

and Roadmap Epigenomics Projects together with the genomic features found to be significantly 

enriched for all known breast cancer CCVs13, gene expression RNA-seq from several breast cancer 

lines and normal samples (ENCODE) and topologically associated domain (TAD) boundaries from 

T47D cells (ENCODE14). To assess the impact of intragenic variants, we evaluated their potential to 

alter primary protein coding sequence and splicing using Ensembl Variant Effect Predictor15 using 

MaxEntScan and dbscSNV modules for splicing alterations based on “ada” and “rf” scores. Nonsense 

and missense changes were assessed with the REVEL ensemble algorithm, with CCVs displaying 

REVEL scores > 0.5 deemed deleterious.  

Scoring hierarchy: Each target gene prediction category (distal, promoter or coding) was 

scored according to different criteria. Genes predicted to be distally-regulated targets of CCVs were 

awarded two points based on physical links (for example ChIA-PET), and one point for computational 

prediction methods, or eQTL associations. All CCVs were considered as potentially involved in distal 

regulation and all CCVs (including coding variants) were scored in this category. Intersection of a 

putative distal enhancer with genomic features found to be significantly enriched20 were further 

upweighted with an additional point. In the case of multiple, independent interactions, an additional 

point was awarded. CCVs in gene proximal regulatory regions were intersected with histone ChIP-

Seq peaks characteristic of promoters and assigned to the overlapping transcription start sites 

(defined as -1.0 kb - +0.1 kb). Further points were awarded to such genes if there was evidence for 

an eQTL association, while a lack of expression resulted in down-weighting as potential targets. 

Potential coding changes including missense, nonsense and predicted splicing alterations resulted in 

addition of one point to the encoded gene for each type of change, while lack of expression reduced 

the score. We added an additional point for predicted target genes that were also breast cancer 

drivers (278 genes1,20). For each category, scores potentially ranged from 0-8 (distal); 0-4 (promoter) 

or 0-3 (coding). We converted these scores into 'confidence levels': Level 1 (highest confidence) 



when distal score >4, promoter score  ≥3 or coding score >1; Level 2 when distal score  ≤4 and ≥1, 

promoter score=1 or=2, coding score=1; and Level 3 when distal score <1 and >0, promoter score <1 

and >0, and coding <1 and >0. For genes with multiple scores (for example, predicted as targets from 

multiple independent risk signals or predicted to be impacted in several categories), we recorded the 

highest score. 

 

Global genomic enrichment analyses 

We performed stratified LD score regression analyses16-18 as previously described2 for two 

major intrinsic-like subtypes, luminal A-like and triple-negative, using the summary statistics from the 

meta-analyses of OncoArray, iCOGs, and CIMBA. The analysis included all variants in the 1000 

Genome Project Phase 1v3 release with MAF>1% and imputation quality score R2>0.3 in the 

OncoArray data. We restricted analysis to all variants present on the HapMap version 3 dataset. We 

first fit a model that included 24 non-cell-type-specific, publicly available annotations as well as 24 

additional annotations that included a 500-bp window around each of the 24 main annotations. We 

also included 100-bp windows around ChIP–seq peaks and one annotation containing all variants, 

leading to a total of 53 overlapping annotations. In addition to the baseline model using 24 main 

annotations, we also performed cell-type-specific analyses using annotations of the four histone 

marks (H3K4me1, H3K4me3, H3K9ac and H3K27ac). Each cell-type-specific annotation corresponds 

to a histone mark in a single cell type (for example, H3K27ac in adipose nuclei tissues)16. There was 

a total of 220 such annotations. We further subdivided these 220 cell-type-specific annotations into 10 

categories by aggregating the cell-type-specific annotations within each group (for example, variants 

related with any of the four histone modifications in any hematopoietic and immune cells were 

considered as one category). To estimate the enrichment of each marker, we ran 220 LD score 

regressions after adding each different histone mark to the baseline model. We used a Wald test to 

evaluate the differences in the functional enrichment between the luminal A-like and triple-negative 

subtypes, using the regression coefficients and standard error based on the models above. After 



Bonferroni correction none of the differences were significant. Notably, the Wald test assumes that 

the enrichment estimates of luminal A-like and triple-negative subtypes were independent, but this 

assumption was violated by the sharing of controls between the subtypes. Under this scenario, our 

Wald test statistics were less conservative than had we adjusted for the correlation between 

estimates. However, given the lack of significant differences observed between luminal A-like and 

triple-negative subtypes we had no concern about a type one error. 

 

 

Two-stage polytomous model 

The two-stage polytomous logistic regression model allows us to efficiently test for genetic 

associations while accounting for tumor marker correlations and large amounts of missing tumor data 

19. We used this method to detect breast cancer susceptibility variants while taking account of four 

tumor characteristics: estrogen receptor (ER; ER-positive vs ER-negative), progesterone receptor 

(PR; PR-positive vs PR-negative), human epidermal growth factor receptor 2 (HER2; HER2-positive 

vs HER2-negative), and grade (defined as grade 1, grade 2, and grade 3). Below we describe in 

greater detail how we applied this method  

In our study, we investigated for underlying heterogenous associations according to ER, PR, 

HER2, and grade; however, we will first start the discussion of fitting a two-stage polytomous model 

by first focusing on ER, PR, and HER2, and then discuss including grade in the model. The cross 

combination of ER, PR, and HER2 results in eight distinct breast cancer subtypes (8 = 2x2x2). Let N 

denote the total sample size and let D! denote the disease status of ith subject which can take values 

from {0,1,2, … ,8} and  i = 1,2, … , N. D! = 0 represent a control, and D! = - represent the ith subject 

with the breast cancer subtypes M. Let G! denote the genotype of a variant for ith subject, taking 

values from {0,1,2}. Let /" denote the other covariates for the ith subject, for example principal 

components or age. In the first stage of the model, we fit a standard “saturated” polytomous logistic 

regression model: 



Pr(D! = m|G!, X!) =
exp(:#;$ + =%& >')

1 + ∑ exp(:#;$ + =%& >')(
#)*

, (1) 

where β+  is the regression coefficient for a variant (G) associated with the mth subtype and A# is the 

vector of regression coefficients for the other covariate (X) associated with mth subtype.  

 Each cancer subtype m is defined through a unique combination of ER, PR, and HER2; 

therefore, we can alternatively index the parameters β+ as β,!,",#, where s*, s-, C. ∈ {0, 1} for the three 

binary tumor characteristics. Originally, β* represented the regression coefficient of the ER-, PR-, 

HER2- subtype. With this indexing, β* can be alternatively written as β/// and, thus with this 

reparameterization we can represent the log odds ratio of the eight subtypes as: 

β,!0"0# = θ
(/) + F*

(*)
C* + F-

(*)
C- + F.

(*)
C. + F*-

(-)
C*C- + F*.

(-)
C*C. + F-.

(-)
C*C. + F*-.

(.)
C*C-C., (2) 

where θ/
(/) represents the case-control log odds ratio for a reference subtypes versus the controls. 

We have chosen ER-, PR-, HER2- as the reference subtype, but any subtype can be chosen as the 

reference subtype. θ3
(*) represents the case-case log odds ratio for the kth tumor characteristic after 

adjusting for the other tumor characteristics. We also refer θ3
(*) as the main effect of the kth tumor 

characteristic. θ3!3"
(-)  represents how the case-case log odds ratio associated with k*th tumor 

characteristic is modified by levels of the k-th tumor characteristic and vice versa. We also refer to 

θ3!3"
(-)  as the pairwise interaction between the  k*th tumor characteristic and the k-th tumor 

characteristic. F*-.
(.)  represents the third order interaction of the three tumor characteristics. This 

decomposition is equivalent to the first stage polytomous logistic regression since both the first stage 

and second stage have eight parameters. We can specify different two stage models by assuming 

different second stage parameters to be equal to 0. For example, the baseline two-stage model is 

represented by: 

β,!0"0# = F
(/). (3) 



This baseline model assumes all of the subtypes have the same log odds ratio and is equivalent to a 

standard case-control logistic regression testing the association between an exposure and breast 

cancer, irrespective of tumor subtypes. We can also constrain all of the second stage pairwise 

interactions and higher order interactions to be 0: 

β,!0"0# = θ
(/) + F*

(*)
C* + F-

(*)
C- + F.

(*)
C.. (4) 

This additive two-stage model assumes the case-case log odds ratio of a tumor characteristic are not 

affected by interactions with the other tumor characteristics.  

 By adding the second stage pairwise interactions parameters into the model, we can also 

construct the pairwise interaction two-stage polytomous model:	

β,!0"0# = θ
(/) + F*

(*)
C* + F-

(*)
C- + F.

(*)
C. + F*-

(-)
C*C- + F*.

(-)
C*C. + F-.

(-)
C*C.. (5) 

This model evaluates how two tumor characteristics are modified by each other. For example, θ*-
(-) 

measures how the case-case log odds ratio associated of ER is modified by the status of PR and vice 

versa. If we further add the three-way interaction term between ER, PR, and HER2, then this model 

becomes saturated (as shown in in Equation 2) and is equivalent to the polytomous logistic 

regression.  

 When we add the three-level ordinal variable tumor grade into the model, we can define 24 

(2x2x2x3) breast cancer subtypes. We can apply the same decomposition as implemented with three 

tumor characteristics to provide the following additive two-stage model: 

β,!0"0#0$ = θ
(/) + F*

(*)
C* + F-

(*)
C- + F.

(*)
C. + F4

(*)
C4, (6) 

where F4
(*) is the main effect of grade and C4 can take the values from {1, 2, 3}. In this model, we 

assume the grade main effect linearly changes, meaning the average log odds ratios difference 

between grade 3 versus grade2 is the same the as the difference between grade 2 versus grade1. 

We can always describe the link between the first stage parameters and second stage parameters in 

Equation (6) in matrix form: 



ER − PR − HER2 − grade1

ER + PR − HER2 − grade1

ER − PR + HER2 − grade1

ER + PR + HER2 − grade1

ER − PR − HER2 + grade1

ER + PR − HER2 + grade1

ER − PR + HER2 + grade1

ER + PR + HER2 + grade1

…

ER + PR + HER2 + grade3

U =

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎡
:*
:-
:.
:4
:5
:6
:7
:(
…

:-4⎦
⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎤

=

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎡
1 0 0 0 1

1 1 0 0 1

1 0 1 0 1

1 1 1 0 1

1 0 0 1 1

1 1 0 1 1

1 0 1 1 1

1 1 1 1 1

… … … … …

1 1 1 1 3⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎤

⎣

⎢
⎢
⎢
⎢
⎢

⎡
F
(/)

F*
(*)

F-
(*)

F.
(*)

F4
(*)
⎦

⎥
⎥
⎥
⎥
⎥

⎤

= \ ]
F
(/)

^8
_ = \`, (7) 

where U is a vector of regression coefficients of the first stage parameters,  ` is the vector of all the 

second stage parameters, and ^8 is a vector of second stage main effects.   

 

Hypothesis testing of two-stage polytomous logistic regression 

Under the two-stage model framework, there are three different tests we can construct. The 

first is the global association test:  

b/:	F
(/) = 0	def	^8 = g	hijCkC	b*: ilmℎij	F

(/) ≠ 0	or	^8 ≠ 	g	. (8) 

This test is designed to test whether a variant is associated with any of the 24 breast cancer 

subtypes. If the null hypothesis is rejected under this setting, then at least one of the first stage 

subtype case-control log odds ratios :# is significantly not equal to 0. The second test is the global 

heterogeneity test: 

b/:	^8 = g	hijCkC	b*:	^8 ≠ 	g	. (8) 

This test is designed to test whether the associations between a variant and any two breast cancer 

subtypes are significantly different from each other. If the null hypothesis is rejected under this 

setting, then we can conclude that at least two of the first stage subtypes case-control log odds ratios 

are significantly different with each other (:#! ≠ :#").  

If the global heterogeneity test is significant, then we can construct the third hypothesis tests, the 

specific tumor marker heterogeneity test:  



 

b/:	^(9)
8

= 0	hijCkC	b*:	^(9)
8

≠ 	0	. (9) 

This test is designed to test which tumor character is the source of the observed heterogeneity in the 

global heterogeneity test. Under the additive two-stage model in Equation (6), for example, we can 

test b/:	F*
(*)

= 0	hijCkC	b/:	F*
(*)

≠ 	0	. This is designed to test whether the case-case log odds ratio of 

ER is significant not equaling to 0 after adjusting for the effects of PR, HER2 and grade.  

 

Mixed effect two-stage polytomous model 

 Although the additive two-stage model decreases the degrees of freedoms compared to the 

first stage polytomous logistic regression, the degrees of freedom of the two-stage model are still 

penalized when additional tumor characteristics are included into the model. To address this issue, 

we developed the mixed effect two-stage polytomous model to enter tumor characteristic variables 

into the model as either fixed- or random-effect terms. In this model, we keep the second stage main 

effect of ER (F*
(*)) as a fixed effect since there is strong a priori evidence that ER is a common source 

of heterogeneity 20. On the other hand, as there is minimal evidence suggesting that tumor 

characteristics such as PR, HER2, and grade are sources of heterogeneity, we assume the case-

case parameter of PR (F-
(*)), HER2 (F.

(*)) and grade (F4
(*)) as random effects. These random 

parameters have an assumed arbitrary distribution with mean 0 and variance r-. We always keep the 

baseline effect F(/) as fixed since it captures the overall association between a variant and breast 

cancer. Under the mixed effect two stage model, the global test for association is:  

b/:	F
(/) = 0, F*

(*)
= 0, σ- = 0	hijCkC	b*: ilmℎij	F

(/), θ*
(*)
, tj	r- ≠ 0 (10) 



The rejection of the null hypothesis implies that the variant is significantly associated with at least one 

of the 24 breast cancer subtypes. The global heterogeneity test under the mixed effect two-stage 

model would be: 

b/:	F*
(*)
= 0	def	σ- = 0	hijCkC	b*: ilmℎij	F*

(*)
or	σ- ≠ 0	. (11) 

The rejection of the null hypothesis would imply that the variant’s associations between at least two 

breast cancer subtypes are significantly different. However, the specific tumor marker heterogeneity 

test for a specific tumor marker is not applied in the mixed effect two-stage model because it requires 

the estimate of case-case log odds ratio of PR, HER2 and grade which are note estimated when 

modeled as random effects.  

 

Two-stage model for intrinsic subtypes of breast cancer 

 In previous sections, we showed how the first stage case control log odds ratios of breast 

cancer subtypes are decomposed to the case control log odds ratio of a reference subtype and the 

into case-case parameters of tumor characteristics. Using the hierarchical second stage 

decomposition, the two-stage model can also estimate the case control log odds ratio of specific 

breast cancer subtypes of interest. In our study we defined five intrinsic-like breast cancer subtypes 

based on tumor status of ER, PR, HER2 and grade: (1) luminal A-like (ER+ and/or PR+, HER2-, 

grade 1 & 2); (2) luminal B/HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); (3) luminal B-like 

(ER+ and/or PR+, HER2+); (4) HER2-enriched-like (ER- and PR-, HER2+), and (5) triple-negative ( 

ER-, PR-, HER2-). To estimate the case-control log odds ratios of these five intrinsic subtypes we can 

construct the two-stage model as: 



ER − PR − HER2 − grade1

ER + PR − HER2 − grade1

ER − PR + HER2 − grade1

ER + PR + HER2 − grade1

ER − PR − HER2 + grade1

ER + PR − HER2 + grade1

ER − PR + HER2 + grade1

ER + PR + HER2 + grade1

…

ER + PR + HER2 + grade3

U =
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⎢
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0 0 0 0 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

… … … … …

0 1 0 0 0⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎤

⎣

⎢

⎢

⎢

⎡
F*
F-
F.
F4
F5⎦
⎥

⎥

⎥

⎤
Luminal	A − like, low	grade

Luminal	B − like

Luminal	B/HER2 − negative − like

HER2	enriched − like

Triple − negative

(12) 

Under this model, the second stage parameters provide estimates of case-control log odds ratios for 

the five tumor subtypes. This model is similar to directly fitting a polytomous logistic regression. 

However, we have incorporated into the two-stage model an efficient missing data algorithm that 

allows to take advantage of subjects with incomplete tumor characteristic data. The missing data 

algorithm has been described in detail elsewhere [1]. 

 

Modified LD score regression 

Since the two-stage polytomous logistic regression implements an EM algorithm to account for 

missing tumor characteristics data, the effective sample size is not equivalent to the sample size of 

cases with complete tumor characteristic data. In this case the sample size is not available, but the 

log odds ratio for each variant :Ç: and the standard error s; are given.  

Under a case-control study, we consider the logistic regression model 

ÉtÑ	 Ö
<

*=<Ü = á + àâ
(>)ä

&
>� 

where â(>) = (:*
(>)
, :-

(>)
, … , :?

(>)
) are the joint effect sizes. We define the heritability as ℎ- =

hdj(àâ
(>)ä

@
>), assuming X is standardized with mean 0 variance 1. If X is in the original 0, 1, 2 scale, 

we multiply the :Ç: and C: by ã2å:(1 − å:) to standardize, where å: is the minor allele frequency for the 

jth variant. Therefore, the expected chi-square statistics (ç:-) of variant j is 



Eàç:
-éÉ:ä =

èà:Ç:
-éÉ:ä

C:
- =

êè ëà:Ç: − ::ä
-
íÉ:ì + 2èîà:Ç: − ::ä::éÉ:ï + èà::

-éÉ:äñ
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- (13)	
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where É: = ∑ j:9
-

9  is the LD score of the variant j and 1/C:-	is the effective sample size for variant j. The 

modified LD score regression formula is: 

Eàç:
-
éÉ:ä = 1 +

ℎ-

ó

É:
C:
- . (14) 

To estimate the genetic correlation between two traits, the expected value of ç*:ç-: for a variant j is 

Eàz*;ç-:éÉ:ä =
èà:Ç*: 	:Ç-:éÉ:ä

C*:C-:
(15)	

=
îèôà:Ç*: − :*:äà:Ç-: − :-:äéÉ:ö + èà:*::-:éÉ:äï
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=
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+
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=
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+
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ó

É:
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, 

where õA is the genetic covariance between the two different traits. Under this case, 1 C*:
-⁄  and 1 C-:

-⁄  

are the effective sample size for variant j for the two traits respectively. The modified LD score 

regression for genetic covariance is 

Eàz*;ç-:éÉ:ä =
C*-:
C*:C-:

+
õA
ó

É:
C*:C-:

. (16) 



The genetic correlation is given by B%
CD!"D""

. 

 

Effective sample size of cases of two-stage polytomous model 

The two-stage polytomous model implements the EM algorithm to impute missing tumor 

characteristics; therefore, the effective sample size of cases is not equivalent to the actual number of 

cases with available tumor characteristic data. We estimated the effective sample sizes to help 

demonstrate the benefit of using the EM algorithm to impute missing tumor characteristics and to aid 

comparability with previous studies (Supplementary Table 4). To estimate the effective sample size, 

suppose we have a complete dataset with no missing tumor characteristics, the sample size is e9 for 

the kth subtype and e/ for the control. If we fit a two-stage polytomous model for the jth variant, the 

corresponding log odds ratio for kth subtype is :Ç:9 and the standard error is C:9. Then, approximately: 

hdjà:Ç:9éå:ä ≈
e/ + e9

2 ∗ å:à1 − å:ä(e/e9)
, 

where å: is the MAF of the jth variant. Now we consider fitting a two-stage polytomous model with 

missing tumor characteristics. Given the standard error C:9 of the log odds ratio and the control 

sample size, we have the estimate of effective number of cases as, 

eü9 = Ö
*
E&
− 2C:9

-
å:(1 − å:)Ü

=*
. 

We used the median estimates of effective sample size of cases for all variants as the final estimate.  
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