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SUPPLEMENTARY NOTES 

 

Supplementary Note 1: Copy number profiles of PDXs 

The copy number profiles of the PDXs and PTs represented a variety of copy number profiles 

(Supplementary Fig. 24 – 60). We also profiled a small set of breast cancer patient tumors that 

failed engraftment and observed no significant difference in the extent of altered genome between 

tumors that were successfully engrafted into the mice and failed engraftment, indicating that 

selection of certain levels of genomic instability due to biases in successful PDX engraftment is 

unlikely (Supplementary Fig. 61). 

 

Supplementary Note 2: Comparison of SNP array and WES copy number data 

A larger discordance is more likely for CNA profiles dominated by large number of small focal 

events, for example in the tandem duplicator and chromothripsis phenotypes1,2. Evolutionary 

behaviors of focal mutations may be of particular interest in cancer types such as pancreas 

adenocarcinoma, for which chromothripsis has been reported to have a high3. However, our WES 

data for pancreas adenocarcinoma and  SNP data for patient tumors did not show chromothripsis. 

This may be a limitation of the copy number data, as genomic rearrangements from WGS data is 

superior for detecting chromothripsis4. Future WGS studies may be useful for clarifying such 

questions. 

 

Supplementary Note 3: Comparison of expression-based copy number calls calibrated 

against normal and tumor samples 

A notable problem with the expression-based calls is that the alternative expression calibrations 

can have a major impact on called gains and losses. This is especially apparent for regions 

frequently called as gains or losses in specific tumor types (Supplementary Fig. 20), e.g. as 

identified by GISTIC analysis in other studies5-7. Chromosomes 8q and 13 were almost exclusively 

identified as gains and chromosomes 21 and 22 were almost exclusively as losses in the gastric 

cancer RNA-Seq dataset when normal samples were used for calibration. Similarly, we called 

exclusive gains in chromosomes 7q and 20 and losses in chromosomes 4q31-35, 8p,16q and 21 

using normal samples for calibration for the hepatocellular carcinoma expression array dataset. 

However, changing the calibration to use tumor samples resulted in these regions being 

erroneously called with approximately equal frequencies of gains and losses.  

 

 



 

Supplementary Note 4: Copy number correlation of PT-PDX and PDX-PDX pairs 

The concordance analysis of PT-PDX pairs quantifies the extent of CNA retention in PDXs relative 

to their originating PTs, including during initial tumor engraftment. On the other hand, 

concordance analysis of PDX-PDX pairs evaluates copy number evolution during PDX expansion 

and passaging. 

 

Supplementary Note 5: Copy number correlation using RNA-based approaches 

We also performed intra-model comparisons using RNA-based approaches, and observed that 

the tumor-median normalization for expression data results in lower concordance between the 

sample pairs compared to normal-median normalization (p = 6.79e-6 for RNASEQ, p = 0.00170 

for EXPARR) (Supplementary Fig. 63a and b). Furthermore, the Pearson correlations between 

pairs of samples using expression data did not reproduce the Pearson correlations from SNP 

array platforms for those same sample pairs (p = 0.0136 for EXPARR NORM, p = 0.000976 for 

EXPARR TUM) (Supplementary Fig. 63c). This confirms that the comparison of CNA profiles 

between PT and PDXs based on expression data can lead to the overestimation of copy number 

changes during engraftment and passage, which is caused by the low accuracy of expression-

based copy number estimation coupled with potentially problematic normalization. 

 

Supplementary Note 6: Copy number correlations for specific tumor types 

Additionally, we repeated the same analysis using individual tumor types with ³10 models having 

multiple passages including PT. We observed no tumor type-specific behaviors different from the 

pan-cancer analysis (Supplementary Fig. 64). 

 

Supplementary Note 7: Copy number correlations of PDX samples with same passage 

number. 

 We observed very similar median (same/different passages: 0.962/0.966 for SNP, 0.940/0.932 

for WES) and interquartile range (IQR) (same/different passages: 0.0700/0.0619 for SNP and 

0.103/0.0979 for WES) of correlation coefficients between same-passage (i.e. all P0s, all P1s, all 

P2s, etc) and different-passage PDX-PDX pairs (two-sided Wilcoxon rank sum test: p > 0.1 for 

SNP and WES; Fig. 3d – f). 

 

 

 



 

Supplementary Note 8: Examples of models exhibiting large copy number drift between 

lineages 

A few examples of models exhibiting large drift between lineages include TM01500 

(Supplementary Fig. 26); 416634, 558786 and 665939 (Supplementary Fig. 47); 135848 and 

762968 (Supplementary Fig. 48); 245127 and 959717 (Supplementary Fig. 49); 287954 and 

594176 (Supplementary Fig. 56); 174316 and 695221 (Supplementary Fig. 54).  

 

Supplementary Note 9: Effect of phylogenetic distance on copy number correlation 

We asked if the phylogenetic distance between samples could explain the observed shifts in the 

correlations. These distance relationships are clearest for the CRC and BRCA WGS sets because 

these models have only one lineage split occurring at the engraftment stage. We compared 

correlation as a function of phylogenetic distance within a lineage, which in this phylogeny is 

simply equal to the difference in passage number between the two samples. Increase in passage 

difference did not consistently reduce the correlation between samples (Supplementary Fig. 65).  

 

Supplementary Note 10: Mutations in genome stability-related genes do not predict PDX 

copy number stability.  

We further explored if the stability of copy number during engraftment and passaging is affected 

by mutations in genes known to impact genome stability. Hence, we compared the within-model 

copy number correlations in models with wildtype vs. mutated TP53 or BRCA1/2 (see METHODS). 

We did not observe any increase in copy number variability (i.e. decrease in correlation) 

associated with the mutational status of TP53 or BRCA1/2 that was consistent across platforms, 

though a very small but significant decrease in correlation was observed for WES models with 

mutated TP53 or BRCA1/2 and for SNP models with mutated BRCA1/2 (Supplementary Fig. 66a 

– f). Similarly, we did not observe any significant decrease in correlation associated with having 

mutations in DNA repair genes8,9 (Supplementary Fig. 66g). Overall, this indicates that presence 

of mutations in such genes does not lead to increased copy number changes during PDX 

engraftment and passaging Interestingly, for the small set of pairs in which the two samples have 

discordant mutation status, copy number concordance is also lower between the samples. This 

suggests that tumor purity and/or heterogeneity have an impact on estimates of copy number 

evolution, consistent with our other findings. 

 

Supplementary Note 11: TP53 and BRCA1/2 mutations in breast cancer models 



 

We also observed that breast cancer models display more copy number changes compared to 

other tumor types (Fig. 4b). We observed no significant decrease in the copy number correlation 

among the breast cancer models carrying TP53 or BRCA1/2 mutations (Supplementary Fig. 67). 

In particular, among the PDX models with the largest copy number changes (correlation < 0.6), 

all (n=4) lack both TP53 or BRCA1/2 mutations. This indicates that there is no association 

between copy number instability in breast cancer PDXs and mutations in TP53 or BRCA1/2 genes. 

 

Supplementary Note 12: Recurrently altered genes in PDXs 

We observed that all these recurrent genes overlapped models in which one sample displayed 

an unusually large gain or loss (|log2 (CN ratio)| > 1.5). This suggests that these regions may be 

subject to more noise in the CNA estimation procedure at these loci (Supplementary Fig. 68).  

We further queried from CCLE data whether any of these recurrent genes showed 

evidence for copy number-related drug response (see METHODS, Supplementary Table 5). For 

the 6 genes with sufficient data available, we found no association between copy number and 

drug response mediated by gene expression (q-value < 1). 

 

Supplementary Note 13: GISTIC analysis for WGS dataset 

We observed that the GISTIC profiles of both CRC and BRCA (Extended Data Fig. 7) were similar 

to the respective TCGA BRCA and COADREAD GISTIC 2.0 plots10,11.  

In the gene-level G-score analysis, not a single gene had both ΔG concordant and passing 

the respective GISTIC threshold for significance (see Supplementary Table 8). It should be noted 

that very small segments of recurrent copy number gain or loss could be missed by this analysis 

due to the bin size imposed by the WGS coverage. 

 

Supplementary Note 14: GSEA analysis for WGS dataset 

Consistent with the known recurrence of cancer CNAs at driver genes, multiple gene sets 

displayed significant enrichment in individual cohorts. To avoid spurious apparent enrichment for 

sets of genes with adjacent chromosomal location, we implemented an additional filter based on 

G-score significance (see METHODS and Supplementary Table 8). After applying the Normalized 

Enrichment Score (NES), FDR q-value and G-score filters, 49 gene sets were found to be 

significant in at least one of the three CRC cohorts, and 89 gene sets in at least one of the three 

BRCA cohorts (Supplementary Table 9). Importantly, control gene sets composed of GISTIC hits 

identified in TCGA CRC and BRCA datasets were all significant, confirming that the WGS cohorts 

used here correctly recapitulate the major CNA features of these two cancer types.  



 

 

Supplementary Note 15: Preference of DNA-based CN measurements 

The conclusion DNA-based copy number measurements being superior to RNA-based inferences 

applies to all copy number analysis of tumors, and is not specific to xenografts. Amongst the DNA-

based approaches for copy number analysis, SNP arrays still have a competitive edge because 

they have the highest resolution, despite the non-uniform distribution of probes along the 

genome12,13. Robust algorithms are available for SNP arrays to deconvolute tumor purity and B-

allele frequency, allowing correct estimation of allele-specific copy number profiles despite the 

presence of normal DNA contamination14. Our analysis has shown that there are significant 

variations in purity that affect copy number inferences among the patient tumor samples that are 

more difficult to resolve with other platforms.  

 

Supplementary Note 16: Impact of subclonality on copy number correlation 

The CNA profiles observed in this study are weighted contributions summed over all clonal 

fractions, including human stroma. Individual samples can also contain diverse subclones (see 

Extended Data Fig. 6a), though resolution of subclones and their copy number profiles across 

passages is an underdetermined problem that remains algorithmically challenging15. 

 

Supplementary Note 17: Models with large copy number discordance 

The extreme cases of copy number discordance within models (see Supplementary Fig. 70 for 

examples with same lineage) may be informative for future studies of the evolutionary process, 

especially through consideration of repeated spatial sampling. It may be informative to compare 

such examples to those reported by Eirew et al.16,  who described a variety of clonal selection 

dynamics during engraftment and passaging for breast cancer PDXs, as well as by Ding et al.17, 

who demonstrated the possibility of cellular selection during xenograft formation similar to that 

during metastasis. While such cases are uncommon in our study, further subclonal analysis may 

be useful for clarifying potential selection pressures.  

 
  



 

SUPPLEMENTARY METHODS 

 

Experimental details for sample collection, PDX engraftment and passaging, and array or 

sequencing 

The tumor types and patient tumor (PT) and patient derived xenograft (PDX) samples contributed 

by various centers are summarized in Supplementary Fig. 1-12 and Supplementary Table 1. The 

sample collection, PDX engraftment and passaging, and array and sequencing methodologies by 

the various centers are described below. The xenograft initial take rates at each contributing 

center are summarized in Supplementary Table 10. 

The Jackson Laboratory (JAX). Patient tumor engraftment and PDX passaging of various tumor 

types were performed as previously described18-20. Detailed information of the PDX models can 

be found in the PDX model search form in Mouse Tumor Biology Database (MTB, 

http://tumor.informatics.jax.org/mtbwi/pdxSearch.do). SNP array samples were genotyped with 

the Affymetrix Genome-Wide Human SNP Array 6.0 as described in Woo et al20. Whole-exome 

sequencing were processed as follows: DNA was isolated from tumor and blood samples using 

the Wizard Genomic DNA Purification Kit (Promega) according to the manufacturer’s protocols. 

DNA quality was assessed using an E-Gel General Purpose Agarose Gel, 0.8% (Invitrogen) and 

Nanodrop 2000 spectrophotometer (Thermo Scientific). DNA concentration was determined using 

a Qubit dsDNA BR Assay Kit (Thermo Scientific). Libraries were prepared by the Genome 

Technologies core facility at The Jackson Laboratory using SureSelectXT Reagents and 

SureSelectXT Human All Exon V4 Target Enrichment System (Agilent Technologies), according 

to the manufacturer’s instructions. Briefly, the protocol entails shearing the DNA using the Covaris 

E220 Focused-ultrasonicator (Covaris), ligating Illumina specific adapters, and PCR amplification. 

Amplified DNA libraries are then hybridized to the Human All Exon probes, amplified using 

indexed primers, and checked for quality and concentration using the DNA High-Sensitivity 

LabChip assay (Agilent Technologies) and quantitative PCR (KAPA Biosystems), according to 

the manufacturers’ instructions. Libraries were sequenced on a HiSeq 2500 100bp paired-end 

flow cell using TruSeq Rapid SBS reagents (Illumina). Average coverage for normal samples was 

154.38x (115.13 min – 212.31 max), and was 232.10x for tumor samples (161.48 min – 280.65 

max).  

Seoul National University-Jackson Laboratory (SNU-JAX). Gastric cancer tissues, paired 

normal gastric tissues, and blood samples were obtained from individuals who underwent 

gastrectomies at the Hospital of Seoul National University from 2014 to 2016. All samples were 

obtained with informed consent at the Hospital of Seoul National University, and the institutional 



 

review board approved the study per the Declaration of Helsinki. These samples were stored into 

RPMI media with 1% penicillin/streptomycin immediately after resected from patients and shipped 

using specimen ice box to the laboratory within half an hour. Gastric cancer samples were divided 

into several small pieces (2mm × 2mm) and used to generate PDX models and for genomic 

analysis. Mice were cared for according to institutional guidelines of the Institutional Animal Care 

and Use Committee of the Seoul National University (no. 14-0016-C0A0). For PDX models, 

surgically resected tissues were minced into pieces approximately ~2 mm in size and injected 

into the subcutaneous area in the flanks of 6-week-old NOD/SCID/IL-2γ-receptor null female mice 

(NSGTM mice, Jackson Laboratory, Bar Harbor, ME). The volume of tumors and body weight of 

mice were checked once or twice a week. The volume was calculated as (tumor length x tumor 

width2) / 2. When a tumor reached >700~1000 mm3, the mouse was sacrificed, and tumor tissues 

were stored. Tumor tissues were divided and stored for several purposes: (1) Tumor tissues were 

cryopreserved in liquid nitrogen and stored at −80 °C for generating next passage PDXs. (2) 

Tumor tissues were frozen in liquid nitrogen for genomic analysis. Whole-exome sequencing was 

conducted as follows: Genomic DNA (gDNA) was extracted from blood and tissues using DNeasy 

blood and tissue kit (QIAGEN) and checked for purity, concentration, and integrity by OD260/280 

ratio using NanoDrop Instruments (NanoDrop Technologies, Wilmington, DE, USA) and agarose 

gel electrophoresis. DNA was sheared by fragmentation by Bioruptor (Diagenode, Inc., Denville, 

NJ, USA) and purified using Agencourt AMPure XP beads (Beckman Coulter, Fullerton, CA, USA). 

DNA samples were then tested for size distribution and concentration using an Agilent 

Bioanalyzer 2100. Standard protocols were utilized for adaptor ligation, indexing, high-fidelity 

PCR amplification. Subsequently, exome enrichment was performed by hybrid capture with the 

All Exon v5 capture library. Capture libraries were amplified, pooled, and submitted to the 

commercial sequencing company (Macrogen) for 100bp paired-end, multiplex sequencing on a 

HiSeq 2000 sequencing system. Average coverage for normal samples was 62.67x (38.97 min – 

108.77 max), and was 102.35x for tumor samples (36.02 min – 150.49 max). RNA-Sequencing 

data was generated as follows: RNA was extracted from tissues using the RNeasy Mini Kit 

(Qiagen, Valencia, CA, USA). RNA-Sequencing libraries were prepared from 1 μg total RNA using 

the TruSeq RNA Sample Preparation v2 Kit (Illumina, San Diego, CA) according to the 

manufacturer’s protocol. Libraries were submitted to the commercial sequencing company 

(Macrogen) for 100bp paired-end, multiplex sequencing on a HiSeq 2000 sequencer. 

Huntsman Cancer Institute (HCI). Patient tumor engraftment and PDX passaging of breast 

cancer samples were performed as previously described21,22. SNP array samples were genotyped 

by the Affymetrix SNP 6.0 array for profiling. These samples were processed, according to 



 

DeRose et. al.22. Additionally, some samples, were also processed using the Illumina Infinium 

Omni 2.5 Exome-8 v1.3 Beadchip array. Hybridized arrays were scanned using an Illumina iScan 

instrument following the Illumina Infinium LCG Assay Manual Protocol and processed using 

GenomeStudio. When samples had both Affymetrix and Illumina chips, we deferred to Illumina 

intensity values for copy number calling. Whole-exome sequencing was conducted as follows: 

Agilent SureSelectXT Human All Exon V6+COSMIC or Agilent Human All Exon 50Mb library 

preparation protocols were used with inputs of 100-3000ng sheared genomic DNA (Covaris). 

Library construction was performed using the Agilent Technologies SureSelectXT Reagent Kit. 

The concentration of the amplified library was measured using a Qubit dsDNA HS Assay Kit 

(ThermoFisher Scientific). Amplified libraries (750 ng) were enriched for exonic regions using 

either the Agilent Technologies SureSelectXT Human All Exon v6+COSMIC or Agilent Human All 

Exon 50Mb kits and PCR amplified. Enriched libraries were qualified on an Agilent Technologies 

2200 TapeStation using a High Sensitivity D1000 ScreenTape assay and the molarity of adapter-

modified molecules was defined by quantitative PCR using the Kapa Biosystems Kapa Library 

Quant Kit. The molarity of individual libraries was normalized to 5 nM, and equal volumes were 

pooled in preparation for Illumina sequence analysis. Sequencing libraries (25 pM) were 

chemically denatured and applied to an Illumina HiSeq v4 paired-end flow cell using an Illumina 

cBot. Hybridized molecules were clonally amplified and annealed to sequencing primers with 

reagents from an Illumina HiSeq PE Cluster Kit v4-cBot (PE-401-4001). Following the transfer of 

the flowcell to an Illumina HiSeq 2500 instrument (HCS v2.2.38 and RTA v1.18.61), a 125-cycle 

paired-end sequence run was performed using HiSeq SBS Kit v4 sequencing reagents (FC-401-

4003). Average coverage for normal samples was 90.22x (15.28 min – 131.69 max), and was 

96.66x for tumor samples (10.65 min – 166.06 max). 

Baylor College of Medicine (BCM). Patient tumor engraftment and PDX passaging of breast 

cancer samples were performed as previously described23,24. SNP array samples were genotyped 

at Huntsman Cancer Institute using the Illumina Infinium Omni 2.5Exome-8 v1.4 Beadchip array 

by the procedures provided in the HCI section above.  

The University of Texas MD Anderson Cancer Center (MDACC). Fresh non-small-cell lung 

carcinoma tumor samples were collected from surgically resected specimens with the informed 

consent of the patients. Generation and passaging of PDXs, and histological analysis and DNA 

fingerprint assay for PDXs and their primary tumor tissues were performed as previously 

described25. The protocols for the use of clinical specimens and data in this study were approved 

by the Institutional Review Board at The University of Texas MD Anderson Cancer Center. All 

animal studies were carried out in accordance with the Guidelines for the Care and Use of 



 

Laboratory Animals (National Institutes of Health Publication 85-23) and the institutional 

guidelines of MDACC. Whole-exome sequencing was conducted at the Sequencing and 

Microarray Core Facility at MD Anderson Cancer Center as follows: Genomic DNA was quantified 

and quality was assessed using Picogreen (Invitrogen) and Genomic DNA Tape for the 2200 

Tapestation (Agilent), respectively. DNA from each sample (100-500 ng of genomic DNA) was 

sheared by sonication and then used for library preparation by using KAPA library preparation kit 

(KAPA) following manufacturer’s instruction. Equimolar amounts of DNA were pooled (2-6 

samples per pool) and whole exome regions were captured by using biotin labeled probes from 

Roche Nimblegen (Exome V3) followed manufacture’s protocol. The captured libraries were 

sequenced on a HiSeq 2000 with 100bp paired-end (Illumina Inc., San Diego, CA, USA) on a 

paired-end flowcell. Average coverage for normal samples was 85.61x (40.80 min – 228.41 max), 

and was 125.79x for tumor samples (25.12 min – 251.53 max).  

The WISTAR Institute (WISTAR). Tumor biopsy samples were collected according to IRB-

approved protocol with the informed written consent of the patients. Collected fresh tumor pieces 

were snap frozen and stored at -80 °C. Subcutaneous implantation into NSG SCID mice were 

used to create PDX models. BRAF inhibitor treatment (PLX) was administered as PLX4720 

200ppm chemical additive diet chow (Research Diets, New Brunswick, NJ). Whole exome 

sequencing was conducted as follows: Genome DNA extraction was done using Qiagen DNeasy 

Blood & Tissue Kit, and libraries for whole exome sequencing were performed using Nextera DNA 

exome kit. Capture libraries were amplified, pooled, and then sequenced on an Illumina HiSeq 

2500 76bp paired-end run. Average coverage for normal samples was 97.50x (71.46 min – 124.64 

max), and was 208.27x for tumor samples (146.88 min – 281.20 max). 

National Cancer Institute Patient-Derived Models Repository (PDMR). For engraftments, 

tumor material plus a drop of Matrigel (BD BioSciences, Bedford, MA) were implanted 

subcutaneously in NSGTM mouse model NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ. Mice were housed in 

sterile, filter-capped polycarbonate cages, maintained in a barrier facility on a 12-hour light/dark 

cycle, and were provided sterilized food and water, ad libitum. Animals were monitored weekly 

for tumor growth. The initial passage of material was grown to approximately 1000-2000mm3 

calculated using the following formula: weight (mg)  =  (tumor length x [tumor width]2) / 2. Tumor 

material was then harvested, a portion cryopreserved, and the remainder implanted into NSG 

host mice. Every PDX tumor harvested and cryopreserved also has 2-3 fragments snap frozen 

for next generation sequence analysis and short tandem repeat validation and a piece is fixed in 

neutral buffered formalin and then embedded in paraffin for histological assessment. Related 

patient data, clinical history, representative histology and short-tandem repeat profiles for the PDX 



 

models can be found at https://pdmr.cancer.gov. Full PDMR standard operating procedures for 

tumor engraftment and PDX passaging are available at https://pdmr.cancer.gov/sops. Whole-

exome sequencing data were generated with the Agilent SureSelect capture kit, and sequenced 

with 125bp pair-end Illumina HiSeq 2500 runs following standard operating procedures available 

here: https://pdmr.cancer.gov/sops. Average coverage for normal samples was 148.47x (50.95 

min – 242.24 max), and was 174.77x for tumor samples (81.41 min – 403.22 max). 

Washington University in St. Louis (WUSTL). All human tissues acquired for these 

experiments were processed in compliance with NIH regulations and institutional guidelines, 

approved by the Institutional Review Board at Washington University. Tumors from all patients 

were obtained via core needle biopsy, skin punch biopsy, or surgical resection after informed 

consent. All animal procedures were reviewed and approved by the Institutional Animal Care and 

Use Committee at Washington University in St. Louis. Pancreatic cancer models were derived 

from tissue fragments implanted subcutaneously into dorsal flank regions of non-humanized, 

female NOD/SCID/γ mice (Jackson Laboratory, Bar Harbor, ME) using Matrigel. The sample 

tissues for these PDX models were obtained from archived, cryopreserved PDX harvests. Final 

tumor passages in mice were kept cold and harvested into RPMI-1640 with antibiotic and 

antimycotic additives. Pieces of each tumor were processed into the following: flash frozen tissue 

fragments, OCT blocks and matched Haemotoxylin and Eosin (H&E) slides, formalin fixed paraffin 

blocks and matched H&E slides, RNAlater tissue storage, and cryopreserved fragments (FBS + 

10% DMSO). A minimum of 250 mg of flash frozen material was submitted to the Siteman Cancer 

Center’s Proteomics Core. The tissues were cryo-pulverized and subsequently divided for DNA 

and RNA preparation, and long-term storage. Patient tumors were obtained directly from 

operating rooms and placed into sterile collection media (RPMI-1640 with antibiotic and 

antimycotic additives). Pieces of each tumor were processed into the following: flash frozen tissue 

fragments, OCT blocks and matched H&E slides, formalin fixed paraffin blocks and matched H&E 

slides, and cryopreserved fragments (FBS + 10% DMSO). Parental genomic DNA was prepared 

from OCT blocks if available, and if not available, paraffin blocks were utilized. In addition, 

genomic DNA for sequencing control was prepped from peripheral blood mononuclear cells that 

were both procured and processed at time of surgery. Breast cancer models were derived from 

tissue fragments implanted subcutaneously into dorsal flank regions of non-humanized, 

NOD/SCID/γ mice (Jackson Laboratories, Bar Harbor, ME) as previously described17,24. Whole-

exome sequencing was conducted as follows: Libraries were constructed using unamplified 

genomic DNA (minimum 100 ng) from blood (normal), tumor, and xenograft samples. Exons were 

captured via IDT Exome library kit followed by high-throughput sequencing on an Illumina 



 

NovaSeq S4 platform (Illumina Inc., San Diego, CA) using 150bp paired-end reads. Details of 

whole exome library construction have been given elsewhere (Fisher, Barry et al. 2011). Average 

coverage for normal pancreatic cancer samples was 85.73x (55.65 min – 108.91 max), and was 

124.01x (49.68 min – 242.35 max) for tumor pancreatic cancer samples. Average coverage for 

normal breast cancer samples was 58.33x (45.37 min – 70.30 max), and was 89.90x (17.24 min 

– 149.53 max) for tumor breast cancer samples.  

Shanghai Institute for Biological Sciences (SIBS). Gene expression and copy number data, 

generated by the Affymetrix Human Genome U133 Plus 2.0 Array and Affymetrix Human SNP 

6.0 platforms respectively, of hepatocellular carcinoma (HCC) PDX models were retrieved from 

the Gene Expression Omnibus (GEO) accession ID GSE9065326. Expression microarray data 

generated by the Affymetrix Human Genome U133 Plus 2.0 Array for normal liver were 

downloaded from GEO and ArrayExpress: GSE352627, GSE3300628 and E-MTAB-1503-329. 

EurOPDX colorectal cancer (EuroPDX CRC). Liver-metastatic colorectal cancer samples were 

obtained from surgical resection of liver metastases at the Candiolo Cancer Institute, the 

Mauriziano Umberto I Hospital, and the San Giovanni Battista Hospital. Informed consent for 

research use was obtained from all patients at the enrolling institution before tissue banking, and 

study approval was obtained from the ethics committees of the three centers. Tissue from hepatic 

metastasectomy in affected individuals was fragmented and either frozen or prepared for 

implantation as described previously30,31. Non-obese diabetic/severe combined immunodeficient 

(NOD/SCID) female mice (4–6 weeks old) were used for tumor implantation. Snap-frozen aliquots 

were obtained from surgical specimens and corresponding tumor grafts at different passages. 

Whole genome sequencing was conducted as follows: DNA was extracted using Maxwell RSC 

Blood DNA kit (Promega AS1400) from colorectal cancer liver metastasis and corresponding 

tumor grafts at different passages. Genomic DNA was fragmented and used for Illumina TruSeq 

library construction (Illumina) according to the manufacturer’s instructions. Libraries were then 

purified with Qiagen MinElute column purification kit and eluted in 17 µl of 70°C EB to obtain 15 

µl of DNA library. The libraries were sequenced on HiSeq4000 (Illumina) with single-end reads of 

51bp at low coverage (~0.1x genome coverage on average). 

EurOPDX breast cancer (EuroPDX BRCA). Human breast tumors were obtained from surgical 

resections at the Netherland Cancer Institute (NKI), Institut Curie (IC) and Vall d’Hebron Institute 

of Oncology (VHIO). Engraftment was conducted with different procedures at each center. NKI: 

Small tumor fragments (2mm diameter) were implanted into the 4th mammary fat pad of 8-week-

old Swiss female nude mice. Mice were checked for tumor appearance once a week, and 

supplemented with estrogen, if the tumor was ER positive. After palpable tumor detection, tumor 



 

size was measured twice a week. When tumors reached a size of 700-1000 mm3, animals were 

sacrificed and tumors were explanted and subdivided in fragments for serial transplantation as 

described above, or for frozen vital storage in liquid nitrogen. IC: Breast cancer fragments were 

obtained from patients at the time of surgery, with informed written patient consent. Fragments of 

30 to 60 mm3 were grafted into the interscapular fat pad of 8 to 12-week-old female Swiss nude 

mice. Mice were supplemented with estrogen. Xenografts appeared at the graft site 2 to 8 months 

after grafting. When tumors were close to 1500 mm3, they were subsequently transplanted from 

mouse to mouse and stocked frozen in DMSO-fetal calf serum (FCS) solution or frozen dried in 

nitrogen. Fragment fixed tissues in phosphate buffered saline (PBS) 10% formol for histologic 

studies were also stored. The experimental protocol and animal housing were in accordance with 

institutional guidelines as proposed by the French Ethics Committee (Agreement B75-05-18, 

France). VHIO: Fresh tumor samples from patients with breast cancer were collected for 

implantation following an institutional IRB-approved protocol and the associated informed consent, 

or by the National Research Ethics Service, Cambridgeshire 2 REC (REC reference number: 

08/H0308/178). Experiments were conducted following the European Union’s animal care 

directive (2010/63/EU) and were approved by the Ethical Committee of Animal Experimentation 

of the Vall d’Hebron Research Institute. Surgical or biopsy specimens from primary tumors or 

metastatic lesions were immediately implanted in mice. Fragments of 30 to 60 mm3 were 

implanted into the mammary fat pad (surgery samples) or the lower flank (metastatic samples) of 

6-week-old female athymic HsdCpb:NMRI-Foxn1nu mice (Harlan Laboratories). Animals were 

continuously supplemented with estradiol. Upon growth of the engrafted tumors, the model was 

perpetuated by serial transplantation onto the lower flank. Tumor growth was measured with 

caliper bi-weekly. In all experiments, mouse weight was recorded twice weekly. When tumors 

reached 1500 mm3, mice were euthanized and tumors were explanted. Whole genome 

sequencing was conducted as follows: genomic DNA was extracted from breast cancers and 

corresponding PDXs using (i) QIAamp DNA Mini Kit s(50) (#51304, Qiagen) (IC) or (ii) according 

to Laird PW’s protocol32 (NKI and VHIO). The amount of double stranded DNA in the genomic 

DNA samples was quantified by using the Qubit® dsDNA HS Assay Kit (Invitrogen, cat no 

Q32851). Up to 2000 ng of double stranded genomic DNA were fragmented by Covaris shearing 

to obtain fragment sizes of 160-180bp. Samples were purified using 1.6X Agencourt AMPure XP 

PCR Purification beads according to manufacturer’s instructions (Beckman Coulter, cat no 

A63881). The sheared DNA samples were quantified and qualified on a BioAnalyzer system using 

the DNA7500 assay kit (Agilent Technologies cat no. 5067-1506). With an input of maximum 1 

µg sheared DNA, library preparation for Illumina sequencing was performed using the KAPA HTP 



 

Library Preparation Kit (KAPA Biosystems, KK8234). During library enrichment, 4-6 PCR cycles 

were used to obtain enough yield for sequencing. After library preparation the libraries were 

cleaned up using 1X AMPure XP beads. All DNA libraries were analyzed on the GX Caliper (a 

PerkinElmer company) using the HT DNA High Sensitivity LabChip, for determining the molarity. 

Up to two pools of 24 uniquely indexed samples and one pool of 81 uniquely indexed samples 

were mixed together by equimolar pooling in a final concentration of 10nM, and subjected to 

sequencing on an Illlumina HiSeq2500 machine in a total of 12 lanes of a single read 65bp run at 

low coverage (~0.4x genome coverage on average), according to manufacturer’s instructions. 

 

Preprocessing of sequencing and expression array data  

Whole-exome sequencing (WES) data. All the samples were subjected to quality control 

(filtering and trimming of poor-quality reads and bases) using in-house QC script with the cut-off 

that half of the read length should be ≥20 in base quality at phred scale. We further removed the 

known adaptors using cut-adapt33 v1.15 at -m 36. Afterward, we aligned the reads to the human 

genome (GRCh38.p5) using bwakit34 v0.7.15. Engrafted tumor samples were subjected to the 

additional step of mouse read removal using Xenome35 v1.0.0, with default parameters. The 

alignment was converted to BAM format using Picard SortSam v2.8.1 

(https://broadinstitute.github.io/picard/), and duplicates were removed by Picard MarkDuplicates 

utility. BaseRecalibrator from the Genome Analysis Tool Kit36,37 (GATK) v4.0.5.1 was used to 

adjust the quality of raw reads. Training files for the base quality scale recalibration were 

Mills_and_1000G_gold_standard.indels.hg38.vcf.gz, 

Homo_sapiens_assembly38.known_indels.vcf.gz, and dbSNP v151. Mean target coverage was 

determined for each sample by Picard CollectHsMetrics. 

Low-pass whole-genome sequencing (WGS) data. Whole-genome sequence reads from 

EuroPDX CRC liver metastasis and corresponding tumor grafts at different passages were 

mapped to the reference human genome (GRCh37) using Burrows-Wheeler Aligner34 (BWA) 

v0.7.12. SAMTools38 v0.1.18 was used to convert SAM files into BAM files and Picard v1.43 to 

remove PCR duplicates (http://broadinstitute.github.io/picard/). Whole-genome sequence reads 

from EuroPDX BRCA tumors and corresponding tumor grafts at different passages were mapped 

to the reference human genome (GRCh38) and mouse genome (GRCm38/mm10, Ensembl 76) 

using Burrows-Wheeler Aligner (BWA) v0.7.15. Subsequently, mouse reads were excluded with 

XenofilteR39. Other processing steps are similar as described above. 

RNA-sequencing (RNA-Seq) and gene expression microarray (EXPARR) data. For SNU-JAX 

RNA-Seq data, simultaneous read alignment was performed to both mouse (mm10) and human 



 

genome (GRCh38.p5) and only human specific reads were used for the expression quantification. 

Expression of mRNA was quantified as Transcripts Per Million (TPM) for downstream analysis 

using RNA-Seq by Expectation Maximization40 (RSEM v1.3.1) with ensemble GTF reference 

GRCh38.92. Gene expression microarray data for SIBS HCC and normal liver samples from GEO 

and ArrayExpress databases were profiled as follows. After initial quality control and outlier 

removal, CEL files were normalized according to RMA algorithm and probesets were annotated 

according to Affymetrix annotation file for HG-U133 Plus 2, released on 2016-03-15 build 36. 

 

  



Supplementary Fig. 1: Summary of PDX models collected from various centers in the PDXNET 
and EuroPDX consortium, and publicly available data.
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Supplementary Fig. 2: Number of patient tumor and PDX passages per model in the JAX PDX 
resource consisting of various tumor types assayed by Affymetrix SNP 6.0 array and whole exome 
sequencing (P: Primary malignancy, M: Metastatic, R: Recurrent/Relapse, NS: Not specified).
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Supplementary Fig. 3: Number of patient tumor and PDX passages per model in SNU-JAX gastric 
cancer dataset assayed by whole-exome sequencing (WES) and RNA sequencing (RNASEQ). 
Models labeled with ”LN” are lymph node metastatic tumors for the same patient. (*: Multiple patient 
tumors available for the same patient, different relapse time points or different metastatic sites)
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Supplementary Fig. 4: Number of patient tumor and PDX passages per model in the HCI breast 
cancer dataset assayed by whole-exome sequencing (WES), Affymetrix SNP 6.0 array and Illumina 
Infinium Omni2.5Exome8 (v1.3) SNP array. HCI-007 is relapse tumor from the patient of HCI-005, 
HCI-024 is a skin metastasis tumor from the patient  of HCI-023. Samples labeled with “PDX” 
indicates passage number is unknown. (*: Multiple tumors available for the same patient, different 
relapse time points or different metastatic sites)
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Supplementary Fig. 5: Number of PDX passages per model in the BCM breast cancer dataset 
assayed by Illumina Infinium Omni2.5Exome8 (v1.4) SNP array. 
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Supplementary Fig. 6: Number of patient tumor and PDX passages per model in the MDACC lung 
cancer dataset assayed by whole-exome sequencing (WES).
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Supplementary Fig. 7: Number of patient tumor and PDX passages per model in Wistar skin 
cutaneous melanoma dataset assayed by whole-exome sequencing (WES). PDX samples labeled 
with ”PLX” are BRAF inhibitor (PLX) treated. (*: Multiple tumors available for the same patient, 
different relapse time points or different metastatic sites)
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Supplementary Fig. 8: Number of patient tumor and PDX passages per model in the NCI PDMR 
resource consisting of various tumor types assayed by whole exome sequencing.
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Supplementary Fig. 9: Number of patient tumor and PDX passages per model in the WUSTL breast 
cancer and pancreatic cancer datasets assayed by whole-exome sequencing (WES). 
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Supplementary Fig. 10: Number of patient tumor and PDX passages per model in the SIBS 
hepatocellular carcinoma dataset assayed by Affymetrix SNP 6.0 array and Affymetrix gene 
expression array (EXPARR). 
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Supplementary Fig. 11: Number of patient tumor and PDX passages per model in the EuroPDX
colorectal cancer (CRC) liver metastasis dataset assayed by whole-genome sequencing.
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Supplementary Fig. 12: Number of patient tumor and PDX passages per model in the EuroPDX
breast cancer (BRCA) dataset assayed by whole-genome sequencing.
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Supplementary Fig. 13: CNA profiles for matched patient tumor samples estimated from SNP array 
and WES for ”SNP vs WES” validation (see Supplementary Table 3).



Supplementary Fig. 14: CNA profiles for (a) patient tumor and (b) PDX samples estimated from 
WES used for ”WES vs RNASEQ (NORM/TUM)” validation (see Supplementary Table 3).
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Supplementary Fig. 15: (Continue next page)



Supplementary Fig. 15: CNA profiles for (a) patient tumor and (b) PDX samples estimated from RNA-
Seq, normalized by median expression of normal samples of the same tumor type, used for ”WES vs 
RNASEQ (NORM)” and “RNASEQ NORM vs TUM” validation. CNA profiles for (c) patient tumor and 
(d) PDX samples estimated from RNA-Seq, normalized by median expression of same set of patient 
tumors, used for ”WES vs RNASEQ (TUM)” and “RNASEQ NORM vs TUM” validation (see 
Supplementary Table 3).
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Supplementary Fig. 16: CNA profiles for patient tumor and PDX samples estimated from SNP 
array used for ”SNP vs EXPARR (NORM/TUM)” validation (see Supplementary Table 3).



Supplementary Fig. 17: CNA profiles for patient tumor and PDX samples estimated from gene 
expression array, normalized by (a) median expression of normal samples of the same tumor type and 
(b) median expression of same set of patient tumors, used for ”SNP vs EXPARR (NORM/TUM)” and 
“EXPARR NORM vs TUM” validation (see Supplementary Table 3).
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Supplementary Fig. 18: Pearson correlation and linear regression of the log2(CN ratio) of 100kb-
windows binned from copy number segments of CNA profiles between matched patient tumor 
samples estimated from SNP array and WES. Outliers of the linear regression are identified by 
studentized residuals > 3 and < -3. 
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Supplementary Fig. 19: Heatmap representing the Pearson correlation coefficients of the log2(CN 
ratio) of 100kb-windows binned from copy number segments of CNA profiles between matched 
samples estimated from SNP array and WES. The variance and 5-95% inter-percentile range of 
log2(CN ratio) values were calculated across all 100kb-windows per sample.
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Supplementary Fig. 20: Frequencies of copy number gains (log2(CN ratio) > 0.1, red) and losses 
(log2(CN ratio) < –0.1, blue) estimated from RNA-Seq and gene expression array normalized by median 
expression of normal samples of the same tumor type (RNASEQ NORM, EXPARR NORM) or  median 
expression of same set of patient tumors (RNASEQ TUM, EXPARR TUM) (see Supplementary Table 3).

SNU-JAX gastric cancer (RNASEQ NORM)
chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

−1.0

−0.5

0.0

0.5

1.0

Chromosomes

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

−1.0

−0.5

0.0

0.5

1.0

Chromosomes

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s

SNU-JAX gastric cancer (RNASEQ TUM)

SIBS hepatocellular carcinoma (EXPARR TUM)

SIBS hepatocellular carcinoma (EXPARR NORM)
chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

−1.0

−0.5

0.0

0.5

1.0

Chromosomes

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

−1.0

−0.5

0.0

0.5

1.0

Chromosomes

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s

CN Gain CN Loss



a
100kb−window log2(CN ratio) correlation

G
1_PTPN

_R
N
ASEQ

G
15_PTPN

_R
N
ASEQ

G
19_PTPN

_R
N
ASEQ

G
21_PTPN

_R
N
ASEQ

G
23_PTPN

_R
N
ASEQ

G
28_PTPN

_R
N
ASEQ

G
29_PTPN

_R
N
ASEQ

G
34_PTPN

_R
N
ASEQ

G
38_PTPN

_R
N
ASEQ

G
46_PTPN

_R
N
ASEQ

G
53_PTPN

_R
N
ASEQ

G
59_PTPN

_R
N
ASEQ

G
68_PTPN

_R
N
ASEQ

G
90_PTPN

_R
N
ASEQ

G
93_PTPN

_R
N
ASEQ

G
99_PTPN

_R
N
ASEQ

G
100_PTPN

_R
N
ASEQ

G
112_PTPN

_R
N
ASEQ

G
114_PTPN

_R
N
ASEQ

G
119_PTPN

_R
N
ASEQ

G
129_PTPN

_R
N
ASEQ

G
130_PTPN

_R
N
ASEQ

G
157_PTPN

_R
N
ASEQ

G
170_PTPN

_R
N
ASEQ

G
171_PTPN

_R
N
ASEQ

G
176_PTPN

_R
N
ASEQ

G
179_PTPN

_R
N
ASEQ

G
181_PTPN

_R
N
ASEQ

G
183_PTPN

_R
N
ASEQ

G
184_PTPN

_R
N
ASEQ

G
194_PTPN

_R
N
ASEQ

G
195_PTPN

_R
N
ASEQ

G
200_PTPN

_R
N
ASEQ

G
201_PTPN

_R
N
ASEQ

G
202_PTPN

_R
N
ASEQ

G
203_PTPN

_R
N
ASEQ

G
203A_PTPN

_R
N
ASEQ

G
204_PTPN

_R
N
ASEQ

G
208_PTPN

_R
N
ASEQ

G
210_PTPN

_R
N
ASEQ

G
222_PTPN

_R
N
ASEQ

G
224_PTPN

_R
N
ASEQ

G
1_P0PN

_R
N
ASEQ

G
15_P0PN

_R
N
ASEQ

G
19_P0PN

_R
N
ASEQ

G
21_P0PN

_R
N
ASEQ

G
23_P0PN

_R
N
ASEQ

G
28_P0PN

_R
N
ASEQ

G
29_P0PN

_R
N
ASEQ

G
34_P0PN

_R
N
ASEQ

G
38_P0PN

_R
N
ASEQ

G
46_P0PN

_R
N
ASEQ

G
53_P0PN

_R
N
ASEQ

G
59_P0PN

_R
N
ASEQ

G
68_P0PN

_R
N
ASEQ

G
90_P0PN

_R
N
ASEQ

G
93_P0PN

_R
N
ASEQ

G
99_P0PN

_R
N
ASEQ

G
100_P0PN

_R
N
ASEQ

G
112_P0PN

_R
N
ASEQ

G
114_P0PN

_R
N
ASEQ

G
119_P0PN

_R
N
ASEQ

G
129_P0PN

_R
N
ASEQ

G
130_P0PN

_R
N
ASEQ

G
157_P0PN

_R
N
ASEQ

G
170_P0PN

_R
N
ASEQ

G
171_P0PN

_R
N
ASEQ

G
176_P0PN

_R
N
ASEQ

G
179_P0PN

_R
N
ASEQ

G
181_P0PN

_R
N
ASEQ

G
183_P0PN

_R
N
ASEQ

G
184_P0PN

_R
N
ASEQ

G
194_P0PN

_R
N
ASEQ

G
195_P0PN

_R
N
ASEQ

G
200_P0PN

_R
N
ASEQ

G
201_P0PN

_R
N
ASEQ

G
202_P0PN

_R
N
ASEQ

G
203_P0PN

_R
N
ASEQ

G
203A_P0PN

_R
N
ASEQ

G
204_P0PN

_R
N
ASEQ

G
208_P0PN

_R
N
ASEQ

G
210_P0PN

_R
N
ASEQ

G
222_P0PN

_R
N
ASEQ

G
224_P0PN

_R
N
ASEQ

G1_PT_RNASEQ
G15_PT_RNASEQ
G19_PT_RNASEQ
G21_PT_RNASEQ
G23_PT_RNASEQ
G28_PT_RNASEQ
G29_PT_RNASEQ
G34_PT_RNASEQ
G38_PT_RNASEQ
G46_PT_RNASEQ
G53_PT_RNASEQ
G59_PT_RNASEQ
G68_PT_RNASEQ
G90_PT_RNASEQ
G93_PT_RNASEQ
G99_PT_RNASEQ
G100_PT_RNASEQ
G112_PT_RNASEQ
G114_PT_RNASEQ
G119_PT_RNASEQ
G129_PT_RNASEQ
G130_PT_RNASEQ
G157_PT_RNASEQ
G170_PT_RNASEQ
G171_PT_RNASEQ
G176_PT_RNASEQ
G179_PT_RNASEQ
G181_PT_RNASEQ
G183_PT_RNASEQ
G184_PT_RNASEQ
G194_PT_RNASEQ
G195_PT_RNASEQ
G200_PT_RNASEQ
G201_PT_RNASEQ
G202_PT_RNASEQ
G203_PT_RNASEQ
G203A_PT_RNASEQ
G204_PT_RNASEQ
G208_PT_RNASEQ
G210_PT_RNASEQ
G222_PT_RNASEQ
G224_PT_RNASEQ
G1_P0_RNASEQ
G15_P0_RNASEQ
G19_P0_RNASEQ
G21_P0_RNASEQ
G23_P0_RNASEQ
G28_P0_RNASEQ
G29_P0_RNASEQ
G34_P0_RNASEQ
G38_P0_RNASEQ
G46_P0_RNASEQ
G53_P0_RNASEQ
G59_P0_RNASEQ
G68_P0_RNASEQ
G90_P0_RNASEQ
G93_P0_RNASEQ
G99_P0_RNASEQ
G100_P0_RNASEQ
G112_P0_RNASEQ
G114_P0_RNASEQ
G119_P0_RNASEQ
G129_P0_RNASEQ
G130_P0_RNASEQ
G157_P0_RNASEQ
G170_P0_RNASEQ
G171_P0_RNASEQ
G176_P0_RNASEQ
G179_P0_RNASEQ
G181_P0_RNASEQ
G183_P0_RNASEQ
G184_P0_RNASEQ
G194_P0_RNASEQ
G195_P0_RNASEQ
G200_P0_RNASEQ
G201_P0_RNASEQ
G202_P0_RNASEQ
G203_P0_RNASEQ
G203A_P0_RNASEQ
G204_P0_RNASEQ
G208_P0_RNASEQ
G210_P0_RNASEQ
G222_P0_RNASEQ
G224_P0_RNASEQ

Variance2
Range2

Variance1
R

ange1

Range2
1.5

0.5

Variance2
0.3

0.05

Range1
1.6

0.4

Variance1
0.2

0.05

−0.5

0

0.5

Supplementary Fig. 21: (Continue next page)



Supplementary Fig. 21: Heatmap representing the Pearson correlation coefficients of the log2(CN 
ratio) of 100kb-windows binned from copy number segments of CNA profiles estimated from (a) 
RNA-Seq (RNASEQ NORM vs TUM) and (b) gene expression array (EXPARR NORM vs TUM), 
between matched samples normalized by median expression of normal samples of the same tumor 
type and median expression of same set of patient tumors. The variance and 5-95% inter-percentile 
range of log2(CN ratio) values were calculated across all 100kb-windows per sample.
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Supplementary Fig. 22: Heatmap representing the Pearson correlation coefficients of the log2(CN 
ratio) of 100kb-windows binned from copy number segments of CNA profiles between matched 
samples estimated from WES and RNA-Seq, (a) normalized by median expression of normal samples 
of the same tumor type “WES vs RNASEQ (NORM)” or (b) median expression of same set of patient 
tumors “WES vs RNASEQ (TUM)”. The variance and 5-95% inter-percentile range of log2(CN ratio) 
values were calculated across all 100kb-windows per sample.
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Supplementary Fig. 23: Heatmap representing the Pearson correlation coefficients of the log2(CN 
ratio) of 100kb-windows binned from copy number segments of CNA profiles between matched 
samples estimated from SNP array and gene expression microarray, (a) normalized by median 
expression of normal samples of the same tumor type ”SNP vs EXPARR (NORM)” or (b) median 
expression of same set of patient tumors ”SNP vs EXPARR (TUM)”. The variance and 5-95% inter-
percentile range of log2(CN ratio) values were calculated across all 100kb-windows per sample.
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Supplementary Fig. 24: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array bladder cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 25: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array breast cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 26: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array colorectal cancer dataset.

Gene−based log2(CN ratio) correlation

J000094707_J000101141_P0_001P0_AffySN
P

J000094707_J000102913_P1_001P0014P1_AffySN
P

J000094707_J000103479_P1_001P0011P1_AffySN
P

J000099318_J000101791_P0_002P0_AffySN
P

J000099318_J000103814_P1_001P0006P1_AffySN
P

J000101006_J000101984_P0_001P0_AffySN
P

J000101006_J000103458_P1_001P0007P1_AffySN
P

J000101328_J000102291_P0_001P0_AffySN
P

J000101328_J000103053_P1_001P0009P1_AffySN
P

J000101329_J000103067_P1_001P0006P1_AffySN
P

J000102630_J000107525_P2_002P0019P1003P2_AffySN
P

TM
00134_C

N
0330F216P0_P0_AffySN

P

TM
00926_C

N
1611F000P0076P1_P1_AffySN

P

TM
00980_C

N
0010F100P0_P0_AffySN

P

TM
01014_C

N
0500F107P0_P0_AffySN

P

TM
01048_C

N
1641F116P0147P1_P1_AffySN

P

TM
01231_TM

01231F001P0_P0_AffySN
P

TM
01237_TM

01237F560P0245P1_P1_AffySN
P

TM
01239_TM

01239F561P0_P0_AffySN
P

TM
01258_TM

01258F643P0216P1_P1_AffySN
P

TM
01303_TM

01303F800P0241P1_P1_AffySN
P

TM
01340_TM

01340F885P0_P0_AffySN
P

TM
01464_TM

01464F1331P0_P0_AffySN
P

TM
01498_TM

01498F11P0_P0_AffySN
P

TM
01500_TM

01500F21P0_P0_AffySN
P

TM
01500_TM

01500F25P0_P0_AffySN
P

J000094707_J000101139_P0_002P0_AffySNP
J000094707_J000101141_P0_001P0_AffySNP
J000094707_J000102913_P1_001P0014P1_AffySNP
J000099318_J000101529_P0_001P0_AffySNP
J000099318_J000101791_P0_002P0_AffySNP
J000101006_J000101979_P0_002P0_AffySNP
J000101006_J000101984_P0_001P0_AffySNP
J000101328_J000102289_P0_002P0_AffySNP
J000101328_J000102291_P0_001P0_AffySNP
J000101329_J000102066_P0_001P0_AffySNP
J000102630_J000106822_P1_002P0019P1_AffySNP
TM00134_CN0330F214P0_P0_AffySNP
TM00926_CN1611FPT_PT_AffySNP
TM00980_CN0010FPT_PT_AffySNP
TM01014_CN0500FPT_PT_AffySNP
TM01048_CN1641F116P0_P0_AffySNP
TM01231_TM01231FPT_PT_AffySNP
TM01237_TM01237F560P0_P0_AffySNP
TM01239_TM01239FPT_PT_AffySNP
TM01258_TM01258F643P0_P0_AffySNP
TM01303_TM01303F820P0_P0_AffySNP
TM01340_TM01340F884P0_P0_AffySNP
TM01464_TM01464F1330P0_P0_AffySNP
TM01498_TM01498F014P0_P0_AffySNP
TM01500_TM01500F023P0_P0_AffySNP
TM01500_TM01500F21P0_P0_AffySNP

Variance2
Range2

Variance1
R

ange1

Range2
3

0.5

Variance2
0.6

0.1

Range1
2.5

0.5

Variance1
0.5

0.1

0

0.2

0.4

0.6

0.8

1



Supplementary Fig. 27: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array glioblastoma multiforme 
(GBM) dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 28: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array lung adenocarcinoma 
(LUAD) dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 29: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array lung squamous cell 
carcinoma (LUSC) dataset.
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Supplementary Fig. 30: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array other lung cancer subtypes 
dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 31: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array skin melanoma dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 32: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array ovarian cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 33: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array sarcoma dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 34: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from JAX SNP array other cancers dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 35: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from BCM SNP array breast cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 36: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from SIBS SNP array hepatocellular carcinoma 
(HCC) dataset.
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Supplementary Fig. 37: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from SIBS gene expression array (normalized by 
median expression of normal liver tissue samples) hepatocellular carcinoma (HCC) dataset.
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Supplementary Fig. 38: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from SIBS gene expression array (normalized by 
median expression of tumor samples of the same dataset) hepatocellular carcinoma (HCC) dataset.
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Supplementary Fig. 39: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from HCI SNP array breast cancer dataset.
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Supplementary Fig. 40: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from HCI WES breast cancer dataset.
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Supplementary Fig. 41: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from SNU-JAX WES gastric cancer dataset.

Gene−based log2(CN ratio) correlation

G
1_P0PN

_W
ES

G
15_P0PN

_W
ES

G
21_P0PN

_W
ES

G
28_P0PN

_W
ES

G
34_P0PN

_W
ES

G
37_P0PN

_W
ES

G
38_P0PN

_W
ES

G
46_P0PN

_W
ES

G
59_P0PN

_W
ES

G
65_P0PN

_W
ES

G
68_P0PN

_W
ES

G
90_P0PN

_W
ES

G
93_P0PN

_W
ES

G
99_P0PN

_W
ES

G
100_P0PN

_W
ES

G
103_P0PN

_W
ES

G
112_P0PN

_W
ES

G
114_P0PN

_W
ES

G
119_P0PN

_W
ES

G
119−LN

128_PTPN
_W

ES

G
119−LN

128_P0PN
_W

ES

G
130_P0PN

_W
ES

G
170_P0PN

_W
ES

G
171_P0PN

_W
ES

G
171−LN

1_PTPN
_W

ES

G
171−LN

1_P0PN
_W

ES

G
171−LN

2_PTPN
_W

ES

G
171−LN

2_P0PN
_W

ES

G
179_P0PN

_W
ES

G
183_P0PN

_W
ES

G
195_P0PN

_W
ES

G
201_P0PN

_W
ES

G
204_P0PN

_W
ES

G
208_P0PN

_W
ES

G
210_P0PN

_W
ES

G
222_P0PN

_W
ES

G1_PTPN_WES
G15_PTPN_WES
G21_PTPN_WES
G28_PTPN_WES
G34_PTPN_WES
G37_PTPN_WES
G38_PTPN_WES
G46_PTPN_WES
G59_PTPN_WES
G65_PTPN_WES
G68_PTPN_WES
G90_PTPN_WES
G93_PTPN_WES
G99_PTPN_WES
G100_PTPN_WES
G103_PTPN_WES
G112_PTPN_WES
G114_PTPN_WES
G119_PTPN_WES
G119_P0PN_WES
G119−LN128_PTPN_WES
G130_PTPN_WES
G170_PTPN_WES
G171_PTPN_WES
G171_P0PN_WES
G171−LN1_PTPN_WES
G171−LN1_P0PN_WES
G171−LN2_PTPN_WES
G179_PTPN_WES
G183_PTPN_WES
G195_PTPN_WES
G201_PTPN_WES
G204_PTPN_WES
G208_PTPN_WES
G210_PTPN_WES
G222_PTPN_WES

Variance2
Range2

Variance1
R

ange1

Range2
2

0.5

Variance2
0.4

0.1

Range1
1.6

0.2

Variance1
0.25

0.05

0

0.2

0.4

0.6

0.8

1



Supplementary Fig. 42: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from SNU-JAX RNA-Seq (normalized by median 
expression of normal gastric tissue samples from the same patients) gastric cancer dataset.
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Supplementary Fig. 43: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from SNU-JAX RNA-Seq (normalized by median 
expression of tumor samples of the same dataset) gastric cancer dataset.
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Supplementary Fig. 44: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from MDACC WES lung adenocarcinoma (LUAD) 
dataset.
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Supplementary Fig. 45: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from MDACC WES lung squamous cell 
carcinoma (LUSC) dataset.
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Supplementary Fig. 46: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from MDACC WES other lung cancer subtypes 
dataset.
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Supplementary Fig. 47: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES bladder cancer dataset.
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Supplementary Fig. 48: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES colorectal cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 49: (Continue next page)



Supplementary Fig. 49: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES head and neck cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 50: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES lung cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 51: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES pancreatic cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 52: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES renal cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 53: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES sarcoma dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 54: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES skin cancer dataset.

Gene−based log2(CN ratio) correlation
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Supplementary Fig. 55: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from PDMR WES other cancers dataset.
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Supplementary Fig. 56: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from WISTAR WES skin melanoma dataset.
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Supplementary Fig. 57: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from WUSTL WES breast cancer dataset.
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Supplementary Fig. 58: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from WUSTL WES pancreatic cancer dataset.
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Supplementary Fig. 59: (Continue next page)



Supplementary Fig. 59: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from EuroPDX WGS colorectal cancer (liver 
metastases) dataset.
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Supplementary Fig. 60: CNA profiles (IGV heatmap) and correlation heatmap of gene-based copy 
number (log2(CN ratio), median centered) of samples from EuroPDX WGS breast cancer dataset.
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Supplementary Fig. 61: Boxplots comparing the fraction of genome altered by CNA events 
between patient tumors (n=38) that were (n=8) and were not engrafted successfully. The tumors 
were a subset of the the EuroPDX BRCA dataset and the copy number profiles were obtained using 
array CGH data. P-values were computed by two-sided Wilcoxon rank sum test. In the boxplot, the 
center line is the median, box limits are the upper and lower quantiles, whiskers extend 1.5 × the 
interquartile range, dots represent the all data points. 
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b

Supplementary Fig. 62: PT samples have a lower range of CNA values than PDX samples.
Comparison of 5-95% inter-percentile range of log2(CN ratio) values of CNA in pairs of samples (PT or
PDX) from the same model (left panel). Pearson correlation of the samples versus the minimum range
of the two samples (right panel). Samples with lower range tend to have lower correlations with other
samples. For a given sample, the 5-95% inter-percentile range of log2(CN ratio) values were calculated
across all 100kb-windows binned from copy number segments of each sample. (a) All data; (b) After
removing comparisons of low correlation (< 0.6) due to non-aberrant samples (range < 0.3). Sample 1:
PT or lower passage PDX, Sample 2: later passage PDX or same passage PDX of different lineage.

0 1 2 3 4

0
1

2
3

4
SNP array

Sample1 100kb-window range (5-95 percentile)

S
am

pl
e2

 1
00

kb
-w

in
do

w
 ra

ng
e 

(5
-9

5 
pe

rc
en

til
e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SNP array

min(Sample1,Sample2) 100kb-window range (5-95 percentile)

G
en

e 
C

N
 c

or
re

la
tio

n

0 1 2 3 4

0
1

2
3

4

Whole-exome Seq

Sample1 100kb-window range (5-95 percentile)

S
am

pl
e2

 1
00

kb
-w

in
do

w
 ra

ng
e 

(5
-9

5 
pe

rc
en

til
e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Whole-exome Seq

min(Sample1,Sample2) 100kb-window range (5-95 percentile)

G
en

e 
C

N
 c

or
re

la
tio

n

0 1 2 3 4

0
1

2
3

4

Whole-genome Seq

Sample1 100kb-window range (5-95 percentile)

S
am

pl
e2

 1
00

kb
-w

in
do

w
 ra

ng
e 

(5
-9

5 
pe

rc
en

til
e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Whole-genome Seq

min(Sample1,Sample2) 100kb-window range (5-95 percentile)

G
en

e 
C

N
 c

or
re

la
tio

n

PT-PDX
PDX-PDX



Supplementary Fig. 63: Scatter plots to compare Pearson correlation coefficients of gene-based copy 
number using SNP array, gene expression array normalized using median expression of normal 
(RNASEQ/EXPARR NORM) and tumor (RNASEQ/EXPARR TUM) samples. (a) RNASEQ NORM versus 
TUM, (b) EXPARR NORM versus TUM, and (c) SNP array versus EXPARR NORM/TUM. P-values were 
computed by one-sided Wilcoxon signed-rank test. In all plots, number of pairwise correlations are 
indicated in each plot title.
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Supplementary Fig. 64: Distribution of Pearson correlation coefficients of gene-based copy number 
between different combinations of PT and PDX passages of the same model for specific tumor types, 
(a) PDMR colon carcinoma (WES), (b) PDMR and WISTAR melanoma (WES), (c) EuroPDX CRC and 
BRCA (WGS). PDX-early comprises of P0 to P1 for CRC and P0 to P2 for BRCA, and PDX-late 
comprises of P2 to P6 for CRC and P4 to P9 for BRCA. P-values were computed by two-sided 
Wilcoxon rank sum test (ns: non-significant, p > 0.05). In all boxplots, the center line is the median, box 
limits are the upper and lower quantiles, whiskers extend 1.5 × the interquartile range, dots represent 
the all data points. In all plots, number of models are indicated in each plot title, number of pairwise 
correlations per boxplot are indicated in the horizontal axis labels.
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Supplementary Fig. 65: Scatter plot of Pearson correlation between samples of PDX-early and PDX-
late versus the corresponding passage difference for same lineage samples.
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Supplementary Fig. 66: Distribution of Pearson correlation coefficients of gene-based copy number for 
mutational statuses (WT: wildtype, MUT: mutant) of (a) – (f) TP53 or BRCA1/BRCA2 of the samples or 
models for each correlation pair for, (a) and (b) WES, (c) and (d) SNP array, (e) and (f) WGS, and (g) 
DNA repair genes for WES. For SNP array and WGS data, only models with available mutational 
statuses are included. P-values were computed by one-sided Wilcoxon rank sum test (ns: non-
significant, p > 0.05). In all boxplots, the center line is the median, box limits are the upper and lower 
quantiles, whiskers extend 1.5 × the interquartile range, dots represent outliers. In all plots, number of 
models, samples and pairwise correlations are indicated in each plot title, number of pairwise 
correlations per boxplot are indicated in the horizontal axis labels.
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Supplementary Fig. 67: Distribution of Pearson correlation coefficients of gene-based copy number 
for mutational statuses (WT: wildtype, MUT: mutant) of (a) TP53 or (b) BRCA1/BRCA2 of the models 
for each correlation pair for all breast cancer models across all platforms, where mutational status is 
available. P-values were computed by one-sided Wilcoxon rank sum test (ns: non-significant, p > 
0.05). In all boxplots, the center line is the median, box limits are the upper and lower quantiles, 
whiskers extend 1.5 × the interquartile range, dots represent outliers. In all plots, number of pairwise 
correlations per boxplot are indicated in the horizontal axis labels.
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Supplementary Fig. 68: log2(CN ratio) values between each pair of samples of recurrent genes (see 
Supplementary Table 4). PDX-1: earlier passage, PDX-2: same passage but different lineage or later 
passage. 
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Supplementary Fig. 69: Correlation heatmap of gene-based copy number (log2(CN ratio), median 
centered) of multi-region samples of the same tumor from TRACERx (a) lung adenocarcinoma (LUAD), 
(b) lung squamous cell carcinoma (LUSC) and (c) other lung cancer subtypes.
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PT P0

SNU-JAX Gastric cancer: G38, correlation= 0.176
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WUSTL Breast cancer: WHIM47, correlation= 0.552
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Supplementary Fig. 70: Window-based and segmented copy number estimated as (a) depth ratio by 
Sequenza for WES, and (b) log2 (ratio) by ASCAT for WGS, for same lineage samples identified to be 
aberrant (5-95% inter-percentile range of log2(CN ratio) values > 0.5 for both samples) and low 
correlation (Pearson correlation coefficient < 0.6) between the sample pairs
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Correlation= 
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P1 vs P7: 0.566

b
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Supplementary Fig. 71: Workflow for copy number estimation by Sequenza from whole-exome 
sequencing data with paired-normal for (a) patient tumor (without Xenome) and (b) PDX tumor (with 
Xenome for mouse reads removal).



Supplementary Table 1: Summary of datasets collected from various centers in the PDXNET 
consortium, EuroPDX consortium and published datasets.

Number of 
models

Number of 
patient tumor 

samples

Number of 
PDX samples

Number of 
models

Number of 
patient tumor 

samples

Number of 
PDX samples

Number of 
models

Number of 
patient tumor 

samples

Number of 
PDX samples

Number of 
models

Number of 
patient tumor 

samples

Number of 
PDX samples

PT PDX

JAX PDX resource 
(various tumor 
types)

105 105 27 203 3 3 0 27 203

SNU-JAX gastric 
cancer 48 33 33 33 42 42 42 48 48

HCI breast cancer 18 13 12 16 10 9 9 16 25

BCM breast cancer 14 14 0 28 0 28

MDACC lung 
cancer 45 45 45 45 45 45

Wistar melanoma 10 10 8 9 8 9

NCI PDMR (various 
tumor types) 83 83 21 439 21 439

WUSTL pancreatic 
cancer 5 5 5 5 5 5

WUSTL breast 
cancer 13 13 13 13 13 13

SIBS 
hepatocellular 
carcinoma

28 28 2 33 28 3 34 3 34

EuroPDX colorectal 
cancer (liver 
metastasis)

97 97 95 192 95 192

EuroPDX breast 
cancer 43 43 43 86 43 86

Total 509 160 41 280 202 137 553 140 138 278 70 45 76 324 1127

Number of unique samplesWhole-exome sequencing (tumor-normal)SNP array (single tumor) RNA-Seq or Microarray (tumor-normal)

Data source

Whole-genome sequencing (single tumor)
Number of 

unique 
models

SUPPLEMENTARY TABLES



Supplementary Table 2: Summary of datasets by tumor type.

Tumor type Total models Models with patient 
tumor samples

Models with multiple 
PDX samples

Number of PDX 
samples

Colorectal cancer 130 100 123 299

Breast cancer 96 74 69 167

Gastric cancer 48 48 0 48

Lung squamous cell carcinoma 34 19 17 69

Lung adenocarcinoma 33 23 11 59

Hepatocellular carcinoma 28 3 5 34

Skin melanoma and other skin 
cancers 28 13 17 79

Head and neck cancer 22 5 22 106

Sarcoma 19 7 15 73

Uninary Bladder cancer 16 6 15 61

Other lung cancers 11 7 5 16

Brain glioblastoma multiforme 10 9 2 13

Ovarian cancer and other female 
reproducitve organ cancers 10 1 10 31

Pancreatic cancer 10 6 5 27

Renal cell carcinoma and other 
kidney cancers 8 2 7 29

Other cancers 6 1 5 16

Total 509 324 328 1127



Supplementary Table 3: Validation dataset which comprises copy number alteration profiles 
estimated for matched samples assayed across multiple platforms

Data source
Number of 
PT samples

Number of 
PDX samples

SNP vs WES
Comparison of CNA profiles estiimated from SNP array and 
whole-exome sequencing

JAX PDX resource and 
HCI breast cancer 8 0

WES vs RNASEQ (NORM/TUM)

Comparison of CNA profiles estimated from whole-exome 
sequencing and RNA-sequencing, either normalized by median 
expression of normal samples of the same tumor type or 
median expression of the same set of tumor samples

SNU-JAX gastric 
cancer

27 27

SNP vs EXPARR (NORM/TUM)

Comparison of CNA profiles estimated from SNP array and gene 
expression array, either normalized by median expression of 
normal samples of the same tumor type or median expression 
of the same set of tumor samples

SIBS hepatocellular 
carcinoma

2 33

RNASEQ NORM vs TUM

Comparison of CNA profiles estimated from RNA-sequencing 
with different normalizations, by median expression of normal 
samples of the same tumor type or median expression of the 
same set of tumor samples

SNU-JAX gastric 
cancer

42 42

EXPARR NORM vs TUM

Comparison of CNA profiles estimated from gene expression 
array with different normalizations, by median expression of 
normal samples of the same tumor type or median expression 
of the same set of tumor samples

SIBS hepatocellular 
carcinoma

3 34

Comparison dataset



Supplementary Table 4: Recurrent frequency (based on models) of genes with >5% recurrence 
with large copy number deviation (|residual| > 1) from linear regression model for PT-PDX (279 
models) and PDX-PDX (306 models) comparisons.

PT vs PDX PDX vs PDX

GOLGA6L6 15q11.2 6.09

HLA-DQA1 6p21.32 8.24

HLA-DQB1 6p21.32 7.89

HLA-DRB1 6p21.32 8.96 6.54

HLA-DRB5 6p21.32 7.53 5.23

MACROD2 20p12.1 6.81

OR4M2 15q11.2 6.81

OR4N4 15q11.2 6.81

POTEB 15q11.2 6.45

POTEB2 15q11.2 6.81

RBFOX1 16p13.3 5.73

TPTE 21p11.2 7.17

Genes with >5% 
recurrent frequency 
(|residual| > 1)

Recurrent frequency (%)Gene location 
(GRCh38)



 

 
 
 
 
 
 
 
 

Data source Initial take rate  

JAX PDX resource (various tumor types) 2 - 60% 

SNU-JAX gastric cancer NA 

HCI breast cancer 28% 22 

BCM breast cancer 40 - 90% 41 

MDACC lung cancer 35% 25 

Wistar melanoma 100% 

NCI PDMR (various tumor types) (Evrard et al., In Preparation) 

WUSTL pancreatic cancer 28% 

WUSTL breast cancer 6 - 17% 

SIBS hepatocellular carcinoma NA 

EuroPDX colorectal cancer (liver metastasis) 85% 30 

EuroPDX breast cancer 5-11% 
 
 
 
 
 
Supplementary Table 10: Xenograft initial take rates of tumors from the various contributing 
centers. 
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