Molecular Plant, Volume 13

Supplemental Information

Phosphorylation of the *Pseudomonas* Effector AvrPtoB by *Arabidopsis*

SnRK2.8 Is Required for Bacterial Virulence

Lei Lei, Danielle M. Stevens, and Gitta Coaker

1	
2	Phosphorylation of the Pseudomonas effector AvrPtoB by Arabidopsis SnRK2.8 is
3	required for Bacterial Virulence
4	
5	Running Title: Phosphorylation of the AvrPtoB effector by SnRK2.8
6	
7	Authors and Affiliations: Lei Lei ¹ , Danielle M. Stevens ¹ , Gitta Coaker ^{1*}
8	¹ Department of Plant Pathology, University of California, Davis, Davis, CA, USA
9	*Corresponding author: Gitta Coaker; Email: glcoaker@ucdavis.edu
10	
11	
12	
13	
15	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	

24 Supplemental methods

25

26 Yeast two-hybrid screen

27 The GAL4 based Matchmaker yeast two-hybrid system was used for the AvrPtoB-kinase 28 interaction screen (Clonetech). AvrPtoB and a mCherry negative control were cloned into the pGADT7 vector fused to the GAL4 activation domain and HA tag. Arabidopsis SnRKs and 29 CDPKs were cloned into the pGBKT7 vector, which contains the GAL4 DNA binding domain 30 and N-terminal Myc epitope tag. In order to detect interactions with CDPKs, their C-terminal 31 Ca²⁺ regulatory and auto-inhibitory domains were removed prior to clone into the pGBKT7 32 vector. Primers are listed in Table S2. The pGADT7-AvrPtoB and pGADT7-mCherry plasmids 33 were separately co-transformed with each pGBKT7- $SnRK/CPK\Delta C$ plasmid into the yeast strain 34 AH109, colonies were selected on SD -Leu/-Trp dropout media and tested for interactions on SD 35 36 -Leu/-Trp/-His dropout media containing X-α-Gal. Yeast transformation and media preparation were performed per manufacturer instructions (Clontech). To confirm protein expression, yeast 37 proteins were extracted as described previously and subjected to anti-HA HRP (Roche 38 #12013819001; 1:2,000) and anti-Myc (Clontech #631206; 1: 2,000) immunoblotting (Zhang et 39 al., 2011b). 40

41

42 Plant protein extraction and immunoblotting

43 Plant tissues were ground in liquid nitrogen and homogenized in Protein Extraction Buffer

44 [(PEB: 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, pH 8.0, 150 mM NaCl, 0.1% Triton X-100,

45 0.5% IGEPAL, 5% glycerol, 1 mM PMSF, 3 mM DTT, $1 \times \text{CPI}$ (Thermo Fisher Scientific), $1 \times$

46 PPI (Thermo Fisher Scientific), 50 mM MG132 (Sigma-Aldrich)] (Chen et al., 2017). The

47 homogenate was cleaned by centrifuging at 14,000 rpm for 15 min at 4 °C, and boiled with $5 \times$

48 SDS buffer (250 mM Tris-HCl pH 6.8, 6% SDS, 0.5 M DTT, 30% glycerol, 0.08% bromophenol

49 blue) for 10 min.

50

51 **Co-immunoprecipitation assays**

52 To confirm the association between AvrPtoB and SnRK/CDPKs in planta, kinase dead variants

- 53 were generated and tested for their ability to associate with wild-type AvrPtoB after transient
- 54 expression in N. benthamiana. SnRK1.1-KD (K71A), SnRK2.6-KD (K50A), SnRK2.8-KD
- 55 (K33A), $CPK4\Delta C$ -KD (K54A) and $CPK5\Delta C$ -KD (K126A) kinase dead variants were generated
- 56 by PCR-based site-directed mutagenesis and fused with a C-terminal HA tag in the binary vector
- pGWB414 (Nakagawa et al., 2007). Primers are listed in Table S3. AvrPtoB fused with a C-
- terminal GFP tag was cloned into the dexamethasone (Dex)-inducible binary vector pTA7001
- 59 (Gu and Innes, 2011). Binary vectors were transformed into Agrobacterium tumefaciens
- 60 GV3101. Agrobacterium suspensions were co-infiltrated into N. benthamiana leaves at an
- 61 OD600 = 0.4 for AvrPtoB and an OD600 = 0.6 for each kinase. Twenty-four hours post-
- 62 inoculation, 15 μ M DEX and 0.01% Silwet L-77 were sprayed to induce the expression of
- 63 AvrPtoB-GFP. Two grams of leaf tissue per sample were collected three hours post-DEX
- 64 application.
- For immunoprecipitations, *N. benthamiana* leaf tissues were ground in liquid nitrogen and re-
- suspended in 2 mL IP buffer (50mM Tris-HCL ph7.5, 150mM NaCl, 0.1% Triton, 0.2% NP-40,
- $1 \times$ complete protease inhibitor (Thermo Fisher Scientific #A32963) and $1 \times$ phosphatase inhibitor
- 68 (Thermo Fisher Scientific #A32957), 1mM DTT, 40uM MG132, 0.5% PVP). Samples were
- 69 centrifuged at 14,000 rpm for 15 min and filtered to remove debris using a poly-prep
- 70 chromatography column (10 mL, Bio-Rad). The supernatant was incubated with 25 μL of anti-
- 71 GFP agarose beads at 4°C for 1.5 hr. Beads were washed once with IP buffer by centrifuging at
- 72 3000 rpm for two min and twice by filtration through a pierce centrifuge column (0.8 mL, Bio-
- Rad). Proteins were eluted from the beads by boiling in $2 \times$ Laemmli buffer for five min. Proteins
- vere separated by SDS-PAGE and immunoblotted with anti-HA HRP (Roche #12013819001;
- 75 1:2,000) and anti-GFP HRP (Miltenyi Biotec #130-091-833; 1:3,000).
- 76 To test the ability of AvrPtoB phosphorylation mutants to disrupt FLS2-BAK1 complex
- formation, *AvrPtoB* phospho-null mutants (S258A and S205AS210AS258A) were generated by
- 78 PCR-based site-directed mutagenesis. Primers are listed in Table S2. *AvrPtoB* variants were
- fused with C-terminal 3× FLAG tag in binary vector pTA7001, and FLS2 and BAK1 were
- separately fused with C-terminal GFP tag and HA tag in binary vector pEarleyGate 103 and
- pGWB14 (Earley et al., 2006; Nakagawa et al., 2007). The binary vectors were transformed into

82 Agrobacterium tumefaciens GV3101. FLS2, BAK1, and AvrPtoB variants Agrobacterium

suspensions were co-infiltrated into *N. benthamiana* leaves, 15 μM DEX and 0.01% Silwet L-77

84 were sprayed to induce the expression of AvrPtoB at 24 hpi for three hours, two grams of leaf

tissue for each sample were collected after 15 min treatment with 5 mM MgCl₂ or 10 μ M flg22.

86 Immunoprecipitation was performed as described above.

87

88 **Recombinant protein purification**

89 AvrPtoB and SnRK2.8 were cloned in E.coli expression vector pDEST15 (Invitrogen) fused with

90 N-terminal GST tag, the constructs were transformed into *E.coli* BL21 (DE3). 200 mL of *E.coli*

culture was grown at 28 °C until OD600 = 0.5. Protein expression was induced with 0.5mM

92 IPTG at 16 °C for 12 hr. Cells were harvested by centrifuging at 5000 g 4 °C for 10 min and

washed once with buffer A (0.1 M Tris-HCl pH 7.5, 150 mM NaCl, 1 mM PMSF, 1 × CPI, 10

mM DTT and 10 uM MG132). Cell pellets were resuspended in 3 mL of buffer A with 15

 $\mu g/mL$ lysozyme and incubated on ice for 30 min. Total protein was released by sonication and

96 incubated with Glutathione Sepharose 4B (GE Healthcare #GE17-0756-01) at 4 °C for one hour.

97 Agarose beads were washed three times with buffer A by centrifuging at 5000 g for 5 min.

98 Proteins were eluted by incubating with buffer B (50 mM Tris-HCl pH8, 10 mM reduced

99 Glutathione) for 10 min at room temperature (RT).

100

101 Kinase activity assay

102 An *in vitro* kinase activity assay was performed with recombinant proteins, 3 µg of GST-

AvrPtoB and 0.3-1 µg GST-SnRK2.8 were mixed in kinase buffer (20 mM Tris-HCl pH7.5, 10

104 mM MgCl₂, 1 mM CaCl₂, 100 μM ATP, 1 mM DTT). The kinase reaction was performed at

105 30 °C for 30 min and stopped by 3 × Laemmli buffer. Protein samples were separated in SDS-

PAGE and immunoblotted with anti-pSer antibody (Sigma #P3430; 1:1000) and anti-GSTantibody (Sigma; 1: 3000).

108

109 Phosphorylation site identification and quantification

110 To identify AvrPtoB phosphorylation sites *in vivo*, *AvrPtoB-YFP* in the pBluescript vector was

- 111 transiently expressed in Col-0 and *snrk2.8* protoplasts, protoplast preparation and transient
- transformation were performed as previously described (Yoo et al., 2007). 1 mL of protoplasts
- 113 was transfected with 100 µg of plasmid and collected in 9 hr. Protein was released in IP buffer
- 114 (without 0.5% PVP) and subject to GFP-IP as described above. Protein peptides were generated
- by in-solution trypsin digest as previously described and subjected to LC-MS/MS run by
- 116 Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) (Minkoff et al., 2013).
- 117 LC-MS/MS data was analyzed by software MaxQuant (Tyanova et al., 2016).
- 118 To quantify the phosphorylated peptides, an inclusion list of phosphopeptide and control
- 119 peptides, including the Mono-isotopic precursor (m/z) and charge state (z), was generated by
- software Skyline based on previous MS data, as shown in Table S4 (MacLean et al., 2010). The
- 121 peptide samples were scanned by Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher
- 122 Scientific) with a parallel reaction monitoring (PRM) method. The PRM data were analyzed by
- 123 MaxQuant and Skyline, the peptides peak areas were exported for the quantification analysis.
- 124

125 NPR1 and FLS2 accumulation

126 To test the ability of AvrPtoB to inhibit NPR1 and FLS2 accumulation in Arabidopsis Col-0 and

- 127 the *snrk2.8* knockout. DC3000 -/- carrying the empty vector (EV) or a plasmid expressing wild-
- type *AvrPtoB* were syringe infiltrated into Col-0 and *snrk2.8* at a concentration of 1×10^8 CFU
- 129 mL⁻¹ and proteins extracted after 4h (NPR1) and 8h (FLS2). The immunoblot was performed by
- 130 anti-NPR1 (Agrisera #AS12 1854; 1:1000) and anti-FLS2 (Agrisera #AS12 1857; 1:5000)
- primary antibody followed by anti-rabbit-HRP (BioRad #170-5046; 1:3000) secondary antibody.
- 132 To test the ability of AvrPtoB phosphorylation mutants to inhibit NPR1 and FLS2 accumulation,
- AvrPtoB phospho-null mutants (S258A and S205AS210AS258A) and AvrPtoB phospho-mimic
- mutants (S258D and S205DS210DS258D) were generated by PCR-based site-directed
- 135 mutagenesis. Primers are listed in Table S2. AvrPtoB variants were fused with C-terminal $3\times$
- 136 FLAG tag in binary vector pTA7001, and NPR1 and FLS2 were separately fused with C-terminal
- HA tag and GFP tag in binary vector pEarleyGate 103 and pGWB14 (Earley et al., 2006;
- 138 Nakagawa et al., 2007). The immunoblot was performed by anti-HA HRP (Roche

- 139 #12013819001; 1:2,000), anti-FLAG (Sigma #A8592; 1:3000), and anti-GFP HRP (Miltenyi
- 140 Biotec #130-091-833; 1:3,000).

Supplemental Figure 1. Amino acid conservation surrounding known effector phosphorylation sites. Related to Figure 1.

WebLogo alignment of the effector phosphorylation sites shown in Table S1. Red arrows point the phosphorylated residues. Amino acid size correlates with degree of conservation. The sequence logo was created by the WebLogo 3 (Crooks et al., 2004).

SD -Leu/-Trp/-His/X-α-gal

Supplemental Figure 2. Yeast-two hybrid screening of interactions between the *Pseudomonas syringae* effector AvrPtoB and SnRK or CDPK members. Related to Figure 1.

Yeast two-hybrid (Y2H) assay of AvrPtoB and SnRK-CDPKs in the Matchmaker GaL4 system. AvrPtoB was expressed from the pGADT7 vector, while SnRKs and C-terminal deletions of CPKs (CPKs \triangle C) were expressed from the pGBKT7 vector in *Saccharomyces cerevisea*. The pGBKT7 empty vector (EV) was included as a negative control. Blue colonies on SD -Leu/-Trp/-His/X- α -gal media indicate protein-protein interactions. AD = activation domain vector pGADT7, BD = binding domain vector pGBKT7.

Supplemental Figure 3. Protein expression of *SnRKs*, *CPKs*, and *AvrPtoB* used in the Y2H assay. Related to Figure 1.

Yeast proteins were extracted and SnRK and CPK proteins were detected by anti-myc immunoblot and AvrPtoB was detected by anti-HA immunoblot. Expression of the positive (Pto) and negative (mCherry) controls used in Figure 1 are shown.

Supplemental Figure 4. AvrPtoB T111 and S217 phosphorylation levels in the *snrk2.8* knockout compared to wild-type Col-0. Related to Figure 2.

AvrPtoB-GFP was expressed in Col-0 and *snrk2.8* protoplasts, total proteins were subjected to anti-GFP IP followed by tryptic digestion. Phosphorylated peptides were detected by LC-MS/MS with the parallel reaction monitoring method. The peptide phosphorylation intensity of T111 (A) and the phosphorylation ratio of S217 (B) were determined using Skyline software. Data are means \pm SE of three biological replicates (separate transfections). Asterisks indicate significant differences (Student's t-test, *p<0.05).

Organism	Accession	T111	S205	S210		S217	S258
organism	Accession	▼	★	★		•	*
P. syringae pv. tomato	WP_011104378.1	EARRTPEAT	Η Ο Ο Α Α Α Α Ρ	V R S P	T P T	PAS P A	TPVDRSPPRV
P. amygdali pv. mellea	WP_155520414.1	ΡΑΕΤΚΡΚΡΟ	RQQAASTP	ARTA	T R P P A	ARPPT	
P. syringae pv. helianthi	WP_122391989.1	RAETRSTPQ	RQEAESAP	ARTPER	SPARPPA	SPIAT	V R V D R S P P R V
P. syringae pv. helianthi	WP_122386861.1	RAETRSTPQ	RQEAESAP	ARTPER	SPARPPA	SPIAT	V R V D R S P P R V
P. amygdali pv. hibisci	WP_122351091.1	ΡΑΕΤΚΡΚΡΟ	RQQAASTP	ARTA	T R P P A	ARTPT	TPVDRSPPRV
P. caricapapayae	WP_122339706.1	GAETRRTPQ	RQEAASAP	ARTPER	SPARPPA	SPIAT	VRVDRSPPRV
P. amygdali pv. sesami	WP_122302383.1	ΡΑΕΤΚΡΚΡΟ	RQQAASTP	ARTA	T R P P A	ARP P T	TPVDRSPPRV
P. syringae pv. ribicola	WP_122292921.1	EARRTPEAT	Η Q Q A A S A P	V R S P	T P A	P P G P A	TPVDRSPPRV
P. amygdali pv. tabaci	WP_122234824.1	ΡΑΕΤΚΡΚΡΟ	RQQAASTP	A R T P	T R P P A	ARTPT	TPVDRSPPRV
P. amygdali pv. tabaci	WP_117139356.1	ΡΑΕΤΚΡΚΡΟ	RQQAASTP	ARTP	T R P P A	ARTPT	TPVDRSPPRV
P. amygdali pv. lachrymans	WP_109724131.1	PAETRPRPQ	RQQAASTP	A R T P	T R P P A	ARTPT	TPVDRSPPRV
P. caricapapayae	WP_083493210.1	GAETRRTPQ	RQEAASAP	ARTPER	SPARP PA	SPIAT	V R V D R S P P R V I
P. syringae pv. helianthi	WP_082441222.1	R A E T R S T P Q	RQEAESAP	ARTPER	SPARP P A	S Ρ Ι Α Τ	V R V D R S P P R V I
P. syringae pv. maculicola	WP_080898572.1	EARRTPEAT	Η Q Q A A S A P	V R S P	T P T	PAS P A	T P V D R S P P R V I
P. amygdali pv. lachrymans	WP_080546441.1	- <u>A</u>	Η Q Q A A S A P	V <u>R S P</u>	T <u>P</u> T	PAS P A	T P V D R S P P R V I
P. syringae USA007	WP_080270186.1	EARRTPEAT	Η Q Q A A S A P	V R S P	T P T	PAS P A	T P V D R S P P R V I
P. avellanae	WP_005618514.1	EARRTPEAT	Η Q Q A A S A P	V R S P	T P T	PASPA	T P V D R S P P R V I
P. amygdali pv. tabaci	RMV81218.1	PAETRPRPQ	RQQAASTP	ARTP	T R P P A	ARTPT	T P V D R S P P R V I
P. syringae pv. maculicola	RMM81086.1	EARRTPEAT	<u>Α Α Α Α Α Ρ</u>	V <u>R S P</u>	T <u>P</u> T	PASPA	T P V D R S P P R V
P. amygdali pv. mori	KPX96454.1	PAETR P RPQ	RQQAASTP	ARTP	T R P P A	ARTPT	T P V D R S P P R V
P. amygdali pv. mellea	KPX87239.1	PAETR P RPQ	RQQAASTP	ARTA	T R P P A	ARP P T	T P V D R S P P R V
P. syringae pv. helianthi	KPX42453.1	RAETRSTPQ	RQEAESAP	ARTPER	SPARPPA	SPIAT	V R V D R S P P R V
P. caricapapayae	KPW60468.1	GAETRRTPQ	RQEAASAP	ARTPER	SPARPPA	SPIAT	V R V D R S P P R V I
P. amygdali pv. lachrymans	EGH96534.1	- <u>A</u>	Ο Ο Α Α Σ Α Ρ	V R S P	<u>T</u> P <u>T</u>	PASPA	T P V D R S P P R V
P. avellanae	CAL69120.1	EARRTPEAT	Η Q Q A A S A P	V R S P	<u>T</u> P <u>T</u>	PASPA	TPVDRSPPRV
P. syringae pv. maculicola	AFI33132.1	EARRTPEAT	Η Q Q A A S A P	V R S P	<u>T</u> P <u>T</u>	PASPA	T P V D R S P P R V
P. syringae pv. maculicola	AFI33131.1	- A	Η Ο Ο Α Α ΣΑΡ	VRSP	T P T	PASPA	TPVDRSPPRV

Supplemental Figure 5. Conservation of phosphorylated residues in different AvrPtoB homologs. Related to Figure 2.

AvrPtoB phosphorylated residues identified by mass spectrometry were analyzed for their conservation across 27 AvrPtoB homologs from *P. syringae*. The translated sequence of avrptoB were used in BLAST searches against the NCBI nr database on January 5th, 2020 (*Pseduomonas syringae* group, taxid: 136849; default parameters otherwise) to identify homologs. Hits were filtered based on a minimum 65% sequence identity, a minimum 85% query coverage and an E-value of 0. Sequences were downloaded and aligned in Genious using Genious alignment (default parameters). The percentage of identity is shown by gradient white to black (white means less than 60% similar, gray means 60-80% similar, dark gray means 80-100%, and black means 100% similar). AvrPtoB phosphorylation sites identified *in vivo* are shown with arrows.

Related to Figure 3.

(A) Bacterial populations in the susceptible tomato genotype Rio Grande 76S five days postinoculation with *P. syringae* pv. *tomato* DC3000 $\Delta avrPto\Delta avrPtoB$ (-/-) variants. DC3000 -/carrying empty vector (EV) or plasmids expressing wild-type *AvrPtoB*, *AvrPtoB*_{5258A}, *AvrPtoB*₁₋₃₀₇, and *AvrPtoB*_{1-3075258A} were dip inoculated on tomato at a concentration of 2 × 10⁸ CFU mL⁻¹ with 0.005% Silwet. Log₁₀ CFU/cm² = log₁₀ colony-forming units per cm² of leaf tissue. Data are means \pm SD (n \geq 6 plants). Different letters indicate significant differences (one-way ANOVA, Tukey's test, p < 0.05).

(B) Bacterial populations in *Arabidopsis* Col-0 three days post-inoculation with DC3000 -/- variants. DC3000 -/- variants as described in (A) were syringe infiltrated in Col-0 at a concentration of 2×10^5 CFU mL⁻¹. Data are means \pm SD (n = 4 plants for day 0, n = 6 plants for day 3). Different letters indicate significant differences (two-way ANOVA, Tukey's test, p < 0.05).

(C) Expression of AvrPtoB-HA and its derivatives from DC3000 -/- . Bacteria were grown in minimal media at 18 °C. Anti-HA western blotting was performed to detect the expression of AvrPtoB in bacterial pellets.

Supplemental Figure 7. Phosphorylated AvrPtoB serine residues are required for virulence. Related to Figure 3.

(A) Disease symptoms of *Arabidopsis* Col-0 after inoculation with *P. syringae* pv. *tomato* DC3000 $\Delta avrPto\Delta avrPtoB$ (-/-) variants. DC3000 -/- carrying empty vector (EV) or plasmids expressing wild-type *AvrPtoB*, *AvrPtoB*_{S258A}, or *AvrPtoB*_{S205AS210AS258A} (*SSSAAA*) were syringe infiltrated into *Arabidopsis* Col-0 at a concentration of 2 × 10⁵ CFU mL⁻¹. Disease symptoms were observed 4 days post-inoculation (dpi).

(B) Disease symptoms of *Arabidopsis* Col-0 after inoculation with *P. syringae* pv. *tomato* DC3000 $\Delta avrPto\Delta avrPtoB$ (-/-) variants. DC3000 -/- carrying empty vector (EV) or plasmids expressing wild-type *AvrPtoB*, or *AvrPtoB*_{S205DS210DS258D} (*SSSDDD*). Plant were treated as described in (A).

(C) Callose deposition in *Arabidopsis* Col-0 after inoculation with -/- carrying EV, *AvrPtoB*, *S258A*, and *SSSAAA*. Leaves were inoculated with *P. syringae* at a concentration of 1×10^8 CFU mL⁻¹ and harvested 16h later. Leaves were stained by 1% aniline blue and imaged by fluorescence microscopy. Scale bar, 100 µm.

(D) Callose deposition in *Arabidopsis* Col-0 after inoculation with -/- carrying EV, *AvrPtoB*, and *SSSDDD*. Leaves were inoculated and callose visualized as described in (C).

(E) Quantification of callose deposits. Data are means \pm SD (n = 8 images from 8 leaves for -/- EV, n = 18 images from 18 leaves for rest variants). Different letters indicate significant differences (one-way ANOVA, Tukey's test, p < 0.05).

(F) Quantification of callose deposits. Data are means \pm SD (n = 21 images from 21 leaves for -/- EV, n = 30 images from 30 leaves for rest variants). Different letters indicate significant differences (one-way ANOVA, Tukey's test, p < 0.05).

Supplemental Figure 8. AvrPtoB mediated degradation of NPR1 requires the plant kinase SnrK2.8 and phosphorylated residues. Related to Figure 4.

(A) NPR1 accumulation in *Arabidopsis* Col-0 and the *snrk2.8* knockout after inoculation with *P. syringae* pv. *tomato* DC3000 $\Delta avrPto\Delta avrPtoB$ (-/-) variants. DC3000 -/- carrying the empty vector (EV) or a plasmid expressing wild-type *AvrPtoB* were syringe infiltrated into Col-0 and *snrk2.8* at a concentration of 1 × 10⁸ CFU mL⁻¹ and proteins extracted after four hours. Protein extracts were subjected to anti-NPR1 immunoblotting. Coomassie Brilliant Blue (CBB) staining shows equal protein loading.

(B) Quantification of NPR1-HA band intensity in (C). NPR1-HA bands intensities were quantified by Image Lab 6.0.1 (BIO-RAD). The values were normalized first by Rubisco bands and subsequently by the intensities of "EV" treatment. Data are means \pm SD (n = 6 leaves). Different letters indicate significant differences (one-way ANOVA, Tukey's test, p < 0.05).

(C) NPR1 accumulation in the presence of AvrPtoB phosphorylation mutants in *N. benthamiana* after Agrobacterium-mediated transient expression. *35S::NPR1-HA* was co-expressed with FLAG-tagged Dex-inducible *AvrPtoB*, *AvrPtoB*_{S258A}, *AvrPtoB*_{S205AS210AS258A} (*SSSAAA*), *AvrPtoB*_{S258D} or

 $AvrPtoB_{S205DS210DS258D}$ (SSSDDD). The Dex inducible EV was used as a control. The expression of AvrPtoB-FLAG phosphorylation variants was induced by 15 μ M DEX for 5 hours 24h post-Agrobacterium infiltration. Protein extracts were subjected to anti-HA and anti-FLAG immunoblotting. CBB staining shows protein loading.

(D) Quantification of NPR1 band intensity in (A). NPR1 bands intensities were quantified by Image Lab 6.0.1 (BIO-RAD). The values were normalized first by Rubisco bands and subsequently by the intensities of "0h" bands. Data are means \pm SD (n = 14 leaves). Different letters indicate significant differences (one-way ANOVA, Tukey's test, p < 0.05).

Supplemental Table 1. The phosphorylation of bacterial type III effectors and their phosphorylation sites are identified by mass spectrometry. Related to Figure 1.

Data were from the references in the table. Red indicates the phosphorylated residue.

Effector	Pathogen	Phosphorylation site	Host kinase	Required for virulence	Required for avirulence	Reference
AvrPto	P. syringae	NPNG <mark>S₁₄₉IRMTL</mark>	unknown	Yes	Yes	Anderson et al., 2006 Yeam et al., 2009
AvrPtoB	P. syringae	PVDR <mark>S₂₅₈PPRVNQR</mark>	unknown	Yes	Yes	Xiao et al., 2007
		QFSQLRT ₄₅₀ ISKAD	Pto/Fen (<i>in vitro</i>)	unknown	Yes	Ntoukakis et al., 2009
HopQ1	P. syringae	PVLERSK <mark>S₅₁APAL</mark>	SnRK (<i>in vitro</i>)	Yes	unknown	Li et al., 2013 Giska et al., 2013
AvrB	P. syringae	unknown	RIPK (in vitro)	unknown	Yes	Desveaux et al., 2007 Chung et al., 2014
AvrBsT	X. campestris	unknown	CaPIK1 (<i>in vitr</i> o)	unknown	Yes	Kim et al., 2014
XopN	X. campestris	APPRREHVS ₆₈₈ APSSP	unknown	Yes	unknown	Taylor et al., 2012
XopE2	X. euvesicatoria	RGRFRQPT ₆₆ LQPH LSNGRSATY <mark>S₁₃₃SLSY</mark> AQPI <mark>S₃₃₄PRTTAA</mark>	unknown	unknown	unknown	Dubrow et al., 2018
NopL	Rhizobium	RSGPSQAGLS ₁₃₉ PSAT SPSATPLLNPS ₁₄₈ PPP H LTAERGRS ₁₉₈ PQPS	SIPK (in vitro)	Yes	unknown	Zhang et al., 2011a Ge et al., 2016
NopP	Rhizobium	unknown	unknown	Yes	unknown	Skorpil et al., 2005

Supplemental Table 2. Related to Figure 2 and supplemental figure 4.

AvrPtoB was expressed in Col-0 and *snrk2.8* protoplasts and total proteins were subjected to anti-GFP IP followed by tryptic digestion. Phosphorylated peptides were detected by LC-MS/MS with the parallel reaction monitoring method. Peptide phosphorylation ratios were determined using Skyline software. Phoshorylation intensity is reported for residue T111 as no unphosphorylated peptides were detected by MS. Data are means \pm SE of three biological replicates (separate transfections).

	Phosphorylation ratio		s	E
Phosphorylated residue	Col-0	snrk2.8	Col-0	snrk2.8
S205	93.88	10.20	± 46.05	± 5.12
S210	173.85	17.90	± 85.40	± 8.81
S258	40263.92	4272.50	± 25060.68	± 2455.38
S217	0.01	0.01	± 0.001	± 0.003
	Phosphorylation intensity		s	E
	Col-0	snrk2.8	Col-0	snrk2.8
T111	3880000	13500000	± 2837677.1	± 2478126.5

Supplemental Table 3. Primers used in this study. Related to Methods.

Name	Sequence 5' to 3'	Purpose	
SnRK1.1-LP	CACCATGTTCAAACGAGTAGATGAGTTT	Full-length SnRK1 1 CDS	
SnRK1.1-RP	GAGGACTCGGAGCTGAGCAAG		
SnRK1.2-LP	CACCATGGATCATTCATCAAATAGATTTGGC	Full-length SnRK1.2 CDS	
SnRK1.2-RP	GATCACACGAAGCTCTGTAAGAAAGG		
SnRK1.3-LP	CACCATGGATGGATCATCGGAAAAAAC	Full-length SnRK1 3 CDS	
SnRK1.3-RP	GAGGACACCTAGCTCTCTGAGAAACG		
SnRK2.1-LP	CACCATGGACAAGTATGACGTTGTC	Full-length SnRK2 1 CDS	
SnRK2.1-RP	AGCTTTGTCAGACTCTTGACAAGACTG		
SnRK2.3-LP	CACCATGGATCGAGCTCCGG	Full-length SnRK2.3 CDS	
SnRK2.3-RP	GAGAGCGTAAACTATCTCTCCGCTAC		
SnRK2.4-LP	CACCATGGACAAGTACGAGCTGG	Full-length SnRK2 4 CDS	
SnRK2.4-RP	ACTTATTCTCACTTCTCCACTTGCGTG		
SnRK2.5-LP	CACCATGGACAAGTATGAGGTTGTGAA	Full-length SnRK2.5 CDS	
SnRK2.5-RP	AGCTTTGGGAGGCTCTTGACAAGAATG		
SnRK2.6-LP	CACCATGGATCGACCAGCAGTGA	Full-length SnRK2.6 CDS	
SnRK2.6-RP	CATTGCGTACACAATCTCTCCGCTACTG		
SnRK2.7-LP	CACCATGGAGAGATACGACATCTTAAGAG	Full-length SnRK27 CDS	
SnRK2.7-RP	TAGAGCACATACGAAATCACCATTTCTC		
SnRK2.8-LP	CACCATGGAGAGGTACGAAATAGTG	Full-length SnRK2 8 CDS	
SnRK2.8-RP	CAAAGGGGAAAGGAGATCAGCG		
SnRK2.9-LP	CACCATGGAGAAGTATGAGATGGTG	Full-length SnRK2.9 CDS	
SnRK2.9-RP	TGCGTAATCATCATACCATTCTTCATCA		
SnRK2.10-LP	CACCATGGACAAGTACGAGCTTGTTAA	Full-length SnRK2 10 CDS	
SnRK2.10-RP	ACTGACTCGGACTTCTCCCATG		
SnRK3.1-LP	CACCATGGAGAAGAAAGGATCTGTGT	Full-length SnRK3 1 CDS	
SnRK3.1-RP	GTGCCAAGCTAATACAAAGTCGATCAA		
SnRK3.2-LP	CACCATGGAGAACAAACCAAGTGTATT	Full-length SnRK3 2 CDS	
SnRK3.2-RP	TGATGGTTCTTGCTCTCCTTGTTCATC		
SnRK3.6-LP	CACCATGGATAAAAACGGCATAGTTT	Full-length SnRK3.6 CDS	
SnRK3.6-RP	ATGTATCACTTCAATCTTCTCATTGTTGC		
SnRK3.7-LP	CACCATGGCTCAAGTACTATCTACAC	Full-length SnRK3.7 CDS	
SnRK3.7-RP	CTGTTCAATTTCAGGTGGCAAACA		
SnRK3.8-LP	CACCATGGAAAATAAGCCAAGTGTTTTG	Full-length SnRK3 & CDSS	
SnRK3.8-RP	AAACTTCAATGGTTCTTCCTGTTCTTG		
SnRK3.9-LP	CACCATGGCGGAGAAAATCACG	- Full-length SnRK3.9 CDS	
SnRK3.9-RP	TTCAGTGTCAGACGGCAAGAAAGAAATG		

Name	Sequence 5' to 3'	Purpose
SnRK3.10-LP	CACCATGGAATCACTTCCCCAG	Eull Jongth SnPK2 10 CDS
SnRK3.10-RP	CATGATGTCATTGTGCCATGAAAGAAC	Full-length Shkks.10 CDS
SnRK3.11-LP	CACCATGACAAAGAAAATGAGAAGAGTGG	Full longth SnBK2 11 CDS
SnRK3.11-RP	AAACGTGATTGTTCTGAGAATCTCTGAC	Full-length SIRKS.11 CDS
SnRK3.12-LP	CACCATGAGTGGAAGCAGAAGGAAG	Full longth SnPK2 12 CDS
SnRK3.12-RP	TTGCTTTTGTTCTTCAGCGGCTG	Full-leligtil SIIKKS.12 CDS
SnRK3.13-LP	CACCATGGTGGTAAGGAAGGTG	Full longth SnBK2 12 CDS
SnRK3.13-RP	ACGTCTTTTACTCTTGGCCTTGGTG	Full-length SIRKS.15 CDS
SnRK3.14-LP	CACCATGGTCGGAGCAAAACC	Full longth SnPK2 14 CDS
SnRK3.14-RP	AGCAGGTGTAGAGGTCCAGAAAATG	Full-length SIRKS:14 CDS
SnRK3.15-LP	CACCATGGTAGATTCTGACCCGG	Full longth SnDK2 15 CDS
SnRK3.15-RP	CGACGTCGTATGTACTTGAGTTGGTTC	Full-length Shkk3.15 CDS
SnRK3.16-LP	CACCATGGTGAGAAGGCAAGAG	Full longth SnDK2 16 CDS
SnRK3.16-RP	AGTTACTATCTCTTGCTCCGGCGAG	Full-length Shkk3.16 CDS
SnRK3.17-LP	CACCATGTTGATCCCCAACAAAAAATTA	
SnRK3.17-RP	СТТТGCTGTTTCTTTCTTAACTTCGTTAT	Full-length SNRK3.17 CDS
SnRK3.19-LP	CACCATGTCTTTTACAATTCCTAGACTG	Full longth SnDK2 19 CDS
SnRK3.19-RP	CGGTTTGTCAGGAACTTTATAAACCG	Full-length SHRK3.18 CDS
SnRK3.20-LP	CACCATGGCTCAAGCCTTGG	Full longth SnRK2 20 CDS
SnRK3.20-RP	TTCAGTATCAGATGGCAAATACAATGCTTC	Full-length SHRKS.20 CDS
SnRK3.21-LP	CACCATGGTGATAAAGGGAATGCG	Full longth SnBK2 21 CDS
SnRK3.21-RP	CGCTAAAAGCTCCTGTACTTGTGATG	Full-length Shkks.21 CDS
SnRK3.22-LP	CACCATGCCAGAGATCGAGATTGC	Full longth SnRK2 22 CDS
SnRK3.22-RP	AATAGCCGCGTTTGTTGACGACG	Full-length SHRKS.22 CDS
SnRK3.23-LP	CACCATGGCTTCTCGAACAACG	Full longth SnBK2 22 CDS
SnRK3.23-RP	TGTCGACTGTTTTGCAATTGTCCG	Full-leligtil SIIKKS.23 CDS
SnRK3.24-LP	CACCATGGAGGAAGAACGG	Eull longth SnPK2 24 CDS
SnRK3.24-RP	ACAATCCTCGGAAGAAGTGTTATTATTA	Full-length Slikks.24 CDS
SnRK3.25-LP	CACCATGGGATCCAAACTTAAACTTTAC	Full longth SnPK2 25 CDS
SnRK3.25-RP	GCAGTCACTACCAGAATTTTCATCAC	Full-leligtil SIIKKS.23 CDS
CPK2ΔC-LP	CACCATGGGTAATGCTTGCGTT	CBK2 C terminal deleted CDS
CPK2ΔC-RP	CACACCGTCAATCTGTACCCAT	CPR2 C-terminal deleted CDS
СРКЗ∆С-LР	CACCATGGGCCACAGACACAGC	CDK2 C torminal delated CDS
CPK3∆C-RP	CTCCCCATCTTCTCTAATCCACGG	CPR3 C-terminal deleted CDS
CPK4∆C-LP	CACCATGGAGAAACCAAACCCT	CDK4 C to main al delated CDS
CPK4ΔC-RP	AGCATGTTCATCAACAATCCAAG	CPK4 C-terminal deleted CDS
CPK5ΔC-LP	CACCATGGGCAATTCTTGCC	CDKE C torminal delated CDC
CPK5∆C-RP	AACACCATTCTCACAGATCCATG	

Name	Sequence 5' to 3'	Purpose	
CPK6ΔC-LP	CACCATGGGCAATTCATGTCGT	CPK6 C-terminal deleted CDS	
CPK6ΔC-RP	AACTCCATTCTCACAGATCCATG	CPR6 C-terminal deleted CDS	
CPK10∆C-LP	CACCATGGGTAACTGTAACGCC	CDK10 C terminal delated CDS	
CPK10∆C-RP	TTTCTTTGCATTCTGTATCCATGGG	CPK10 C-terminal deleted CDS	
CPK11∆C-LP	CACCATGGAGACGAAGCCAAAC	CDK11 C terminal delated CDS	
CPK11∆C-RP	TGCTTGTTCATCGACAATCCATG	CPRII C-terminal deleted CDS	
CPK13∆C-LP	CACCATGGGAAACTGTTGCAGA	CPK12 C terminal deleted CDS	
CPK13∆C-RP	TTTCTTTGCGTTCTGAATCCATGG	CPRIS C-terminal deleted CDS	
CPK26ΔC-LP	CACCATGAAGCACAGCGGTGG	CRK26 C terminal delated CDS	
CPK26ΔC-RP	AACTCCATTTTCACAGATCCAAGG	CFR28 C-terminal deleted CDS	
SnRK1.1 KA-LP	CATAAGGTTGCTATCGCGATCCTCAATCGTC	Generate SnRK1.1	
SnRK1.1 KA-RP	GACGATTGAGGATCGCGATAGCAACCTTATG	kinase dead mutant	
SnRK2.6 KA-LP	CTTGTTGCTGTTGCATATATCGAGAG	Generate SnRK2.6	
SnRK2.6 KA-RP	CTCTCGATATATGCAACAGCAACAAG	kinase dead mutant	
SnRK2.8 KA-LP	GAGCTTTTCGCTGTTGCGTTCATCGAGCGAG	Generate SnRK2.8	
SnRK2.8 KA-RP	CTCGCTCGATGAACGCAACAGCGAAAAGCTC	kinase dead mutant	
CPK4ΔC KA-LP	CTAATTACGCTTGCGCATCAATCCCAAAAC	Generate CPK4∆C	
CΡΚ4ΔC ΚΑ-RΡ	GTTTTGGGATTGATGCGCAAGCGTAATTAG	kinase dead mutant	
CPK5ΔC KA-LP	GACTACGCTTGTGCGTCAATATCCAAG	Generate CPK5∆C	
CPK5ΔC KA-RP	CTTGGATATTGACGCACAAGCGTAGTC	kinase dead mutant	
AvrPtoB-LP	CACCATGGCGGGTATCAATGGAGC	Clope Full length AvrPtoB	
AvrPtoB-RP	GGGGACTATTCTAAAAGC	Clothe Full-length AVF tob	
AvrPtoB 307-RP	TACATGTCTTTCAAGGGCCGTG	Clone AvrPtoB ₁₋₃₀₇	
AvrPtoB S258A -LP	CCGGTCGACAGGGCCCCGCCACGCG	Generate AvrPtoB	
AvrPtoB S258A-RP	CGCGTGGCGGGGCCCTGTCGACCGG	S258A mutant	
AvrPtoB S258D-LP	CCGGTCGACAGGGACCCGCCACGCG	Generate AvrPtoB	
AvrPtoB S258D-RP	CGCGTGGCGGGTCCCTGTCGACCGG	S258D mutant	
	CAACAGGCGGCGGCAGCGCCAGTGAGGGCGCCCAC		
AvrPtoB S205S210A-LP	GCCAAC	Generate AvrPtoB	
	GTTGGCGTGGGCGCCCTCACTGGCGCTGCCGCCGCC	S205AS210AS258A mutant	
AVIPTOB S205S210A-RP			
AvrPtoB \$205D\$210D-LP	GCCAAC	Generate AvrPtoB	
	GTTGGCGTGGGATCCCTCACTGGCGCATCCGCCGCC	S205DS210DS258D mutant	
AvrPtoB S205DS210D-RP	төттө		
snrk2.8 SALK_073395-LP	ATTTTCCAAAGAGCTTTTCGC		
snrk2.8 SALK 073396-RP	GGTGATAGGTTTCCGAGCTTC	snikz.אוע-ו א ine genotyping	

Supplemental Table 4. Isolation list for PRM. Related to Figure 2.

Modified and unmodified peptide sequences used to quantify phosphorylation by PRM are noted. CID = collision induced dissociation, m/z = mass to charge, z = charge state.

Peptide sequence	Peptide modified sequence	m/z	z
AEARRTPEATADASAPR	AEARRT[+80]PEATADASAPR	617.2899	3
RAVHQQAASAPVR	RAVHQQAASAPVR	464.2603	3
RAVHQQAASAPVRSPTPTPASPAASSSGSSQR	RAVHQQAASAPVRSPTPTPASPAASSSGSSQR	786.9028	4
	RAVHQQAASAPVRSPTPTPASPAASSSGSSQR	629.7237	5
	RAVHQQAAS[+80]APVRSPTPTPASPAASSSGSSQR	806.8944	4
	RAVHQQAASAPVRS[+80]PTPTPASPAASSSGSSQR	806.8944	4
AVHQQAASAPVR	AVHQQAASAPVR	617.8362	2
	AVHQQAASAPVR	412.2265	3
AVHQQAASAPVRSPTPTPASPAASSSGSSQR	AVHQQAASAPVRSPTPTPASPAASSSGSSQR	996.8343	3
	AVHQQAASAPVRSPTPTPASPAASSSGSSQR	747.8775	4
	AVHQQAAS[+80]APVRSPTPTPASPAASSSGSSQR	767.8691	4
	AVHQQAASAPVRS[+80]PTPTPASPAASSSGSSQR	1023.49	3
	AVHQQAASAPVRS[+80]PTPTPASPAASSSGSSQR	767.8691	4
SPTPTPASPAASSSGSSQR	SPTPTPASPAASSSGSSQR	886.9241	2
	SPTPTPASPAASSSGSSQR	591.6185	3
	SPTPTPAS[+80]PAASSSGSSQR	926.9073	2
SSNTAASQTPVDRSPPR	SSNTAASQTPVDRSPPR	590.9625	3
	SSNTAASQTPVDRS[+80]PPR	925.9233	2
	SSNTAASQTPVDRS[+80]PPR	617.6179	3
	PSNTPPSNAPAPPPTGR	828.411	2
	PSNT[+80]PPSNAPAPPPTGR	868.3942	2
AALDPIASQFSQLR	AALDPIASQFSQLR	757.9023	2
	AALDPIASQFS[+80]QLR	797.8855	2

141 Supplemental references

- 142
- Anderson, J. C., Pascuzzi, P. E., Xiao, F., Sessa, G., and Martin, G. B. (2006). Host-143 Mediated Phosphorylation of Type III Effector AvrPto Promotes Pseudomonas Virulence and 144 Avirulence in Tomato. Plant Cell 18:502-514. 145 Chen, H., Chen, J., Li, M., Chang, M., Xu, K., Shang, Z., Zhao, Y., Palmer, I., Zhang, Y., 146 McGill, J., et al. (2017). A Bacterial Type III Effector Targets the Master Regulator of 147 Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity. Cell Host Microbe 22:777-148 788.e7. 149 Chung, E.-H., El-Kasmi, F., He, Y., Loehr, A., and Dangl, J. L. (2014). A Plant 150 Phosphoswitch Platform Repeatedly Targeted by Type III Effector Proteins Regulates the 151 Output of Both Tiers of Plant Immune Receptors. Cell Host Microbe 16:484-494. 152 Crooks, G. E., Hon, G., Chandonia, J.-M., and Brenner, S. E. (2004). WebLogo: A Sequence 153 Logo Generator. Genome Res 14:1188-1190. 154 Desveaux, D., Singer, A. U., Wu, A.-J., McNulty, B. C., Musselwhite, L., Nimchuk, Z., 155 Sondek, J., and Dangl, J. L. (2007). Type III Effector Activation via Nucleotide Binding, 156 Phosphorylation, and Host Target Interaction. *Plos Pathog* **3**:e48. 157 Dubrow, Z., Sunitha, S., Kim, J.-G., Aakre, C. D., Girija, A. M., Sobol, G., Teper, D., Chen, 158 Y. C., Ozbaki-Yagan, N., Vance, H., et al. (2018). Tomato 14-3-3 Proteins Are Required for 159 Xv3 Disease Resistance and Interact with a Subset of Xanthomonas euvesicatoria Effectors. 160 Mol Plant-microbe Interactions Mpmi **31**:1301–1311. 161 Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C. S. 162 (2006). Gateway-compatible vectors for plant functional genomics and proteomics. *Plant J* 163 164 **45**:616–629. Ge, Y.-Y., Xiang, Q.-W., Wagner, C., Zhang, D., Xie, Z.-P., and Staehelin, C. (2016). The 165 type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein 166 kinase substrate. J Exp Bot 67:2483-2494. 167 168 Giska, F., Lichocka, M., Piechocki, M., Dadlez, M., Schmelzer, E., Hennig, J., and Krzymowska, M. (2013). Phosphorylation of HopQ1, a Type III Effector from Pseudomonas 169 syringae, Creates a Binding Site for Host 14-3-3 Proteins. Plant Physiol 161:2049–2061. 170 Gu, Y., and Innes, R. W. (2011). The KEEP ON GOING protein of Arabidopsis recruits the 171 ENHANCED DISEASE RESISTANCE1 protein to trans-Golgi network/early endosome 172 173 vesicles. Plant Physiol 155:1827-38.

Kim, D. S., Choi, H. W., and Hwang, B. K. (2014). Pepper mildew resistance locus O interacts
 with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and
 defense responses. *Planta* 240:827–839.

- Li, W., Yadeta, K. A., Elmore, J. M., and Coaker, G. (2013). The Pseudomonas syringae
 Effector HopQ1 Promotes Bacterial Virulence and Interacts with Tomato 14-3-3 Proteins in a
 Phosphorylation-Dependent Manner. *Plant Physiol* 161:2062–2074.
- MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B.,
 Kern, R., Tabb, D. L., Liebler, D. C., and MacCoss, M. J. (2010). Skyline: an open source
 document editor for creating and analyzing targeted proteomics experiments. *Bioinform Oxf Engl* 26:966–8.
- Minkoff, B. B., Burch, H. L., and Sussman, M. R. (2013). Methods in Molecular Biology.
 Methods Mol Biology Clifton N J 1062:353–379.
- 186 Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R.,
- 187 Kawai, T., Tanaka, K., Niwa, Y., et al. (2007). Improved Gateway Binary Vectors: High-
- Performance Vectors for Creation of Fusion Constructs in Transgenic Analysis of Plants.
 Biosci Biotechnology Biochem 71:2095–2100.
- 190 Ntoukakis, V., Mucyn, T. S., Gimenez-Ibanez, S., Chapman, H. C., Gutierrez, J. R.,
- Balmuth, A. L., Jones, A. M. E., and Rathjen, J. P. (2009). Host Inhibition of a Bacterial
 Virulence Effector Triggers Immunity to Infection. *Science* 324:784–787.
- 193 Skorpil, P., Saad, M. M., Boukli, N. M., Kobayashi, H., Ares-Orpel, F., Broughton, W. J.,
- **and Deakin, W. J.** (2005). NopP, a phosphorylated effector of Rhizobium sp. strain
- 195 NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta
- and Tephrosia vogelii: NopP of Rhizobium sp. NGR234. *Mol Microbiol* **57**:1304–1317.
- Taylor, K. W., Kim, J.-G., Su, X. B., Aakre, C. D., Roden, J. A., Adams, C. M., and
 Mudgett, M. B. (2012). Tomato TFT1 Is Required for PAMP-Triggered Immunity and
 Mutations that Prevent T3S Effector XopN from Binding to TFT1 Attenuate Xanthomonas
 Virulence. *Plos Pathog* 8:e1002768.
- Tyanova, S., Temu, T., and Cox, J. (2016). The MaxQuant computational platform for mass
 spectrometry-based shotgun proteomics. *Nat Protoc* 11:2301–2319.
- Xiao, F., Giavalisco, P., and Martin, G. B. (2007). Pseudomonas syringae Type III Effector
 AvrPtoB Is Phosphorylated in Plant Cells on Serine 258, Promoting Its Virulence Activity. J
 Biol Chem 282:30737–30744.
- Yeam, I., Nguyen, H. P., and Martin, G. B. (2009). Phosphorylation of the Pseudomonas
 syringae effector AvrPto is required for FLS2/BAK1-independent virulence activity and
 recognition by tobacco. *Plant J Cell Mol Biology* 61:16–24.
- Yoo, S.-D., Cho, Y.-H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile
 cell system for transient gene expression analysis. *Nat Protoc* 2:1565–1572.

- 211 Zhang, L., Chen, X.-J., Lu, H.-B., Xie, Z.-P., and Staehelin, C. (2011a). Functional Analysis
- of the Type 3 Effector Nodulation Outer Protein L (NopL) from Rhizobium sp. NGR234:
- 213 SYMBIOTIC EFFECTS, PHOSPHORYLATION, AND INTERFERENCE WITH
- 214 MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING. J Biol Chem 286:32178–
- 215 32187.
- 216 Zhang, T., Lei, J., Yang, H., Xu, K., Wang, R., and Zhang, Z. (2011b). An improved method
- for whole protein extraction from yeast Saccharomyces cerevisiae. *Yeast Chichester Engl*
- **218 28**:795–8.
- 219