Supporting Information for:

Ring-Expansion Leads to A More Potent Analogue of Ipomoeassin F

Guanghui Zong,^{a,†} Zhijian Hu,^{b,†} Kwabena Baffour Duah,^c Lauren E. Andrews,^c Jianhong Zhou,^d Sarah O'Keefe,^e Lucas Whisenhunt,^f Joong Sup Shim,^g Yuchun Du,^d Stephen High,^e and Wei Q. Shi^c,*

^a Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States

^b Angion Biomedica Corp., 51 Charles Lindbergh Blvd, Uniondale, NY 11553, USA

^c Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA

^d Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA

^e School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom.

^f Thermo Fisher Scientific, 6173 E. Old Marion Hwy., Florence, SC 29501, USA

^g Faculty of Health Sciences, University of Macau, Avenida da Universidade, 999078, Taipa, Macau SAR, China

† Equal contribution as first-author

* Corresponding author, E-mail: wqshi@bsu.edu.

Table of Contents

_						
	1	Figure S1: Structures of ipomoeassins A–F				
	2	Scheme S1. Synthesis of 19-Membered Ring Analogue 3.	S4			
	3	Scheme S2. Syntheses of Diol Intermediates S1 and 5.	S5			
	4	Table S1. Optimization of Chemoselective Removal of Isopropylidene.	S6			
	5	Scheme S3. Synthesis of glucosyl donor 7.	S7			
	6	Scheme S4. Synthesis of fucosyl acceptor 8.	S7			

R ¹		Str	Structure	
	Ipomoeassin	\mathbb{R}^1	\mathbb{R}^2	n
	А	Н	Ac	1
	В	Н	Н	1
	С	OH	Ac	1
0100100	D	OAc	Ac	1
OH HO OR ²	Е	OAc	Н	1
tiglate glucose fucose	F	Н	Ac	3
\setminus				

Figure S1. Structures of ipomoeassins A–F.

Scheme S1. Synthesis of 19-Membered Ring Analogue 3.

Initially, we thought that the 18-membered ring analogue 1 could be easily obtained by coupling S1 with 4-oxo-6-heptenoic acid S2. After a literature search, however, we realized that the reaction of succinic anhydride with allylmagnesium bromide would cause alkene migration, leading to (*E*)-4-oxo-5-heptenoic acid S4 (see the inset, Scheme S1) due to the acidic α -Hs of the carbonyl group and higher stability of internal vs. terminal alkenes. This was confirmed by our initial attempts. Therefore, we revised our plan to synthesize the 19-membered ring analogue 3 (Figure 1) instead. As expected, 4-oxo-7-octenoic acid S3 was successfully prepared from succinic anhydride and 3-butenylmagnesium bromide. EDC-mediated esterification installed the acid S3 onto the primary alcohol in S1 to generate the diene S5 in good yield. Subsequent ring-closing metathesis (RCM), followed by chemo-selective hydrogenation catalyzed by Wilkinson's catalyst, successfully produced the 19-membered ring alcohol precursor S6. After cinnamic acid was introduced to 4-OH-Glc*p* (glucopyranose), both TBS protecting groups were removed by tetra-*n*-butylammonium fluoride (TBAF) buffered with acetic acid to deliver the final 19-membered ring analogue **3**.

Although the desired TBS-protected compound **S9** was the major product, a significant amount of byproduct **S8**, with tiglate migration from 3-*O*-Glc*p* (glucopyranose) to 2-*O*-Glc*p*, was also generated (~27%). More importantly, given the very small polarity difference between **S8** and **S9**, purification of **S9** by column chromatography was time-consuming and labor-intensive. To overcome these two shortcomings, we first explored switching the 2-OH-Glc*p* protecting group of **4** from TBS to TES, envisioning that the comparatively reduced steric bulk of the TES group would encounter less steric hindrance from the existing bulky 3-*O*-Fuc*p* (fucosepyranose) TBS group and, hence, be more efficiently incorporated than TBS. Encouragingly, we saw an almost quantitative transformation of **S7** to **4** when TESOTf, in place of TBSOTf, was employed as the silylation reagent.

Table S1. Optimization of Chemoselective Removal of Isopropylidene.^a

Entry	Acid	Salvant	Time	Products ^b			
Entry -	Name	Equivalents	– Solvent	Time	4	5	6
1	CSA	0.2	MeOH/CH ₂ Cl ₂ <i>v</i> / <i>v</i> , 1/1	6 h	~20%	~70%	~10%
2	АсОН	3/1, v/v	H ₂ O	1.5 h	none	70-80%	20-30%
3	АсОН	50	МеОН	84 h	~10%	60-70%	20-30%
4	АсОН	50	CH_2Cl_2	72 h	100%	none	none

^a Reaction conditions: 50 mg of **4** in 1 mL solvent. The reactions were all carried out at room temperature. ^b The ratios were determined by ¹H NMR analyses of the crude reaction mixture.

Scheme S3. Synthesis of glucosyl donor 7.

