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Figure S1. Structures of ipomoeassins A–F.

     
Ipomoeassin

Structure
R1 R2 n

A H Ac 1
B H H 1
C OH Ac 1
D OAc Ac 1
E OAc H 1
F H Ac 3
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Scheme S1.  Synthesis of 19-Membered Ring Analogue 3. 
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Initially, we thought that the 18-membered ring analogue 1 could be easily obtained by coupling S1 
with 4-oxo-6-heptenoic acid S2.  After a literature search, however, we realized that the reaction of succinic 
anhydride with allylmagnesium bromide would cause alkene migration, leading to (E)-4-oxo-5-heptenoic 
acid S4 (see the inset, Scheme S1) due to the acidic α-Hs of the carbonyl group and higher stability of 
internal vs. terminal alkenes.  This was confirmed by our initial attempts.  Therefore, we revised our plan 
to synthesize the 19-membered ring analogue 3 (Figure 1) instead.  As expected, 4-oxo-7-octenoic acid S3 
was successfully prepared from succinic anhydride and 3-butenylmagnesium bromide.  EDC-mediated 
esterification installed the acid S3 onto the primary alcohol in S1 to generate the diene S5 in good yield.  
Subsequent ring-closing metathesis (RCM), followed by chemo-selective hydrogenation catalyzed by 
Wilkinson's catalyst, successfully produced the 19-membered ring alcohol precursor S6.  After cinnamic 
acid was introduced to 4-OH-Glcp (glucopyranose), both TBS protecting groups were removed by tetra-n-
butylammonium fluoride (TBAF) buffered with acetic acid to deliver the final 19-membered ring analogue 
3.
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Scheme S2.  Syntheses of Diol Intermediates S1 and 5. 
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Although the desired TBS-protected compound S9 was the major product, a significant amount of by-

product S8, with tiglate migration from 3-O-Glcp (glucopyranose) to 2-O-Glcp, was also generated 

(~27%).  More importantly, given the very small polarity difference between S8 and S9, purification of 

S9 by column chromatography was time-consuming and labor-intensive.  To overcome these two 

shortcomings, we first explored switching the 2-OH-Glcp protecting group of 4 from TBS to TES, 

envisioning that the comparatively reduced steric bulk of the TES group would encounter less steric 

hindrance from the existing bulky 3-O-Fucp (fucosepyranose) TBS group and, hence, be more efficiently 

incorporated than TBS. Encouragingly, we saw an almost quantitative transformation of S7 to 4 when 

TESOTf, in place of TBSOTf, was employed as the silylation reagent.
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Table S1. Optimization of Chemoselective Removal of Isopropylidene.a
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Acid Productsb

Entry
Name Equivalents

Solvent Time
4 5 6

1 CSA 0.2
MeOH/CH2Cl2

v/v, 1/1
6 h ~20% ~70% ~10%

2 AcOH 3/1, v/v H2O 1.5 h none 70-80% 20-30%

3 AcOH 50 MeOH 84 h ~10% 60-70% 20-30%

4 AcOH 50 CH2Cl2 72 h 100% none none

            a  Reaction conditions: 50 mg of 4 in 1 mL solvent. The reactions were all carried out at room temperature.
                   b The ratios were determined by 1H NMR analyses of the crude reaction mixture.
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Scheme S3.  Synthesis of glucosyl donor 7. 
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     Scheme S4.  Synthesis of fucosyl acceptor 8. 
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