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Figure S1. Structures of ipomoeassins A—F.
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Scheme S1. Synthesis of 19-Membered Ring Analogue 3.
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Initially, we thought that the 18-membered ring analogue 1 could be easily obtained by coupling S1
with 4-ox0-6-heptenoic acid S2. After a literature search, however, we realized that the reaction of succinic
anhydride with allylmagnesium bromide would cause alkene migration, leading to (£)-4-oxo-5-heptenoic
acid S4 (see the inset, Scheme S1) due to the acidic a-Hs of the carbonyl group and higher stability of
internal vs. terminal alkenes. This was confirmed by our initial attempts. Therefore, we revised our plan
to synthesize the 19-membered ring analogue 3 (Figure 1) instead. As expected, 4-oxo-7-octenoic acid S3
was successfully prepared from succinic anhydride and 3-butenylmagnesium bromide. EDC-mediated
esterification installed the acid S3 onto the primary alcohol in S1 to generate the diene S5 in good yield.
Subsequent ring-closing metathesis (RCM), followed by chemo-selective hydrogenation catalyzed by
Wilkinson's catalyst, successfully produced the 19-membered ring alcohol precursor S6. After cinnamic
acid was introduced to 4-OH-Glcp (glucopyranose), both TBS protecting groups were removed by tetra-n-
butylammonium fluoride (TBAF) buffered with acetic acid to deliver the final 19-membered ring analogue
3.
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Scheme S2. Syntheses of Diol Intermediates S1 and 5.
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Although the desired TBS-protected compound S9 was the major product, a significant amount of by-
product S8, with tiglate migration from 3-O-Glcp (glucopyranose) to 2-O-Glcp, was also generated
(~27%). More importantly, given the very small polarity difference between S8 and S9, purification of
S9 by column chromatography was time-consuming and labor-intensive. To overcome these two
shortcomings, we first explored switching the 2-OH-Glcp protecting group of 4 from TBS to TES,
envisioning that the comparatively reduced steric bulk of the TES group would encounter less steric
hindrance from the existing bulky 3-O-Fucp (fucosepyranose) TBS group and, hence, be more efficiently
incorporated than TBS. Encouragingly, we saw an almost quantitative transformation of S7 to 4 when

TESOTY, in place of TBSOTT, was employed as the silylation reagent.
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Table S1. Optimization of Chemoselective Removal of Isopropylidene.?
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Acid Products®
Entry Solvent Time
Name Equivalents 4 5 6
MeOH/CH,Cl,
1 CSA 0.2 6h ~20% ~70% ~10%
viv, 1/1
2 AcOH 3/1, viv H,O 1.5h none 70-80%  20-30%
3 AcOH 50 MeOH 84 h ~10% 60-70%  20-30%
4 AcOH 50 CH,Cl, 72 h 100% none none

2 Reaction conditions: 50 mg of 4 in 1 mL solvent. The reactions were all carried out at room temperature.
b The ratios were determined by '"H NMR analyses of the crude reaction mixture.
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Scheme S3. Synthesis of glucosyl donor 7.
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Scheme S4. Synthesis of fucosyl acceptor 8.
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