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SUMMARY
The ability to represent and respond to uncertainty is fundamental to human cognition and decision-making.
Noradrenaline (NA) is hypothesized to play a key role in coordinating the sensory, learning, and physiological
states necessary to adapt to a changing world, but direct evidence for this is lacking in humans. Here, we
tested the effects of attenuating noradrenergic neurotransmission on learning under uncertainty. We probed
the effects of the b-adrenergic receptor antagonist propranolol (40 mg) using a between-subjects, double-
blind, placebo-controlled design. Participants performed a probabilistic associative learning task, and we
employed a hierarchical learning model to formally quantify prediction errors about cue-outcome contin-
gencies and changes in these associations over time (volatility). Both unexpectedness and noise slowed
down reaction times, but propranolol augmented the interaction between these main effects such that
behavior was influenced more by prior expectations when uncertainty was high. Computationally, this was
driven by a reduction in learning rates, with people slower to update their beliefs in the face of new informa-
tion. Attenuating the global effects of NA also eliminated the phasic effects of prediction error and volatility on
pupil size, consistent with slower belief updating. Finally, estimates of environmental volatility were predicted
by baseline cardiac measures in all participants. Our results demonstrate that NA underpins behavioral and
computational responses to uncertainty. These findings have important implications for understanding the
impact of uncertainty on human biology and cognition.
INTRODUCTION

When there is an unexpected change in the state of the world—

for instance, your regular morning coffee makes you sick one

day—humans must decide whether to update their model of

the world (and never drink coffee again) or dismiss the unusual

outcome as a one-off. To solve this problem, wemust flexibly up-

date our beliefs across time, relying on prior expectations when

the environment is stable, and disregarding them to promote

rapid learning when the world is volatile. The ability to adapt

behavior in the face of such uncertainty requires coordination

across complex learning dynamics, central sensory systems,

and peripheral physiological states. Difficulties balancing prior

expectations against new sensory inputs are hypothesized to

underlie many different neuropsychiatric and developmental

conditions, such as autism,1–4 psychosis,5–8 anxiety,9–11 and

post-traumatic stress disorder (PTSD).12,13,14 However, the

computational and neurochemical mechanisms of this process

in normative learning remain poorly understood.
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Seminal theoretical work suggests that when an agent is un-

certain about the relationships between sensory states, e.g.,

when the world is volatile, the top-down effects of prior expecta-

tions on cortical processing ought to be suppressed.15 This

shifts the balance of information processing toward sensory in-

puts, optimizing learning.16 The brain’s neuromodulatory sys-

tems have widespread cortical projections, making them ideally

placed to ratify sudden shifts in neural gain in response to the

volatility of the environment.17–19 The neuromodulator noradren-

aline (NA) has been shown to play a key role in detecting environ-

mental change to facilitate learning. For example, increasing NA

in rodents enhances bottom-up, thalamo-sensory process-

ing.20,21 By altering tuning functions in sensory cortex, activation

of the noradrenergic locus coeruleus (LC) enhances sensory

learning.22,23 In contrast, NA blockade has been shown to impair

reversal learning and cognitive flexibility in non-human

animals.24,25

Humans adapt their learning in response to volatility,26 so-

called ‘‘meta learning’’; this process is altered in both
nuary 11, 2021 ª 2020 The Authors. Published by Elsevier Inc. 163
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Figure 1. Task Details and Example Trial

Structure

(A) participants first heard a tone (high or low) fol-

lowed by a picture (face or house). The pictures

were orthogonally manipulated to have either high,

medium, or no visual noise added. The task was to

respond to the picture and indicate whether it was a

face or house.

(B) There was a probabilistic relationship between

the tones and pictures, which changed over time.

Participants were blind to this ground truth struc-

ture, so any influence of the preceding tones on

behavior was learned.
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anxiety,27,28 autism,29 and psychosis. 30 Indirect evidence for the

role of the NA system in controlling meta-learning comes from

studies using pupil size as an index of LC function.31–33 It has

been shown, for example, that pupil size tracks trial-by-trial

changes in learning rate,34 prediction error,27,29 and volatility.27

However, there is a dearth of studies directly examining the phar-

macological effects of NA manipulation on learning in a volatile

world (though see Jempa et al.35 and Marshall et al.36).

Here, we assessed the effects of propranolol, a common anxi-

olytic medication and b-adrenergic receptor antagonist,37 on

sensory probabilistic associative learning. The task experimen-

tally manipulated changes in the noisiness of a visual stimulus,

the informativeness of a cue predicting its appearance (cue-

outcome associations), and the volatility of these changing

associations over time (Figure 1). 29,38,39 We employed a vali-

dated hierarchical Bayesian learning model that allowed us to

characterize each participant’s learning ‘‘fingerprint’’: how

each subject learns about probabilistic relationships and vola-

tility.40,41 Concurrent pupillometry served as a proxy for LC activ-

ity31–33 such that we could assess how global NA antagonism

alters the relationship between trial-by-trial indices of prediction

error and phasic LC function. We also collected cardiac and anx-

iety measures to verify the physiological effects of the
164 Current Biology 31, 163–172, January 11, 2021
propranolol manipulation and further

investigate the proposed relationship be-

tween autonomic function and cognition.42

In a previous application of this task and

model,29 we demonstrated behaviorally

that adults with autism show reduced influ-

ence of expectations on reaction times

(RTs). Computationally, this was linked to

increased tendency to believe volatility is

changing quickly and heightened encod-

ing of trial-by-trial prediction errors in pupil

size. On the basis of these results, we hy-

pothesized a key role for raised noradren-

ergic function in altering the balance to-

ward sensory inputs, and away from prior

expectations, in autism.3,29 Therefore, in

the current study we predicted that by

blocking the action of NA (NA�), we would

observe the opposite pattern of results: an

enhanced effect of expectations on

behavior, a reduction in volatility-linked

learning, and a diminished encoding of
trial-by-trial prediction errors on pupil size. This would provide

direct evidence for the role of NA in learning under conditions

of sensory uncertainty.

RESULTS

We employed a double-blind, placebo-controlled design in 40

healthy volunteers to test the effects of propranolol administration

on a probabilistic associative learning (PAL) task, which quantifies

the impact of learned expectations on RTs under conditions of

sensory noise29,38,39,43 (see STAR Methods and Figure 1).

Physiological Effects of Propranolol
First we compared cardiac measures at baseline (before drug

administration) and immediately before the tasks started (�1 h

post drug administration) to assess the acute effects of propran-

olol. There was a significant main effect of time point on pulse

rate (F(1,38) = 80.96, p < 0.001,hp
2 = 0.681), indicating that pulse

reduced in all participants after 1 h in the experimental setting.

However, a significant time 3 group interaction (F(1,38) =

10.35, p = 0.003, hp
2 = 0.214) reflected the fact that pulse rate

reduced significantly more in the propranolol group relative to

the placebo group (Figure 2A). This was the same for systolic



Figure 2. The Physiological and Mood Ef-

fects of Propranolol (NA–) Administration

Plots show the change (D) in each measure from

baseline (pre-drug administration) and 1-h post-

drug administration. Propranolol (A) reduces heart

rate and (B) reduces systolic blood pressure more

than placebo but has no effect on (C) diastolic blood

pressure or (E) state anxiety. Change in state anxiety

(D) measured at baseline (before drug administra-

tion) an at the end of the testing session. Each data

point represents an individual participant in the

study. Thick middle line shows the mean, inner box

shows the 95% standard error of the mean (SEM),

and outer box shows the standard deviation. BP,

blood pressure; Bpm, beats per minute; STAI-S, the

state anxiety scale from the State-Trait Anxiety In-

ventory. * denotes statistically significant difference

between propranolol (NA�) and placebo groups. ns,

not significant.
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blood pressure (BP), which reduced overall (F(1,38) = 6.02, p =

0.02, hp
2 = 0.137) but significantly more in the propranolol group

(F(1,38) = 7.77, p = 0.008, hp
2 = 0.170; Figure 2B). Diastolic BP

reduced in all participants (F(1,38) = 13.22, p = 0.001, hp
2 =

0.258), but there was no interaction with group (F < 1; Figure 2C).

Finally, we compared state anxiety at baseline (before drug

administration) and at the end of the testing session (�2 h post

drug administration). State anxiety reduced in all participants

(F(1,38) = 13.69, p = 0.001, hp
2 = 0.265), but this change in anx-

iety scores did not differ between the placebo and propranolol

groups (F < 1; Figure 2D).

Behavioral Results
We examined behavioral responses where expected (E) and un-

expected (UE) trials were categorized according to the ground

truth. RTs were submitted to a 2 3 3 mixed ANOVA with

within-subjects factors of expectedness (E, UE), noise (high,

medium, no), and a between participants factor of drug group

(propranolol, placebo).

There was no main effect of group (F(1,38) = 0.154, p = 0.697,

hp
2 = 0.004) demonstrating that mean RT did not change as a

function of taking propranolol. This rules out simple explanations

(e.g., drowsiness) for any further group differences.

There was a significant linear effect of expectation (F(1,38) =

14.63, p < 0.001, hp
2 = 0.278) and also noise (F(1,38) = 91.45,

p < 0.001, hp
2 = 0.706). This indicates that RT slows down as

outcome images become both less expected and noisier. Consis-

tent with the fact that expectations often exert greatest influence

on behavior when sensory inputs are uncertain, there was a signif-

icant linear expectation3 noise interaction (F(1,38) = 17.73, p = <

0.001,hp
2 = 0.318), such that the RT difference between E and UE

trials was most pronounced for the high noise stimuli.

This effect was qualified by a significant linear expec-

tation 3 noise 3 drug group interaction (F(1,38) = 4.60, p =
Current
0.038, hp
2 = 0.11), which indicates that

the balance between expectations and

noise is altered by NA antagonism. All

other two-way interactions with group

were not significant (p > 0.17).
Specifically, in the placebo group only, there are linearmain ef-

fects of expectation (F(1, 18) = 4.90, p = 0.40, hp
2 = 0.214) and

noise (F(1, 18) = 39.18, p < 0.001, hp
2 = 0.685), but the expecta-

tion3 noise interaction is not significant (F(1, 18) = 1.5, p = 0.24,

hp
2 = 0.077). This replicates the results of our previous study em-

ploying this task.29 However, the expectation3 noise interaction

is significant under NA antagonism (F(1,20) = 31.09, p < 0.001,

hp
2 = 0.609), in addition to the two main effects (expectation:

F(1, 20) = 10.50, p = 0.004, hp
2 = 0.344; noise: F(1, 20) =

54.36, p < 0.001, hp
2 = 0.731). In other words, the linear effect

of expectations on noise is enhanced under propranolol (i.e.,

steeper slope; Figure 3).

Computational Results
To ensure that the chosen model (HGF; Figure 4A) performs well

to describe the behavior of our participants, we fit three alterna-

tive learning models to the data and compared them with

random-effects Bayesian model selection (BMS). Relative to

simple reinforcement learning models with fixed (RW)44 and dy-

namic (SK1)45 learning rates and an alternative HGF where we

omitted the influence of sensory noise (HGF_alt), the HGF was

the best model for explaining the data by a considerable margin

(see STAR Methods and Figure S1A).

The winning HGF model underwent subsequent validation

steps including data simulations and demonstrations of param-

eter recovery (see STAR Methods and Figures S1B–S1D).

Differences in Model Parameters

First, we assessed whether there were group differences in

the perceptual model parameters that capture individual differ-

ences in learning. This tests our a priori hypothesis that propran-

olol would slow learning. A binary logistic regression model pre-

dicting drug group with u2 and u3 as predictors was significant

(X2 = 6.85, df = 2, r2 = 0.22, p = 0.032), and u2 significantly

differed across groups (b = 0.36, p = 0.04 [two-tailed]; p = 0.02
Biology 31, 163–172, January 11, 2021 165



Figure 3. The Behavioral Effects of Propranolol (NA–) Administration

Plot shows the difference in RT between unexpected (UE) and expected (E)

trials (i.e., surprise) as a function of stimulus noise (sensory uncertainty). As

noise increases from no/low (L), medium (M), to high (H), expectations exert

more influence on behavior (i.e., RTs for unexpected stimuli increase), and this

interaction is stronger in the propranolol group. L, low; M, medium; H, high;

referring to low, medium, and high visual noise on the images. Each data point

represents an individual participant. Thick middle line shows the mean, inner

box shows the 95%SEM, and outer box shows the standard deviation. Dotted

lines show linear fits.
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[one-tailed], bootstrapped p = 0.011 [two-tailed], bootstrapped

confidence interval [CI] [0.08–1.01]; Figure 4B). However, u3

only approached, but did not reach, significance at a one-tailed

level (b = 0.17, p = 0.14 [two-tailed], p = 0.07 [one-tailed], boot-

strapped p = 0.15 [two-tailed], bootstrapped CI [�0.059–612];

Figure 4C). These results indicate that propranolol slows learning

about cue-outcome contingencies and may produce a modest

reduction in estimated volatility. Plotting the Bayesian parameter

average posterior expectation of stimulus outcome for each

group indicates that (consistent with a lower u2), under propran-

olol, participants are less able to track the changing probabilities

throughout the task (Figures 4D and 4E).

A binary logistic regression model predicting group status

from the beta weights of the linear response model (b0–3, z)

was not significant (X2 = 3.89, df = 5, r2 = 0.12, p = 0.56), and

there were no significant predictors (p > 0.38) indicating that pro-

pranolol did not broadly affect the mapping from the perceptual

model to motor behavior.

Model-Based Pupillometry

In fitting the parameters of the perceptual model, the HGF gives

rise to trial-by-trial estimates of prediction errors (ε2; ε3) and

volatility ðm3Þ, which reflect, for each participant, their personal

learning process. We linked these trajectories to trial-by-trial

changes in pupil size, a proxy measure for central noradrenergic

function.31–33 We assessed the effects of NA antagonism on the

encoding of ‘‘low-level’’ precision-weighted prediction errors

about stimulus outcomes ðε2Þ, ‘‘high-level’’ precision-weighted

prediction errors about cue-outcome contingencies ðε3Þ, and
phasic volatility ðm3Þ.

There were no group differences in mean pupil size across all

trials (Figure 5A), indicating that propranolol did not globally

affect pupil responses. Consistent with previous studies,29
166 Current Biology 31, 163–172, January 11, 2021
low-level precision-weighted prediction errors ðε2Þ were not en-

coded by pupil size in either group (Figure 5B). In the placebo

group, both high-level precision-weighted prediction errors ðε3Þ
and phasic volatility ðm3Þ were encoded in pupil size, such that

when estimates of prediction error or volatility were high, pupil

size increased (Figures 5C and 5D). However, under propranolol,

the relationship between ε3 and m3 with pupil size was signifi-

cantly attenuated (Figures 5C and 5D; black lines). This suggests

that under global tonic noradrenergic blockade of b-adrenore-

ceptors, the phasic functions of the LC are diminished.

Predicting Learning from Anxiety and Cardiac Measures

To assess the relationship between our computational estimates

of learning under uncertainty and baseline cardiac and anxiety

measures, we conducted two multiple linear regression models

predicting u2 and u3, respectively. The predictors of interest

were baseline systolic and diastolic BP, pulse rate, state and trait

anxiety, group, and all interactions between group and these

other predictor variables. Owing to multicollinearity among the

predictors (variance inflation factors > 10), we employed step-

wise methods to eliminate redundant predictors from the model

and improve model fit (D Bayesian information criterion; BIC).

The resulting model predicting u2 was significant (F(1, 38) =

7.34, p = 0.012, R2 = 0.166), and drug group interacted with state

anxiety in predicting u2 (b = 0.40, t = 2.71, p = 0.01; Figure 6A).

This indicates that the slope of the line relating contingency

learning to baseline state anxiety differs across drug groups.

Specifically, for high state anxious individuals contingency

learning rates were generally higher, but this effect was dimin-

ished under propranolol. The final model predicting u3 was sig-

nificant (F(1, 38) = 9.74, p = 0.003, R2 = 0.21) and baseline sys-

tolic BP was a significant predictor of u3 (b = �.46, t = �.312,

p = 0.003; Figure 6B). This suggests that individuals with higher

baseline systolic BP tend toward lower estimates of u3 during

probabilistic learning (i.e., they estimate the environment as

less volatile).

We corroborated these results when performing these ana-

lyses using regularized Ridge regression,46 which penalizes,

rather than eliminates, redundant predictors (the group-by-

state-anxiety interaction was the only significant predictor of

u2 (t = 2.43, p = 0.0151); baseline systolic BP was the only signif-

icant predictor of u3 (t = 3.161, p = 0.00157)).

DISCUSSION

Learning what to expect in a changing world is central to adap-

tive behavior, and requires coordination across complex

learning dynamics, central sensory systems, and peripheral

physiological states. Here, we administered propranolol during

a probabilistic learning task that orthogonally varied sensory

noise, probabilistic uncertainty, and volatility in combination

with computational and physiological measures. We discov-

ered that b-adrenergic receptor blockade slowed contingency

learning, especially in high state anxious individuals, and

reduced the effects of prediction errors and volatility on pupil

size. Across all participants, cardiac measures also predicted

volatility updates.

Previous studies have reported that decision time increases

linearly with sensory uncertainty (i.e., noise29,39,47 and unexpect-

edness29,39,43,48). Indeed, these two factors interact such that



Figure 4. Computational Model Details and Results

(A) A schematic of the HGF based on trial-by-trial logRT, the model estimates participants learning about probabilities ðu2Þ and volatility ðu3Þ. See text for more

details.

(B and C) The effects of propranolol on u2 and u3 can be seen in (B) and (C), respectively. Propranolol significantly reduces probabilistic learning ðu2Þ and
moderately reduces beliefs about volatility ðu3Þ. Model parameter values are in arbitrary units, with higher values indicative of higher learning rates and volatility

estimates, respectively. Data points represent individual participants. Thickmiddle line shows themean, inner box shows the 95%SEM, and outer box shows the

standard deviation.** denotes p < 0.05 (two-tailed).

(D and E) Bayesian parameter average trajectories showing the effects of (D) placebo, relative to (E) propranolol on posterior beliefs about stimulus outcome m2
across the experiment. Under propranolol (green) the Bayesian average participant learns the cue-outcome contingencies less readily and updates less in the

face of stimuli that violate expectations. Thin red line shows the average estimated dynamic learning rate. Blue dots show the actual outcomes (u) encountered on

each trial. Thick black lines show the ‘‘ground truth’’ changing P(image|tone).

For exploratory analyses of group differences in the learning trajectories at the individual participant level, please see Figure S2.
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our prior expectations often exert the greatest influence on

behavior when sensory inputs are uncertain29,39,49). Here, we

showed that this interaction is augmented under noradrenergic

blockade (Figure 3). This finding occurs in the absence of any

main effect of propranolol on reaction times, indicating that our

drug manipulation did not have gross effects on motor function

or alertness. This is consistent with our recent report of dimin-

ished effects of expectations on behavior in autism.29 A reduced

influence of prior expectations during perception might underlie

the sensory overload symptoms of autism;1,2,4 additionally, both

anxiety and PTSD are described as states in which people are
hyper-vigilant to potential environmental threats (i.e., dispropor-

tionately sensitive to sensory inputs11,13,50,51). Consistent with

these accounts, our findings indicate that the anxiolytic proper-

ties of propranolol might act by increasing the strength or confi-

dence of one’s prior beliefs at the expense of sensory drive.

Indeed, a recent study found that acute anxiety shifts neural dy-

namics toward feedforward processing of sensory inputs, with

‘‘top-down’’ feedback connectivity restored after taking anxio-

lytic medication.11 These findings, in line with our observation

of faster sensory learning in high anxious individuals (Figure 6A),

support sensory hypervigilance accounts of anxiety.11
Current Biology 31, 163–172, January 11, 2021 167



Figure 5. The Effects of Propranolol on Pu-

pil Size Measurements

Propranolol (A) does not change average stimulus-

evoked pupil responses or (B) the phasic (trial-by-

trial) relationship between pupil size and preci-

sion-weighted prediction errors about stimulus

outcome. However, propranolol attenuates the

relationship between pupil size and (C) precision-

weighted prediction errors about contingencies

and (D) volatility. In all panels, the orange solid

bars indicate significant clusters when the pupil

response differed from zero in the placebo group,

green solid horizontal lines indicate the same for

the propranolol group, and the black solid hori-

zontal line shows time clusters where the pro-

pranolol group significantly differed from the pla-

cebo group (2,000 permutations: cluster a = 0.05).

In all panels shaded error bars represent the SEM

of the beta estimates across individual partici-

pants. In all pupil analyses, this regression

approach controlled for other explanatory and

nuisance variables on a trial-by-trial basis (see

main text for more details).
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The hierarchical Bayesian learningmodel that we employed al-

lowed us to interrogate the effects of propranolol on the learning

mechanisms that give rise to our prior expectations. This novel

modeling approach builds on decades of research on fear

learning in anxiety52 but extends this work to non-aversive sen-

sory learning. However, the relationship between anxious states

and different domains of learning is still not clear. Our finding that

propranolol slows sensory learning is consistent with studies

that have found learning in other domains (e.g. negative out-

comes53 and safety54) is heightened in anxiety. However, recent

work suggests that inducing anxiety in the lab might slow

reward-based learning.55 We are keen to stress that in our study

the participants were not clinically anxious, there was no manip-

ulation of state anxiety and, accordingly, propranolol did not

significantly reduce self-report measures of anxiety. More work

is needed to bridge across the different domains of learning

and anxious states to fully understand the anxiolytic properties

of propranolol.

Our computational results (Figure 4B) suggest that propranolol

slows down learning about cue-outcome contingencies ðu2Þ.
This is consistent with work in non-human animals showing

that NA blockade impairs associative and also reversal

learning.24 Slower contingency learning means that individuals

will weight their prior expectations to a greater extent and be

less likely to update their beliefs in the face of new information

(as can be visualized in Figure 4E). In our model, this update is

proportional to the noise on the stimulus, with smaller updates

when the sensory inputs are less certain. Accordingly, the simple

behavioral effect of expectations on reaction times is enhanced
168 Current Biology 31, 163–172, January 11, 2021
under propranolol and most pronounced

for high noise stimuli. Recent theoretical

accounts have made efforts to highlight

the relationships between model uncer-

tainty (i.e., the relationships between sen-

sory states) and sensory uncertainty (i.e.,

noise) and propose that common gain
control mechanisms might underlie the computation of both.56–

58 Our results demonstrate such a mechanistic link and, in doing

so, highlight the intimate commonalities between perception and

learning under uncertainty.

Relying more on prior expectations, by updating less in

response to unexpected stimuli, is optimal in a stable environ-

ment. In a volatile environment, one ought to update their be-

liefs readily to learn quickly about the changing state of the

world.26,27,29 Seminal theoretical accounts posit that NA plays

a key role in signaling volatility (cf. unexpected uncertainty15,16).

We previously found increased volatility updating ðu3Þ in

autism, and pupillometric measures indicated that this could

be a consequence of a hyper-noradrenergic state.29 Futhere-

more, recent work has shown that enhancing the action of

the catecholamines, dopamine, and noradrenaline increases

learning under volatile conditions.59 We therefore predicted a

priori that blocking the action of NA would reduce volatility-

linked learning. Our data and simulations indicate that norad-

renergic blockade might produce a moderate reduction in u3

(Figure 4C; Figures S1C and S1D). However, this result should

be interpreted conservatively since it only approached signifi-

cance with a one-tailed statistical test. It is interesting to note

that a recent study tested the effect of a-adrenergic blockade

on motor learning and found a moderate increase in estimated

volatility.36 Propranolol is a potent b-adrenergic antagonist,

which also weakly stimulates a1-adrenoceptors.
60 It is therefore

possible that this effect on a-receptors might in fact be driving

the modest reduction in volatility in our present study. Alterna-

tively, one intriguing possibility is that a- and b-adrenergic



Figure 6. The Relationship between Learning under Uncertainty

(u2, u3) and Anxiety/Cardiac Measures

(A) Linear relationship between state anxiety and contingency learning, i.e.,

faster learning in high state anxious individuals, is attenuated by propranolol

(NA�).

(B) In both groups, baseline systolic blood pressure (mm Hg) predicts partic-

ipants’ estimate of volatility in the task.

Table 1. Participant Characteristics

Propranolol

(n= 21)

Placebo

(n = 19)

Between-Group

Difference

Mean age (SD) 23.47 (6.00) 26.58 (8.36) t(38) = 1.36, p = 0.18

Diastolic blood

pressure

75.62 (10.44) 74.63 (13.60) t(38) = 0.26, p = 0.80

Systolic blood

pressure

118.00 (9.93) 111.16 (11.12) t(38) = 2.1, p = 0.05

Heart rate 79.29 (18.21) 83.84 (12.19) t(38) = 0.92, p = 0.36

Baseline state

anxiety

35.19 (8.36) 37.84 (9.31) t(38) = 0.95, p = 0.35
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receptors have opposing effects on volatility, with one acting to

stabilize and the other destabilize the estimate of the rate with

which volatility changes. Future studies could investigate this

possibility by contrasting the effects of selective a- versus

b-adrenergic antagonists using the same task and model.

Prior work has shown that dynamic trial-by-trial changes in

volatility27,29 and ‘‘high-level’’ contingency prediction errors29

are encoded in pupil size. These studies in humans, building

on work in rodents22,61 and primates,32 provide evidence for

noradrenergic involvement in signaling unexpected changes.
Here, we show that the phasic trial-by-trial relationship between

both contingency prediction errors and volatility and pupil size is

diminished under global b-adrenergic receptor blockade (Fig-

ure 5). These findings add further empirical support to the sug-

gestion that pupil diameter serves as a useful peripheral readout

of central NA function in humans.

Finally, we show for the first time to our knowledge that cardio-

vascular function is linked to learning about volatility under con-

ditions of uncertainty. Specifically, low baseline systolic BP is

predictive of higher subsequent beliefs about volatility in the

task (Figure 6A). We note that in the context of this nonclinical

sample higher estimates of volatility (in this volatile task environ-

ment) could be regarded as adaptive, and this is predicted by

lower (healthier) baseline BP. Alterations in the ability to learn

about volatility have been recently implicated in a number of clin-

ical conditions, including autism,29,62 anxiety,27,28 and psycho-

sis,30 which also share common cardiac pathology such as

increased risk for cardiometabolic diseases.63 At a recent sum-

mit for interoception, key figures in the research community set

out a roadmap for understanding body-brain interactions in

cognition and mental health.64 Mechanistically, directional

communication between the brain and the internal organs is

mediated via the vagus nerve, which coordinates the HPA axis

to produce adaptive stress responses. Visceral inputs from the

vagus nerve project to the LC, raphe nucleus, and other cortical

regions to impact on cognition, neurotransmission, and brain

connectivity in humans.65 Situated within a rapidly growing num-

ber of theoretical perspectives on embodied cognition,66,67 our

empirical results suggest that global cardiac state might play a

role in setting the boundary conditions for the rate that relation-

ships between sensory events is estimated to change. This is

interesting in the context of recent work showing that vagal nerve

stimulation can reduce learning rates during reinforcement

learning68 and that blood pressure, 69 and other aspects of car-

diac function, impacts on cognition.70–72

In summary, our results provide a novel insight into the behav-

ioral, computational, and physiological effects of NA on learning

under conditions of uncertainty. Our findings underscore the

relationship between the cognitive and autonomic effects of anx-

iety and offer computational insights into the possible mecha-

nisms underlying therapeutic effects of beta blockers.
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RStudio https://www.rstudio.com/ RRID:SCR_000432

HGF Toolbox TAPAS https://www.tnu.ethz.ch/en/software/tapas N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources directed to the Lead Contact, Dr Rebecca Lawson (rl337@cam.ac.uk).

Materials Availability
This study did not generate any new unique reagents

Data and Code Availability
Summary data and code generated during this study are available at: [https://github.com/BeckyLawson/Propranolol].

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Forty adult human community volunteers (21 females) were tested using a double-blind, placebo-controlled design. All participants

had normal or corrected-to-normal vision and reported no prior history of neuropsychiatric illness, or previous conditions or medi-

cation that contraindicate the administration of 40mg propranolol (cardiovascular disease, lung/ kidney/liver disease, substance

use, pregnancy).

The study was approved by the UCL Ethics Committee (#1338/007).

METHOD DETAILS

Drug Manipulation
Participants were randomized to one of two experimental conditions (propranolol, placebo). Contraindications were checked and

drugs were administered by a qualified clinician (AL). The experimenter was blind to drug group and unblinding only occurred after

the study was completed. There were no group differences in sex, age, anxiety, or cardiac measures (Table 1). One participant (pro-

pranolol group) was excluded from the computational analysis owing to a high proportion of error responses, which could affect the

Bayesian modeling.29

General Procedure
Each participant attended one experimental session during which they received a single oral dose of either 40mg propranolol or a

placebo (vitamin D). We selected doses that were in line with previous studies showing clear behavioral and neurophysiological ef-

fects of noradrenaline blockade.73,74 On arrival participants gave written informed consent and self-report measures of state and trait

anxiety.75 A baseline heart rate and blood pressure measurement was taken using an Omron M7 Intellisense automatic blood pres-

sure monitor. After drug administration, 60 min passed to allow propranolol to reach its peak levels.76 A second round of cardiac

measurements were taken at this time, after which participants started the cognitive testing. A third round of cardiac measures

was taken at the end of the experimental session, approximately 50 min after the last pre-task measures.

Task & Stimuli
We used a probabilistic associative learning (PAL) task to test the impact of learned expectations on reaction times (RT) under con-

ditions of sensory noise.29,38,39,43

The task consisted of 336 trials split over three short blocks lasting�8min each (see Figure 1). On each trial, participants performed

binary classification of images which were either faces or houses. All images were luminance matched across conditions using the

SHINE toolbox.77 Each image was preceded by a tone (440Hz or 660Hz pure tone) that was either highly-, non- or weakly-predictive

of a given outcome (face or house; Figure 1A), and these associations themselves changed unpredictably across time (environmental
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volatility, Figure 1B). Trials were classified according to whether the image was expected (P(image|tone) = 0.84), neutral (P(image|

tone) = 0.5) or unexpected (P(image|tone) = 0.16). To maximize the influence of expectation on behavior, visual uncertainty was

orthogonally manipulated such that images had either high, medium, or no visual noise added (Figure 1A). High, medium and no noise

stimuli were equally distributed across the expected, neutral, and unexpected trials. The noise (high, medium, no) and expectation

(highly andweakly-predictive) conditions in this task allowed us to test for themain effect of expectation, main effect of noise, and the

interaction between these two factors.

Participants were instructed to respond to the images, indicating on each trial whether they saw a face or a house. Participants

were not explicitly instructed about the probabilistic relationship between the tones and the outcomes. Therefore, any effect of

the preceding tones (i.e., expectations) on reaction time, were a result of participants implicitly picking up on the probabilistic struc-

ture of the task.

We note that in the design we have adopted here, as in,28,29,36,38,39 the unexpected changes in contingencies throughout the task

means that volatility has to be estimated and learned about continuously. This is in contrast to designs where volatility only changes

once, between blocks of stable and volatile contingencies.26,27 Accordingly, a three level HGF model which includes, learning about

volatility itself, demonstrably fits the data better than simple R-W models (see Figure S1A).

Pupillometry
Pupil size was measured during the task with an infrared eye tracker (SR-Research Eyelink 1000) tracking at 1000 Hz. Chin and fore-

headwere stabilized using a table mounted head rest. Calibration of the eye tracker was unsuccessful in three participants, one in the

placebo group and two in the propranolol group.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
All statistical analysis of behavioral data was performed inMATLAB (Mathworks, Ltd.), IBMSPSS Statistics (version 26) and R Studio,

Version 1.2.1091. To maximize trial numbers per condition we collapsed across face/house trials and submitted RTs to a mixed

ANOVA with within-subject factors of expectedness (unexpected (UE), expected (E)) and stimulus noise (high (H), medium (M)

and no (N)), and a between-subjects factor of group. Since RT increases linearly with both surprise and stimulus noise29,39 we tested

for the linear main effects of both and their interaction with drug condition. All statistical tests are reported at two-tailed level of sig-

nificance unless explicitly stated.

Computational analysis
Model-agnostic behavioral analyses assume that each participant has learned the ground truth of the experiment to the same extent,

i.e., trials experienced as ‘unexpected’ to one participant ought to be ‘unexpected’ to another. However, humans face a complex set

of learning problems when trying to build expectations about the world, and the optimal way to update one’s behavior under uncer-

tainty is to use Bayesian inference. Therefore, we employed a participant-specific Bayesian learning model (the Hierarchical

Gaussian Filter (HGF)40,78) to track the role of uncertainty on behavior. The input to the model is trial-by-trial log RT, making the

HGF employed in this study (and in prior work employing conceptually similar tasks29,38,48) a model of behavior in the simplest sense.

The version of the HGF applied here (Figure 4A) has been used previously to examine both cultural and clinical differences in expec-

tation learning,29,39 therefore succinct model details are provided below to avoid unnecessary repetition.

The perceptual model

TheHGF’s perceptual model tracks a participant’s beliefs about the task structure: the trial wise stimulus outcomes at level 1 ðx1Þ, the
probabilistic relationship between the tone and the outcome at level 2 ðx2Þ, and the volatility of these relationships at level 3 ðx3Þ. Two

participant-specific perceptual parameters are estimated, u2 and u3, and allow for individual differences in approximate Bayes-

optimal learning at each level:

x
ðtÞ
1 � Bernoulli

�
s
�
x
ðtÞ
2

��
;

x
ðtÞ
2 � N

�
x
ðt�1Þ
2 ; exp

�
x
ðtÞ
3 + u2

��
;

x
ðtÞ
3 � N

�
x
ðt�1Þ
3 ; expðu3Þ

�
;

u2 captures a tonic evolution (or learning) rate at which probabilistic relationships are estimated to change. u3 determines the rate

at which estimates of phasic volatility are updated with higher values indicating a belief that volatility is changing quickly.

At any level i of the hierarchy, these two parameters give rise to trial-by-trial trajectories of belief updates (i.e., posterior mean m
ðtÞ
i of

the state xi) that are proportional to the precision-weighted prediction error (PE) ε
ðtÞ
i . This weighted PE is the product of the PE d

ðtÞ
i�1

from the level below and a precision ratio ðbpðtÞ
i�1 =p

ðtÞ
i Þ, Where p

tð Þ
i is the posterior precision (inverse variance) at the current level and
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bp tð Þ
i�1 is the precision (inverse variance) of the prediction at level below. Accordingly, ε

ðtÞ
i , is the precision weighted-prediction error at a

given level i:

ε
tð Þ
i =

bp tð Þ
i�1

p
tð Þ
i

d
tð Þ
i�1
Linear mapping to RTs
The response model captures the mapping from a participant’s trial-wise beliefs (arising from the perceptual model) onto behavioral

responses (log RTs). It is a simple linear model of the form:

log RT ðtÞ � N
�
b0 + b1 $ surprise

ðtÞ + b2 $ ε
ðtÞ
3 + b3 $ volatility

ðtÞ; z
�
;

Here, surpriseðtÞ is the Shannon surprise associated with the outcome x1, weighted by the stimulus noise on any given trial ðtÞ. εðtÞ3 is

the precision-weighted prediction error about cue-outcome contingencies at x2 and volatilityðtÞ is the exponential of the estimate

phasic log-volatility at x3. The betas represent predictors which may be reasonably hypothesized to affect log RT and be impacted

by noradrenergic manipulation. These same predictors were recently employed in a computational pharmacological study examining

the effects of a-receptor noradrenergic antagonism onmotor sequence learning,36 and so we wanted to assess equivalent effects of

b-adrenergic antagonism in the present study. See supplemental information for model comparison procedures.

Bayesian Parameter Averaging

In addition to frequentist statistical comparisons of the model parameters estimated for the individual participants in the placebo and

propranolol groups, we also captured the effects on the learning process with Bayesian Parameter Averaging (BPA).79 BPA has been

employed in prior studies36,80 to demonstrate the fixed effects average over the subject level parameters, weighted by their precision

and taking into account the covariance between parameters at the individual subject level.19

Model validation
We compared the HGF to two simpler learning models, one (RW; Rescorla and Wagner 1972) in which a single learning rate param-

eter is estimated for each participant and another (SK1;45 with a dynamic learning rate that varies trial-to-trial but does not learn about

volatility. As a third comparison model (HGF_alt) we fit the same perceptual model for the HGF but changed the linear mapping to

responses such that the surpriseðtÞ predictor did not contain an interaction with stimulus noise.

To disambiguate these alternative explanations (models) for the participants’ behavior, we used BMS, which evaluates the relative

plausibility of competing models in terms of their log evidences while adjusting for the trade-off between accuracy (fit) and

complexity.81 The three level HGF is shown to be the winning model (Figure S1A)

We also simulated 100 virtual agents using the mean parameters of the propranolol and placebo groups. Categorisation of these

RTs according to trial type (E, UE) and stimulus noise (H, M, L) showed that the main behavioral effects can be recapitulated by the

model (Figure S1B). Statistical analysis of this simulated data confirmed the same results as the real participant behavior, notably a

significant linear main effect of stimulus noise (F(1,197) = 23.06, p < 0.001), and a linear noise * drug group interaction (F(1,197) = 4.53,

p = 0.035).

We inverted the parameters of the winning model using simulated data to determine if we could recover the parameters and the

statistical differences reported between the groups in the main text. First, we simulated 200 datasets using mean parameters for the

propranolol and placebo groups and fit the model to these data (Figure S1C). A binary logistic regression predicting group (propran-

olol, placebo) from the recovered u2 and u3 parameters, was significant overall (X2 = 270.73, df = 2, r2 = 0.65, p < 0.001), with u2 and

u3 both significantly lower in the propranolol group (b = 0.78, p < 0.001; b = 1.2, p < 0.001). Furthermore, to show that we can also

recover parameters across the range of values estimated from real participant datawe also simulated data using the parameters from

the individual participant model fits reported in the main text, averaging across 20 simulations per participant (Figure S1D). For these

parameters, the binary logistic regression predicting group approached significance (X2 = 4.99, df = 2, r2 = 0.157, p = 0.08). In this

modelu2 was significantly lower in the propranolol group (b = 0.55, p = 0.042), whereasu3 was numerically, but not statistically lower

in the propranolol group (b = 0.09, p = 0.59). Taken together, these analyses broadly recapitulate the primary findings reported in the

main text, where u2 is significantly reduced under propranolol but the reduction in u3 is less reliable, not reaching significance at a

2-tailed level.

Finally, we examined the two-waymixed effects intra-class correlation coefficients (ICC) for the realu2 andu3 parameters estimated

for each single subject against the mean of the recovered parameters for each participant. Our ICC analysis sought absolute

agreement between measures, and so accounted for systematic differences.82 The ICC between the real and recovered values of u2

was 0.860 (CI: 0.69-0.94; p < 0.001), and the ICC between the real and recovered values of u3 was 0.870(CI: 0.75-0.93; p < 0.001).

ICC coefficients of 0.81–.1.00 are considered ‘almost perfect’83, suggesting that the reliability of the parameter recovery for this model

is encouraging.

Pupillometry analysis
Statistical analyses of eye tracking datawere performed inMATLAB (Mathworks, Ltd.) In linewith previous studies, only trials in which

80% or more samples were successfully tracked were included in the analysis, blinks were treated with linear interpolation and the

resulting pupil traces were low-pass filtered and smoothed following the conventions outlined in Jackson and Sirois.84 To explore
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phasic pupil responses for correct trials, traces were baseline corrected to the average response during the 200ms preceding the

outcome image.

We conducted multiple regression analyses at every time point to examine the relationship between pupil size and:

1. ε2, the precision-weighted PE about visual stimulus outcome (that serves to update the estimate of visual stimulus

probabilities)

2. ε3, the precision-weighted PE about cue-outcome contingency (that serves to update the estimate of log-volatility).

3. m3, phasic log-volatility at the third level.

The resultant timeseries of b weights (multiple regression conducted at every time point) provided estimates of when and how the

computationally derived metrics of surprise were encoded in pupil size, e.g., positive b weights indicate that when prediction error

was high, pupil size increased.

This approach has recently been used to assess differences in the relationship between prediction-errors, volatility and pupil size in

autistic and anxious adults.27,29 The post-outcome period for each trial was sampled using 775 2ms time bins. Regression analyses

were conducted for each post-stimulus time bin, with HGF estimates of precision-weighted prediction errors ðε2 ; ε3Þ and phasic vola-

tility (m3) as regressors of interest, plus the ‘ground truth’ contrast of unexpected (1) minus expected (�1) trials, outcome image (0 =

face, 1 = house), stimulus noise (high, med, no) and RT for each trial entered as control regressors. We note that the ground truth

contrast of expected minus unexpected trials is the same for all participants and captures when they ‘‘ought’’ to have been surprised

(assuming perfect learning), whereas the precision-weighted prediction errors capture, for each individual participant, the modeled

estimate of when their expectations were violated and to what extent. This will align closely with the ground truth in some participants

and less so in others. Accordingly, ε3 and the ground truth are weakly (r = 0.1294), but significantly correlated (p < 0.001). We included

both measures as predictors in these regressions to demonstrate the utility of the model-based approach.

At the group level, we then conducted t tests for the positive or negative effects of the regressors of interest, and the independent-

samples difference between groups, corrected for multiple comparisons with a cluster-based permutation approach at 2,000 per-

mutations (cluster a = 0.05).85 This approach protects against false positives across correlated measurements (i.e., maximizes

temporal sensitivity).
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Figure S1: Model Validation, Related to Model Validation section in the STAR methods.  
A) Shows the protected exceedance probability (a comparison of Bayesian model evidence) for four 
different models fit to the data. RW = Rescorla Wagner, SK1 = Sutton K1, HGF (alt) = alternative 
Hierarchical Gaussian Filter, HGF = Hierarchical Gaussian Filter. See main text for details.  B) 
simulated RTs can recapitulate the primary behavioural result. The parameter estimates (𝜔2, 𝜔3)  
resulting from model inversion using C) 100 simulations of the mean parameters from the 
propranolol and placebo groups, and also D) the individual participants parameters for the placebo 
and propranolol groups. Each datapoint represents the average of 20 simulations.  
 
 

 



 
 
Figure S2: Exploratory analysis of learning trajectories, Related to Figure 4. 
Plots show the average µ2 (bottom) and µ3 (top) trajectories estimated from the individual subject-
level fits. Note that the shaded error bars represent the standard error of the mean (s.e.m) across 
the estimates of µ2 and µ3 respectively, not the precision of these beliefs as determined by the HGF. 
Green lines represent the propranolol group and orange lines represent the placebo group. The thick 
black line in the bottom panel shows the ‘ground truth’ changing P(image|tone). In our experimental 
design we did not systematically manipulate stimulus contingencies across time, which precludes 
the formulation of clear block-by-block hypotheses about the trajectories of µ2 and µ3 (as in [S1]. 
On visual expectation, estimates of µ2 appear slower to adjust to the changing stimulus probabilities 
under propranolol (see also Bayesian Parameter Average plots in Figure 4c). Furthermore, the 
estimate of µ3 appears lower in the placebo group.  However, in an exploratory yet statistically 
conservative analysis, we used cluster-based permutation tests to assess whether there were 
differences between the propranolol and placebo groups in the average subject-level estimates of 
these trajectories across trials in the experiment. In each case, no timepoints were identified in 
which the groups differed significantly at a cluster-based alpha of 0.05 (2-tailed), 2000 permutations. 
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