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SUMMARY
Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target
recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue.
However, relatively little is known about how most preferences are encoded in the kinase sequence or how
these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining
residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity
assays of mutant kinases. Cancer mutation data revealed that kinase SDRs aremutatedmore frequently than
catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly
conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled
receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and
aid in the interpretation of evolutionary or disease-related genomic variants.
INTRODUCTION

Protein post-translational modifications (PTMs) constitute one of

the fastest mechanisms of control of protein function, and pro-

tein phosphorylation is the most extensive and well-character-

ized PTM. Protein kinases catalyze the phosphorylation of their

target substrates, including other kinases, working in complex

signaling networks that are capable of information processing

and decision making. These signaling networks are involved in

almost all cellular processes, and mutations in protein kinases

are often associated with disease (Brognard and Hunter, 2011;

Lahiry et al., 2010; Stenberg et al., 2000). In addition, cross-

species studies have shown that protein phosphorylation and

kinase-substrate interactions can diverge at a very fast pace,

suggesting that changes in post-translational control can be a

driver of phenotypic diversity (Beltrao et al., 2009; Freschi

et al., 2014; Studer et al., 2016). Understanding kinase signaling

networks remains a difficult challenge, in particular, because

only a small fraction of the known phosphorylation sites can be

assigned to their effector kinases.

There are 538 known human protein kinases (Manning et al.,

2002), and their specificity of substrate recognition is shaped

by the structural and chemical characteristics of both kinase

and substrate (Ubersax and Ferrell, 2007). The general fold of
This is an open access article und
different kinases is quite similar, and the specificity of kinases

is, in part, determined by changes near the binding pocket. Ki-

nases are thought to recognize a contiguous motif around the

phosphosite (4 or 5 amino acids on either side of the P-site)

(Amanchy et al., 2007; Knighton et al., 1991; Pearson and

Kemp, 1991; Pinna and Ruzzene, 1996) usually called the kinase

target motif. These target motif preferences are most often very

degenerate, with only a small number of key residues strongly

contributing to the recognition.

Knowledge of kinase specificity has been greatly assisted by

the development of degenerate peptide libraries that probe the

intrinsic specificity of the kinase domain (Songyang et al.,

1994, 1996). When applied across many kinases, this technique

allows for the identification of domain positions that covary with

changes in specificity (Songyang et al., 1996). This approach

was used in 2010 to decipher the specificity of 61 yeast kinases

and enabled the prediction of several specificity determinants

(Mok et al., 2010), and later the identification of a kinase residue

defining the phosphoacceptor preference between S and T

(Chen et al., 2014). More recently, this method has been applied

across kinase family members, such as for kinases in the Nek

and STE20 families, to help infer the residues responsible for

specificity divergence within families (van de Kooij et al., 2019;

Miller et al., 2019). When directed toward kinases belonging
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to a functional class, for example, the mitotic kinases, this

approach can reveal systems-level mechanisms to ensure

signaling fidelity—in this case, by the spatial separation of ki-

nases with overlapping motifs and vice versa (Alexander et al.,

2011). The emergence of mass spectrometry (MS) technologies

for the systematic profiling of kinase specificity promises to

accelerate this field of research even further (Barber et al.,

2018; Imamura et al., 2014; Lubner et al., 2018; Sugiyama

et al., 2019).

In addition to the intrinsic specificity of the active site, other

mechanisms contribute to selectivity, including docking motifs,

interaction with protein scaffolds, co-expression, and co-locali-

zation (Biondi and Nebreda, 2003; Holland and Cooper, 1999).

Sequence analysis has identified 9 kinase groups (AGC,

CAMK, CMGC, RGC, TK, TKL, STE, CKI, and ‘‘other’’), but

only a few kinase groups have clear differences in target prefer-

ences that are shared with most members of the group. For

example, the CMGC kinases tend to phosphorylate serine and

threonine residues that have proline at position +1 relative to

the phosphoacceptor (Kannan and Neuwald, 2004). However,

for most kinase groups, the preferences for residues around

the target phosphoacceptor cannot be easily predicted from

the primary sequence.

In previous studies of kinase specificity, the analysis of protein

structures (Brinkworth et al., 2003; Kobe et al., 2005; Saunders

et al., 2008) and machine learning methods (Creixell et al.,

2015a) have been used to identify positions within the kinase

domain that determine kinase specificity, the specificity-deter-

mining residues (SDRs). However, these approaches do not

attempt to study the structural basis by which specific target

preferences are determined. Methods based on protein kinase

alignments can achieve this, but they have only been used to

study a few kinase groups so far (Kannan and Neuwald, 2004;

Kannan et al., 2007), or they have been restricted to a single

model organism (Mok et al., 2010). Here, we have used align-

ment- and structure-based methods to identify and rationalize

the determinants of kinase specificity. We have identified

SDRs for 16 target site preferences and show that these can

be used to accurately predict kinase specificity. We provide

detailed structural characterizations for many determinants

and study how these are mutated in cancer or during evolution.

We show how the knowledge of SDRs can be combined with

ancestral sequence reconstructions to study the evolution of ki-

nase specificity using as an example the G protein-coupled re-

ceptor kinase family.

RESULTS

Identification of Kinase Specificity-Determining
ResiduesandModeling of theKinase-Substrate Interface
To study kinase target preferences, we compiled a list of 9,084

experimentally validated and unique kinase-phosphosite rela-

tions for human, mouse, and yeast kinases. Protein kinase spec-

ificities were modeled in the form of position weight matrices

(PWMs) for 179 kinases; all phosphosites and PWMs are given

in Table S1 and Data S1, respectively. For further analysis, we

selected 135 high-confidence PWMs (87 human, 30 mouse, 18

yeast) that could discriminate well between target and non-
2 Cell Reports 34, 108602, January 12, 2021
target phosphorylation sites (see Method Details). For serine/

threonine kinases, consistent evidence of active site selectivity

is broadly apparent for the �3 and +1 positions relative to the

phosphoacceptor, and to a lesser extent the �2 position (Fig-

ure 1A). These constraints correspond to the well-established

preferences for basic side chains (arginine or lysine) at the �3

and/or �2 position, and in most CMGC kinases for proline at

the +1 position. Despite examples of strongly selective tyrosine

kinase domains (Shah et al., 2016, 2018), the tyrosine kinases

in general show little evidence of strict substrate requirements

on par with the proline+1 or arginine-3 signatures, which is

perhaps linked to their increased reliance on binding modules

such as the SH2 or SH3 domain for specificity (Ubersax and Fer-

rell, 2007). The tyrosine kinases were excluded from any further

analysis as therewere too few high-quality PWMs (16) for the reli-

able detection of their SDRs.

With this information, we then investigated the relationship

between protein kinases and substrates at the active site us-

ing structural models (Figure 1B) and kinase sequence align-

ments (Figure 1C). We compiled 12 non-redundant serine/

threonine crystal structures of kinases in complex with their

substrates in addition to 4 serine/threonine autophosphoryla-

tion complexes (Xu et al., 2015) (see full list in Table S2). Ki-

nase-substrate homology models for kinases of interest not

represented in this compilation of experimental models were

also generated. A structural profile of substrate binding from

position �5 to position +4 is given in Figure S1. The kinase po-

sitions most frequently in contact (within 4 Å) with the target

peptide are highlighted also in Figure 1B. When referring to

specific amino acids in the kinase, the single-letter code is

used followed by the position of the residue based on the

Pfam protein kinase domain model (PF00069). These domain

positions have been mapped to the human protein kinase A

(PKA) sequence in Table S3.

We developed an alignment-based protocol for the semi-

automated detection of putative specificity-determining resi-

dues (Figure 1C; Method Details). Briefly, the target prefer-

ences described as PWMs were clustered to identify groups

of kinases with shared preferences at a position of interest.

Putative SDRs are then inferred to be those residues that

discriminate kinases with the common substrate preference

(e.g., proline at the +1 position or P+1) from other kinases

(Figure 1C). Using this approach, we identified 30 predicted

SDRs for 16 preferences (Figure 2A) found across the

sequence/structure of the kinase domain (Figure 2B). Not sur-

prisingly, SDRs tend to cluster near the binding pocket (Fig-

ure 2C), with 33% near the substrate (within 4 Å) compared

to �12% for any kinase position (Fisher p < 0.01), which is

in line with previous studies of SDRs (Creixell et al., 2015a;

Mok et al., 2010). Such distal kinase residues can still play

important roles in determining kinase specificity, although

the structural mechanisms are less direct than for residues

in contact with the substrate.

To assess the accuracy of these SDRs we tested whether

these could be used to predict the specificity of kinases

from their sequence alone. For this, we built sequence-based

classifiers for the 5 preferences supported by at least 20 pos-

itive examples in the study dataset: P+1, P-2, R-2, R-3, and
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Figure 1. Features of Kinase Target Interaction and Pipeline for SDR Identification

(A) Sequence constraint for substrate positions �5 to +5 for 119 serine/threonine kinases, measured as the bit value for the corresponding column of the kinase

PWM.

(B) Interface between a protein kinase (human protein kinase A, PDB: 1ATP) and substrate peptide at the substrate-binding site (Zheng et al., 1993). Kinase

residues that commonly bind the substrate peptide (yellow) are represented in stick format and colored according to the corresponding substrate position (�3:

red, �2: pink, �1: orange, +1: green, +2: blue, +3: purple). Residue numbering represents the relevant positions of the Pfam protein kinase domain (PF00069).

(C) Semi-automated pipeline for the inference of putative kinase SDRs (specificity-determining residues). The first step involves the construction of many kinase

PWMs from known target phosphorylation sites. Vectors corresponding to a substrate position of interest (e.g., +1) are then retrieved from each PWM. An

unsupervised learning approach (i.e., clustering) identifies kinases with a common position-based preference (e.g., for proline at +1). Alignment positions that

best discriminate kinases belonging to 1 cluster from all others are then identified using computational tools for SDR detection.
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Figure 2. Position of Identified SDRs along the

Kinase Sequence and Structure

All putative kinase SDRs from this analysis are (A) listed

in a table with their corresponding position preferences,

(B) mapped to a 1-dimensional (1D) representation of

the kinase secondary structure, and (C) mapped to a

kinase-substrate complex structure (PDB: 1ATP). The

SDRs colored in dark red (B) and (C) represent positions

within 4 Å of the substrate peptide. Residue numbering

represents the relevant positions of the Pfam protein

kinase domain (PF00069). The numbers in brackets for

(A) represent the number of kinases with the given

specificity.
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L-5. We used a cross-validation procedure in which kinase se-

quences left out from the model training were later used for

testing (see Method Details). These models showed very

strong performance with respective cross-validation area un-

der the curve (AUC) values of between 0.83 and 0.99 (Fig-

ure S2A). These models also performed well (AUCs between

0.66 and 0.89) when tested against a recent set of experimen-

tally derived PWMs that were not used for training of the

models (Sugiyama et al., 2019), showing that the predictions

generalize to independent datasets (Figure S2B). Collectively,

this shows that for these 5 specificities, the determinant resi-

dues can correctly predict the specificity of unseen kinases

from their sequence alone, suggesting that the SDRs we

have identified are broadly accurate.

Structural Characterization of Kinase SDRs
Most of the predicted SDRs have not been described before

and can be further studied by the analysis of structural

models. We used available cocrystal structures where

possible and also generated homology models, using relevant

kinase-substrate structures as a template (see Method De-

tails). Using these models, we could suggest a structural ratio-

nale for SDRs of 8 target site preferences that are listed in Fig-

ure S3. These include the preferences for arginine at positions

�3 and �2; proline at positions �2 and +1; leucine at posi-

tions +4 and �5; and aspartate/glutamate at position +1 for

AGC and CMGC kinases. Some of the SDRs had been identi-

fied in previous studies underscoring the validity of our

approach. For example, 4 of the 6 putative SDRs identified

here for the proline +1 preference map to the kinase +1 bind-

ing pocket (Figure S3) and match determinants described pre-

viously (Kannan and Neuwald, 2004). All of the previous liter-
4 Cell Reports 34, 108602, January 12, 2021
ature evidence for the SDRs predicted in

Figure 2A is given in Table S4.

We highlight in Figure 3A SDRs for 3 prefer-

ences that are less well studied: proline at po-

sition �2 (P-2) and leucine at positions +4

(L+4) and �5 (L-5). There are 25 kinases with

a modest P-2 preference, including MAPK1,

CDK2, and DYRK1A. We identified 5 positions

that are putative SDRs for P-2, 2 of which (161

and 162) are proximal (3.4 and 3.7 Å) to the res-

idue in kinase-substrate structures. For posi-

tion 162, P-2 kinases usually contain a bulky
hydrophobic residue (Y or W) that is rarely found in other kinases

(Figure S3). Both residues at these positions appear to form hy-

drophobic contacts with P-2 (Figure 3A). The domain position

161 was also implicated in the preference for the P+1 specificity

mentioned above and has been identified as a CMGC-specific

determinant (Kannan and Neuwald, 2004). The three other puta-

tive determinants—82, 188, and 196—are unlikely to be direct

determinants, given their distal position in the protein structure,

although we note that 196 was implicated in a previous align-

ment-based study (Mok et al., 2010). These distal positions

may influence the kinase preference through more complex

mechanisms such as affecting the dynamics or conformation

of the kinase.

We identified 21 kinases (14 CAMK, 5 AGC, 1 CMGC, 1 PRK)

with a moderate L-5 preference. Positions 86 and 189 were

predicted as determinants in which L-5 kinases are marked

by hydrophobic amino acids at position 86 and the absence

of glutamate at 189. These residues can be observed to line

the hydrophobic �5 position pocket of the MARK2 kinase (Fig-

ure 3A). A recent study provided strong evidence for the role of

position 189 as an L-5 determinant from a comparative struc-

tural analysis of L-5 and R-5 kinases (Chen et al., 2017). This fol-

lows from a previous covariation-based approach used to

demonstrate that position 144 (DFG+1) helps determine the S

versus T phosphoacceptor preference (Chen et al., 2014;

Chetty et al., 2020).

For the leucine preference at the +4 position, we identified 6 ki-

nases—MARK2, CAMK1, PRKAA1, PRKAA2 (human), PRKAA1

(mouse), and Snf1 (yeast)—and the domain position 164 as the

sole putative SDR. This residue is an alanine in 5 of the kinases

listed above (valine in CAMK1). In the MARK2 cocrystal structure,

the substrate peptide forms a turn at the +2 position so that the +4
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Figure 3. Structural Rationale for Kinase SDRs

and Validation Experiments

(A) Kinase-substrate interface for: proline at position

�2 (PDB: 2WO6), leucine at position �5 (PDB: 3IEC),

and leucine at position +4 (PDB: 3IEC) (Nesi�c et al.,

2010; Soundararajan et al., 2013). The substrate

peptides are in yellow and putative SDRs in red. A

structural rationalization for each preference is pro-

vided briefly in the main text Structural characteriza-

tion of kinase SDRs, and in Figure S3.

(B) Kinase activity assays for Snf1wild-type (WT) and 2

mutant versions A218L (the 164 kinase domain posi-

tion, an L+4 SDR) and V244R (the 189 kinase domain

position, an L-5 SDR). The 3 kinases were incubated

separately with a known Snf1 target peptide with L

at +4 and �5 (orange), as well as the mutant versions

A+4 (green) and D-5 (blue). Replicates of in vitro re-

actions were quenched at 0, 7, and 20 min, and the

amount of phosphorylation was measured by mass

spectrometry. For each kinase and time point, the

phosphopeptide intensity relative to theWT peptide at

time point zero was calculated, and the median and

standard deviation of 3 biological replicates were

plotted.
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hydrophobic side chain projects toward the kinase pocket of

the +1 position and stacks against the +1 residue (Figure 3A).

The substitution for alanine in place of residues with aliphatic

side chains at position 164 in these kinases therefore seems to

generate a small binding pocket that allows the L+4 to functionally

substitute for the kinase position 164 by stacking against the +1

residue.

We have selected 2 of the above-described SDRs for experi-

mental characterization (L-5 and L+4). To test these SDRs, we

made 2 mutant versions of the Snf1 kinase in yeast: A218L (the

164 kinase position, an L+4 SDR) and V244R (the 189 kinase po-

sition, an L-5 SDR) and tested their substrate specificity by

in vitro kinase assays. Snf1 represents a convenient kinase for

this assay as it features both the L-5 and L+4 specificities,

although mutation to domain position 86 (F140) was avoided

as this would likely affect the R-3 specificity of Snf1 also (Fig-

ure S3). Wild-type (WT) Snf1 and these 2 mutants were overex-

pressed and purified from yeast cells and individually incubated

with a Snf1 target peptide of 15 amino acids that contains

leucine at +4 and �5 as well as mutant versions with A+4 or

D-5. The in vitro kinase reactions were quenched at 0, 7, and

20 min, and the amount of peptide phosphorylation was

measured by MS (Figures 3B and S4A). As predicted, the

A218L Snf1 showed an increased preference for the A+4 peptide

but not for the D-5 peptide. The reverse was observed for the

V244R Snf1 mutant.

The identification of previously known SDRs, the structural

rationale for several of the novel SDRs and the experimental vali-

dation of 2 SDRs, further suggests that we have identified posi-

tions that are crucial for the recognition of kinases with specific

preferences. The SDRs identified here can therefore be used
to infer the intrinsic specificity of other ki-

nases belonging to the 5 specificity classes

described above (P+1, P-2, R-2, R-3, and
L-5) and, as we show below, to study the consequences of

mutations within the kinase domain.

Specificity-Determining Residues Are Often Mutated in
Cancer
Some kinase SDRs have been observed to be mutated in cancer

and congenital diseases (Berthon et al., 2015; Creixell

et al., 2015b). Using mutation data from tumor patient samples

from The Cancer Genome Atlas (TCGA) (https://cancer.gov/

about-nci/organization/ccg/research/structural-genomics/tcga),

we have tested for the enrichment of tumor mutations in 4 cate-

gories of kinase residues: catalytic, regulatory, SDR (proximal to

substrate), and ‘‘other’’ (Figure 4A). SDR residues close (within

4 Å) to the substrate show a significant enrichment of mutations

relative to ‘‘other’’ residues in the kinase domain (Mann-Whitney,

p = 6 3 10�4; Figure 4B). This enrichment is greater than that

observed for catalytic and regulatory sites, highlighting their func-

tional relevance.

We next sought to determine whether the frequency of SDR

mutations differs between kinases depending upon their speci-

ficity. Given that the specificity models only cover�20% of all hu-

man kinases, we used the SDRs of the 5 most common prefer-

ences—P+1, P-2, R-2, R-3, and L-5—to train sequence-based

predictors of kinase specificity as described above. Using these

models, we annotated all human kinases having a high probability

for at least one of these specificities (Table S5). We then

compared the frequency of mutations per position for different ki-

nase specificities and found significant differences in the relative

mutation frequencies for the P+1 and R-3 positions (represented

in Figure 4C). Positions 164 and 161 of the +1 position loop exhibit

high levels of differential mutation in the proline-directed kinases.
Cell Reports 34, 108602, January 12, 2021 5
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Figure 4. Mutation of SDRs in Cancer

(A) Kinase domain positions are colored according to their functional category (regulatory: orange, catalytic: blue, SDR: red, ‘‘other’’: gray). The substrate peptide

is represented in yellow and ATP in green, orange, and red (PDB: 1ATP).

(B) The fractions of mutations mapping to a given site for a given Ser/Thr kinase were calculated and then averaged across all Ser/Thr kinases. The different sites

are grouped according to their functional category. Mutations in SDRs are more frequent than in "other" residues (Mann-Whitney, p = 6 3 10�4).

(C) For a given site, the frequency of mutations in arginine-3 kinases (x axis) and proline+1 kinases (y axis) is plotted. Predicted SDRs are colored in red.
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For position 161, the MAP kinases in particular are recurrently

mutated in independent samples (MAPK1: 3, MAPK8: 3,

MAPK11: 2,MAPK1: 1). This position is known to bind to the phos-

photyrosine at 157 that is present in MAPKs (Varjosalo et al.,

2013). For the predicted R-3 kinases, the glycine 159 residue of

the +1 position pocket is found to be commonly mutated,

although this relates not to the R-3 specificity per se but to selec-

tivity against proline at position +1 (Zhu et al., 2005a). Residues

159 and 164 in particular are critical for specificity and highly

conserved within the kinase subgroups, such that mutation to

any other amino acidwould be expected to abrogate P+1 binding.

These results suggest that there is a significant recurrence of can-

cer mutations targeting kinase specificity and not just kinase

activity.

The work above illustrates how knowledge of the SDR resi-

dues is useful in understanding the functional consequences of

cancer mutations. We next studied the changes in SDR residues

during the evolution of protein kinases.

Divergence of Kinase Specificity between Orthologs
The full extent to which kinase specificity differs between ortho-

logs is not known (Miller and Turk, 2018; Ochoa et al., 2018). To

study this, we compared 65 orthologous pairs between human/

mouse kinases and yeast kinases of known specificity. Specificity

logos for 2 different examples are given in Figure 5A, indicating

that they tend to be similar. We find that the difference in speci-

ficity between orthologs (as calculated by the distance between

PWMs) is generally similar to that expected for biological repli-

cates of the same kinase (p = 0.097, Mann-Whitney, 2-tailed; Fig-

ure 5B), but is less than that observed for random human-yeast

kinase pairs (p < 0.01, Mann-Whitney, 1-tailed; Figure 5B). Only

6/65 (9%) of orthologous pairs (including, e.g., the yeast kinases

Cmk1/Cmk2, Sky1, and Pkc1) are more divergent than the me-
6 Cell Reports 34, 108602, January 12, 2021
dian distance of random human-yeast kinase pairs. Kinase spec-

ificities are therefore highly conserved in general between human/

mouse and Saccharomyces cerevisiae, even though they

diverged >1 billion years ago (Doolittle et al., 1996).

We next used the identified SDRs to investigate the divergence

of specificity between orthologs.We focused our analysis on the 5

specificities we can reliably predict from sequence as described

above: P+1, P-2, R-2, R-3, and L-5. Orthologs were retrieved

from the Ensembl Genomes Compara database (1,210 species)

for each human kinase predicted (Table S5) to have at least 1 of

the 5 specificities (i.e., for P+1, P-2, R-2, R-3, or L-5). SDRs for

each of the 5 specificities show a much higher sequence conser-

vation than other kinase residues, although lower than was

observed for the essential catalytic residues (Figures 5C and

S5). Predictions of ortholog specificity, however, suggest that

this modest sequence variation among SDRs rarely alters kinase

specificity (Figure 5D). Specifically, we predict divergence (poste-

rior probability < 0.5) for only 5% of orthologous groups. In one of

the few examples, the Wee2 protein in human features a hydro-

phobic�5 binding pocket that is present in vertebrate sequences

only but not in other species. It is possible that the restricted

expression of Wee2 (oocyte-exclusive protein) led to a relaxation

of selective constraint on specificity that enabled its evolutionary

divergence. For the 5 specificity classes and forArabidopsis thali-

ana orthologs of human kinases, we predict that the ortholog

specificity has diverged in only 12% of cases.

These results demonstrate that kinase active site specificities

tend to be highly conserved across orthologs and even between

species separated by 1 billion years of evolution.

Divergence of Kinase Specificity within the GRK Family
We then selected the GRK (G protein-coupled receptor kinase)

family for a detailed case study of the evolution of target
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Figure 5. Evolution of Specificity for Orthologous Kinases

(A) Human and yeast kinase specificity logos for 2 different orthologous groups.

(B) Distribution ofmatrix distances between PWMs generated from phosphosite subsamples of the same kinase (top), orthologous yeast and human/mouse pairs

(center), and random human-yeast pairs (bottom).

(C) Conservation of domain residues, SDRs, and catalytic residues for the proline+1 specificity. Each data point represents the average conservation (among

kinase domain positions, SDR, or catalytic residues) for an alignment of orthologous kinases in which the human kinase is a predicted proline+1 kinase.

(D) Conservation of specificity for kinases orthologous to human kinases of predicted specificity (L-5, R-3, R-2, P-2, P+1). Each data point represents the average

posterior probability (across all kinases in an orthologous group) that the specificity has been conserved.
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specificity. The GRK family is 1 of 15 families belonging to the

AGC group (Figure 6A) (Manning et al., 2002). However, they

have diverged from the characteristic basic residue preferences

at positions �2/�5 and �3 of the AGC group (Lodowski et al.,

2006). GRK2, for example, is specific for aspartate/glutamate

at position �3 (Lodowski et al., 2006; Onorato et al., 1991),

and in the GRK5 model presented here, the R-3 signature is ab-

sent (Figure 6B). The GRK family is divided into the BARK

(b-adrenergic receptor kinase) subfamily, comprising GRK2

(ADRBK1) and GRK3 (ADRBK2) in humans, and the GRK sub-

family, comprising GRK1 (rhodopsin kinase), GRK4, GRK5,

GRK6, and GRK7 (Manning et al., 2002). We have taken a taxo-

nomically broad sample of 163 GRK kinase sequences to

generate a global phylogeny (Figure 6A; Method Details).

From this, a maximum-likelihood reconstruction of ancestral

sequence states has been performed (Method Details) to study

the evolution of substrate preferences on the basis of our

detailed understanding of kinase SDRs.

The topology of the tree is in general agreement with a previ-

ously published GRK phylogeny (Mushegian et al., 2012).
Focusing on the specificity at the �2 and �3 positions (Figures

6C and S6), 2 substitutions between the ancestor of RSK and

GRK kinases and the ancestor of all GRK kinases likely caused

a reduced preference for arginine at the �3 and �2 positions.

The substitution of glutamate forglycine at position 162, an R-3

and R-2 determinant (Figure S3), and the substitution of phenyl-

alanine at position 86 (R-3 determinant), most likely either to his-

tidine or to lysine. From this ancestral node toward the Rhizarian

lineage, an additional substitution of glutamate at 189 for argi-

nine likely drove the switch from R-2/R-3 to a novel aspartate/

glutamate preference at the �2 position. This 86K/189R pair

could be analogous to the 127E/189E pair found in basophilic ki-

nases. In the Heterokont lineages, the histidine/lysine at position

86 in the ancestor of GRK kinaseswas substituted for serine, and

while these kinases retained the 127E/189E pair, the R-2 and R-3

specificities are likely to be attenuated or eliminated, given the

substitutions at positions 86 and 162. The BARK kinases had 2

charge-altering substitutions—E127A and E189K—that likely

generated the preference for aspartate/glutamate at the �2

and �3 positions, as observed in extant GRK2 kinases
Cell Reports 34, 108602, January 12, 2021 7
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Figure 6. Evolution of GRK Family Speci-

ficity

(A) Phylogeny of kinases in the GRK family,

including an outgroup of RSK kinases in humans.

The supporting number of bootstrap replicates

(/100) for relevant clades and bifurcations is rep-

resented. The Filozoa represent animals and their

closest unicellular relatives, while the Rhizaria and

Heterokonts are distantly related protist groups.

(B) Logos at positions �3 and �2 for human

RSPS6KA1 (RSK kinase), human GRK2 (GRK/

BARK kinase), and human GRK5 (GRK/GRK ki-

nase). Sequence logos were generated from

target phosphorylation sites.

(C) Representation of substrate positions �2 and

�3 (yellow) and their corresponding kinase binding

pockets (cyan) for extant kinases and predicted

ancestral sequences. Substitutions in the binding

pocket are denoted by a red asterisk.
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(Figure 6B). Finally, in the GRK subfamily, a lysine residue (or

arginine in GRK1) is usually found at position 86. Notably, no

R-2/R-3/R-5 preference is evident for GRK5 (Figure 6B), sug-

gesting that the described substitutions (E162G and F86K)

were sufficient to eliminate this specificity.

To experimentally test the divergence of kinase specificity

within the GRK family, we selected Ypk1 kinase in yeast as the

most similar extant kinase to the RSK-GRK ancestral copy and

mutated several amino acids (positions 86, 162, and 189) to

mimic evolved versions of the kinase (Figures 6 and S4). We per-

formed kinase assays using synthetic peptides as substrates, as

explained above for the Snf1 case. Although the mutations intro-

duced to YPK1 had an impact on kinase activity, we could

observe a decrease in R-5 specificity in the target peptides for

one of the mutants (F86H-E162G) mimicking an evolved kinase

(Figure S4B; Method Details). This suggests that mutations to

positions 86 and 162 together lead to a reduced preference for

basic residues at the active site.

The GRK family illustrates how the target preference of a ki-

nase can change after kinase duplication via the substitution of

a few key residues. It also illustrates 1 example in which distantly

related kinase orthologsmay have divergedwhen comparing the

metazoa GRKs to their Rhizaria homologs that diverged �1.7

billion years ago (Kumar et al., 2017).

DISCUSSION

Here, we have helped to address the challenge of identifying

which residues determine kinase preferences toward specific
8 Cell Reports 34, 108602, January 12, 2021
amino acids at specific positions around

the target phosphosite. Initial studies of

kinase determinants used structures of

kinases in complex with target peptides

to identify SDRs as being important for

substrate binding (Brinkworth et al.,

2003; Zhu et al., 2005a). A more recent

work has used a machine learning

approach to identify SDRs as those that
globally maximize the specificity predictive power (Creixell

et al., 2015a). These approaches have identified SDR positions

but do not assign positions and residues according to specific

target preferences (e.g., R-3 or P+1). Alternatively, alignment-

based approaches can be used to directly identify residues

that contribute to particular preferences but so far have been

restricted to 1 kinase group at a time (Kannan and Neuwald,

2004; Kannan et al., 2007) or a single model organism (Mok

et al., 2010). We combined a statistical analysis of known kinase

targets with alignment- and structure-based approaches to

identify and study SDRs. The primary goal of this study was to

identify and rationalize SDRs for particular preferences. Impor-

tantly, our analysis shows how different positions contribute in

unique ways to target site recognition. While we were able to

suggest specificity determinants for a large number of previously

understudied kinase target preferences, there are still many eu-

karyotic kinases that do not yet have a known specificity. Kinase

specificity is only known for some of the human, mouse, and

S. cerevisiae kinases. As this knowledge expands, we expect

that there will be additional types of kinase specificities beyond

those studied here.

It is important to emphasize that some of the predicted SDRs

will be likely false positives, given that specificity may correlate

with some other kinase property (e.g., kinase regulation, adaptor

binding, localization). Here, we demonstrate how a structural

analysis can help distinguish likely true positives from false pos-

itives. We do not, however, exclude the possibility that distal res-

idues can serve as bona fide determinants, but the structural

mechanisms linking distal residues to substrate specificity
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remain difficult to study. In addition, some of the structural

analysis could yield false negative predictions, given that ki-

nase-substrate cocrystals represent the most stable binding

conformations, suggesting that some SDRs may only bind in

conformations not observed in the crystal structures.

The SNF1 mutations of SDRs validated 2 positions contrib-

uting to the expected target preferences: position 164 for the

L+4 preference and position 189 for the L-5 preference. A recent

study also strongly implicated position 189 as an L-5 determi-

nant from a comparative structural analysis (Chen et al., 2017).

However, while this residue was mutated and the specificity

tested, the mutation of 189 always occurred in combination

with other kinase residues, and so the role of position 189 per

se as an L-5 SDR was not proven definitively. L+4 specificity,

to our knowledge, was thus far uncharacterized and links a

traditional +1 determinant (position 164) to a distal substrate

position (+4).

The experimental validation in this study was performed with

MS on a small number of synthetic peptides in vitro. This is a

highly sensitive approach that enables the detection of subtle

shifts in kinase specificity following mutation. Alternatively, pep-

tide arrays can be used to assay the specificity of mutant kinases

(Creixell et al., 2015a; Miller et al., 2019). Peptide arrays can be

less sensitive than MS, but they have the advantage of probing

for changes in recognition at multiple positions of the target pep-

tide. They have successfully been used to test the effect of mu-

tations on all 20 amino acids at flanking substrate positions and

can reveal changes in specificity not predicted a priori (Barber

et al., 2018; Miller and Turk, 2016).

The study of cancer mutations has revealed that SDRs are

commonly mutated as shown by Creixell et al. (2015b). In addi-

tion to previous studies, we observed that SDR mutation burden

in cancer can reflect kinase specificities, with specific residues

being targeted depending on the kinase preference, which we

demonstrated here for the P+1 and R-3 specificities. Under-

standing the impact of mutations in kinases will facilitate the

classification of cancermutations into drivers or passengers, de-

pending on their functional consequences. Our results suggest

that grouping all SDR positions, regardless of the kinase speci-

ficity, will tend to reduce the accuracy of predicting the impact

of mutations, since many SDR positions are only relevant for

one or few specificities.

The identification of the SDRs allows us to study the evolution

of kinase preferences by ancestral sequence reconstruction.

The protein kinase domain has been extensively duplicated

throughout evolution, but very little is known about the process

of divergence of kinase target preference. We have shown that

kinase orthologs tend to maintain their specificity at the active

site. This would be expected as they can regulate up to hundreds

of targets, and a change in specificity would drastically alter the

regulation of a large number of proteins. This high conservation

of kinase specificity contrasts with the larger divergence rate

of kinase target sites (Beltrao et al., 2009; Freschi et al., 2014;

Studer et al., 2016). The evolutionary plasticity of kinase

signaling therefore relies primarily on the fast turnover of target

sites that can occur without the need for gene duplication.

Examples do still exist, however, of specificity divergence

within kinase families. A previous study has shown how the
Ime2 kinases (RCK family) have diverged from the other CMGC

kinases in their typical preference for proline at the +1 position

(Howard et al., 2014). Here, we traced the putative evolutionary

history of the GRK family preference at the �2/�3 positions,

which demonstrates the divergence of kinase specificity be-

tween paralogs and also distantly related orthologs. An under-

standing of kinase SDRs will allow for further studies of how

the variety of target peptide preferences has come about during

evolution and the rate at which kinases can switch their prefer-

ences after gene duplication.

Kinase target recognition within the cell is complex, and the

specificity at the active site is only one of several mechanisms

that can determine kinase-substrate interactions (Miller and

Turk, 2018; de Oliveira et al., 2016; Ubersax and Ferrell, 2007).

Much additional work is needed to establish a global view of

kinase target specificity and its evolution.
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E-5: GEPGAASFAEK AQUA peptide from Sigma Custom synthesis

E-3 E-5: GEPEAASFAEK AQUA peptide from Sigma Custom synthesis

Deposited Data
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PKA-peptide complex Zheng et al., 1993 PDB: 1ATP
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MARK2-cagA complex Nesi�c et al., 2010 PDB: 3IEC

Kinase-substrate relationships (PSP) Hornbeck et al., 2015 https://www.phosphosite.org/homeAction
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Cancer genome data The Cancer Genome

Atlas (TCGA)

https://www.cancer.gov/about-nci/organization/ccg/

research/structural-genomics/tcga

Representative proteomes (rp35) Chen et al., 2011 https://proteininformationresource.org/rps/

Kinase families Manning et al., 2002 http://kinase.com/web/current/

Sequence-structure mappings Velankar et al., 2013 https://www.ebi.ac.uk/pdbe/docs/sifts/quick.html

Experimental Models: Organisms/Strains

Saccharomyces cerevisiae: SNF1 KO. Yeast

strain used to construct SNF1 point mutants.

(BY4741 MATa SNF1 KO)

From Yeast KO collection.

A gift from Lars Steinmetz

Lab (EMBL)

This paper

Saccharomyces cerevisiae: SNF1 WT

(BY4741 MATa SNF1 KO + [pGAL-SNF1-

URA3 plasmid])

This paper (PBY362) This paper (PBY362)

Saccharomyces cerevisiae: SNF1 A218L

(BY4741 MATa SNF1 KO + [pGAL-SNF1A218L-

URA3 plasmid])

This paper (PBY363) This paper (PBY363)

Saccharomyces cerevisiae: SNF1 V244R

(BY4741 MATa SNF1 KO + [pGAL-SNF1V244R-
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This paper (PBY364) This paper (PBY364)
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Saccharomyces cerevisiae: YPK1 WT (BY4741

MATa YPK1 KO)

From Yeast KO collection.

A gift from Lars Steinmetz

Lab (EMBL)

This paper

Saccharomyces cerevisiae: YPK1 F433H-

Q510G (BY4741 MATa + [YPK1F433H-Q510G -

TAP-HIS])

This paper (PBY929) This paper (PBY929)

Saccharomyces cerevisiae: YPK1 F433K-Q510G-

E537R (BY4741 MATa + [YPK1F433K-Q510G-E537R -

TAP-HIS])

This paper (PBY1229) This paper (PBY1229)

Oligonucleotides

Primers to mutate SNF1, see Table S6 This paper N/A

Primers to mutate YPK1, see Table S6 This paper N/A

Software and Algorithms

CD-HIT Li and Godzik, 2006 http://weizhongli-lab.org/cd-hit/

APCluster (R package) Bodenhofer et al., 2011 https://cran.r-project.org/web/packages/apcluster/

index.html

GroupSim Capra and Singh, 2008 https://compbio.cs.princeton.edu/specificity/

SPEER Chakrabarti et al., 2007 http://www.hpppi.iicb.res.in/ss/index.html

MultiRelief-3D Ye et al., 2008 https://www.ibi.vu.nl/programs/multirelief/

MAFFT L-INS-i Katoh et al., 2005 https://mafft.cbrc.jp/alignment/software/

trimAl Capella-Gutierrez et al.,

2009

http://trimal.cgenomics.org/publications

hmmsearch Eddy, 1998 https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch

Bio3D (R package) Skjærven et al., 2016 http://thegrantlab.org/bio3d/

PDBsum de Beer et al., 2014 https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/

NAMD (Phillips et al., 2005) https://www.ks.uiuc.edu/Research/namd/

RAxML Stamatakis, 2014 https://cme.h-its.org/exelixis/web/software/raxml/

FastML Ashkenazy et al., 2012 http://fastml.tau.ac.il/overview.php

Xcalibur Thermo Fisher Scientific https://www.thermofisher.com/search/results?query=

xcalibur%E2%84%A2&navId=12141&persona=Catalog

Custom code This paper https://github.com/DBradley27/kinase_SDR

Other

EASY-Spray source Thermo Fisher Scientific ES801

m-pre-column: PEPMAP100 C18

5mM 0.3X5MM 5/PK

Thermo Fisher Scientific 160454

analytical column: EASY-SPRAY

RSLC C18 2mM, 50CM X 75mM

Thermo Fisher Scientific ES803
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Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Pedro Beltrao

(pbeltrao@ebi.ac.uk).

Materials Availability
Yeast strains generated during this study are available upon request

Data and Code Availability
The code and data generated during this study are available on GitHub:

(https://github.com/DBradley27/kinase_SDR).
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All yeast strains (Saccharomyces cerevisiae) were grown overnight in synthetic defined (SD) media lacking uracil 30�C, diluted in the

morning to OD600 0.1 and grown to exponential phase in synthetic defined (SD) media at 30�C . Cells in exponential phase were used

for all the experiments.

METHOD DETAILS

Kinase specificity models
Phosphorylation site data were retrieved from the databases HPRD (human), Phospho.ELM (human), PhosphoGRID (S. cerevisiae),

and PhosphoSitePlus (human andmouse) (Dinkel et al., 2011; Hornbeck et al., 2015; Prasad et al., 2009; Sadowski et al., 2013). Phos-

phorylation sites without an annotated upstream kinase or literature reference were removed from the dataset. Phosphorylation sites

in PhosphoGRID supported exclusively by the (Bodenmiller et al., 2010) or (Holt et al., 2009) studies were excluded from further anal-

ysis as these studies provide only indirect evidence for kinase-substrate relations. Target sites that are likely to be homologous were

removed with the CD-HIT program using an 85% sequence identity cut-off (Li and Godzik, 2006). We do not include in this analysis

protein kinases of the ‘‘Atypical’’ class, which have little to no sequence homology to canonical eukaryotic protein kinases (Manning

et al., 2002).

The dataset was further filtered to remove phosphorylation sites mapping to the activation segment of kinase substrates. The justi-

fication for this is twofold. First, it has been observed that kinase autophosphorylation sites at the activation segment often conform

poorly to kinase consensusmotifs derived frompeptide library experiments and/or trans-phosphorylation site data (Miller et al., 2008;

Pike et al., 2008). Second, from our preliminary analysis we observed a small number of kinases (CAMKK1, PDK1, and LKB1/STK11)

with strong substrate motifs corresponding to theCG[S/T]Pmotifs found in non-CMGC kinase activation segments. However, for the

kinases CAMK11 and PDK1, experimental evidence suggests that substrate specificity is determined predominantly by allosteric

factors, with only a weak reported affinity between the kinase and consensus substrate peptide (Biondi et al., 2000; Okuno et al.,

1997). For LKB1/STK11, while the kinase is able to efficiently phosphorylate substrate activation loop sequences in vitro (Lizcano

et al., 2004), peptide library results fail to recapitulate any residues from the C-terminal CG[S/T]P motif, instead implicating leucine

at the �2 position as a substrate determinant (Shaw et al., 2004). These results suggest that the strong CG[S/T]P consensus motifs

observed are more likely to be artifacts of the functional constraints upon this activation segment motif rather than substrate deter-

minants of specificity.

Specificity matrices for each kinase with at least ten phosphorylation sites were then constructed in the form of a position weight

matrix (PWM). This threshold has been used in a previous study (Wagih et al., 2015), where it was found that PWMs constructed using

fewer substrates tend to be highly variable. In this study, the PWMs constructed are 203 11 matrices with the columns representing

substrate positions �5 to +5; each value in the matrix represents the relative amino acid frequency at a substrate position. Cross-

validation was used to assess kinase model performance. Briefly, a 10-fold cross-validation procedure was implemented to deter-

mine the extent to which each kinase model could successfully discriminate between true positive and true negative phosphorylation

sites using a matrix-based scoring function, using the protocol described in Wagih et al., 2016. Kinase PWMs with an average AUC

(area under curve) value < 0.60 were excluded from further analysis (Wagih et al., 2016).

Too few tyrosine kinase PWMs remained after these filtering steps and were therefore excluded from any further analysis. For all

kinase group/family/subfamily classifications, we used the KinBase data resource (Manning et al., 2002).

Position-based clustering of specificity models
Clustering of the PWMs was performed in a position-based manner for each of the five sites N- and C-terminal to the phosphoac-

ceptor (�5, �4, �3, �2, �1; +1, +2, +3, +4, +5) using the affinity propagation (AP) algorithm (Frey and Dueck, 2007). AP is a graph-

based clustering method. For the application here, single column vectors (20 3 1) from each kinase PWM constitute nodes in the

network, and the negative Euclidean distance between vectors represent edges upon initialisation. AP considers all nodes as poten-

tial exemplars upon initialisation, and then uses an iterative procedure to automatically identify the optimal number of clusters and

cluster exemplar nodes (Frey and Dueck, 2007). We implemented AP in R using the APCluster package with default parameters for

the apcluster() clustering function (Bodenhofer et al., 2011).

The position-based clusters generated were subject to further refinement before any further analysis. Non-specific clusters, which

we define here as any cluster where the summed mean probability of the top two residues is < 0.30, were filtered from the analysis.

Clusters with fewer than 6 constituent kinases were also excluded.We alsomerged clusters with preferences for the same amino acid

or for similar residues, as such in-depth analysis of specificity – for example, comparisons between kinases with moderate +1 proline

specificity and strong +1 proline specificity, or between arginine preferences and lysine preferences – are beyond the scope of this

investigation. For each remaining specificity cluster we retrieved possible ‘‘false negative’’ kinases by incorporating kinases in clusters

for which the maximum vector weight is greater than the 40th percentile of the top cluster preference. We suggest such false negative

cluster placement to result fromnoisyweights for non-preferred residues and/or the presence of non-linear phosphorylation sites in the

training data. Finally, potential ‘false positive’ cluster members were designated as those kinaseswhere the preferred residue(s) differs

from that of the top three average preferred residues of the cluster, and were subsequently removed from the cluster.
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Sequence-based prediction of specificity-determining residues (SDRs)
We used three alignment-based methods (GroupSim, Multi-Relief 3D, SPEER) for the prediction of specificity-determining residues

(SDRs). The use of more than a single method was motivated by the finding that ensemble approaches that incorporate predictions

from three high-performing methods achieve higher precision values than either two-method predictions or the best-performing sin-

gle-method predictions when benchmarked (Chakrabarti and Panchenko, 2009). While the use of ensemble approaches tends to

lower prediction recall (Chakrabarti and Panchenko, 2009), we decided to prioritise precision over recall here given that the predicted

SDRs would later be used to inform naive Bayes classifiers of kinase specificity, and that false positive SDRs would lower prediction

accuracy.

The threemethods employed here represent the three algorithms with the highest single AUC values when benchmarked against a

set of 20 protein family alignments with known specificity determinants (Chakraborty and Chakrabarti, 2015). Moreover, all three

methods belong to independent categories of SDR predictor (evolutionary, entropy-based, etc), and so make use of non-redundant

prediction methodologies (Chakraborty and Chakrabarti, 2015).

The GroupSim, Multi-Relief 3D, and SPEERmethods use distinct schemes for position scoring. We therefore follow the precedent

of the Chakrabarti and Panchenko (2009) study and identify as putative SDRs those residues among the top 15 ranked sites across all

three methods. Standalone versions of GroupSim and SPEER were employed in the pipeline (Capra and Singh, 2008; Chakrabarti

et al., 2007). For Multi-Relief 3D, we generated a custom R script for the method on the basis of the algorithm description in

Ye et al. (2008).

Sequence alignment of kinases
We implemented a semi-automated pipeline for theMSA-based inference of SDRs in anR environment. The inputs to the pipeline are

the kinase PWMs and an MSA of all kinase protein sequences. The MAFFT L-INS-i method was used to generate MSAs for this anal-

ysis (Katoh et al., 2005); this was the highest-performing method in two independent benchmarks of popular alignment tools (Ahola

et al., 2006; Nuin et al., 2006). We used the trimAl tool to remove MSA positions containing more than 20% ‘gap’ sites (Capella-Gu-

tiérrez et al., 2009).

The pipeline clusters the kinase specificity models in a position-wise manner (discussed above), and then iteratively predicts SDRs

for each cluster identified (e. g. +1 proline preference). This is achieved for each cluster by generating a binary partition of the MSA on

the basis of clustermembership, and then using theGroupSim,Multi-Relief 3D, and SPEERmethods (discussed above) to predict the

most likely SDRs from the MSA partition.

Identification of kinase-substrate cocrystal structures
Multiple steps were used to identify all cocrystal structures in the protein data bank (PDB) with a kinase-substrate/inhibitor interface

at the active site (Mir et al., 2018).

For the detection of kinase-substrate complexes, we first used the hmmsearch command in HMMER (default parameters) to iden-

tify all PDB structures containing a eukaryotic protein kinase domain (PFAM: PF00069) sequence (El-Gebali et al., 2019). All PDB files

with at least one additional peptide chainwere then selected. To distinguish between active site and allosteric binders, we selected all

PDB files with at least one residue in contact with either the HRD catalytic aspartate of the kinase domain (P0 binding) or with the

position 159 residue of the kinase activation loop (+1 binding). A lenient cut-off of 6 Angstroms was used for this purpose; the

retrieved PDB files were then filtered manually. All non-redundant structures retrieved using this procedure are present in Table S2.

All processing was performed in R with use of the Bio3D package (Skjærven et al., 2016). SIFTS XML files were used for residue-

level structure-sequence mappings (Velankar et al., 2013).

Structural analysis
For all of the retrieved kinase-substrate structures, an automated approach was used to identify the kinase substrate-binding resi-

dues for the substrate positions�5 to +4 (excluding P0). We used the PDBsum tool to identify all substrate-binding residues (de Beer

et al., 2014), and to categorise each contact as either hydrogen-bonded, ionic, or non-bonded (i.e., hydrophobic or van der Waals).

The substrate residue in closest proximity to the catalytic aspartate of the kinase HRD motif was identified as P0, and the flanking

positions were assigned (�2, �1, +1, +2, etc) accordingly. Tyrosine kinases were not included in this analysis, and so the binding

profile presented in Figure S1 represents Ser/Thr kinases only. The binding profile does not include kinase domain positions that

bind to the substrate infrequently (< 10% of structures).

Kinase-substrate structural models
Kinase-substrate models were constructed using existing X-ray cocrystal structures as templates. Superposition of the kinase of in-

terest (query) with a template cocrystal structure is used to achieve a plausible positioning of the substrate peptide with reference to

the query kinase. The template kinase is then removed and the template peptide mutated in silico to the sequence of a known phos-

phorylation site of the query kinase. After resolving steric clashes between kinase and substrate, the resulting complex is then subject

to energy minimization (EM), followed by molecular dynamics (MD) equilibration and production runs.

For all models constructed, the template kinase was chosen as the most similar in sequence to the query of the kinases listed

in Table S2. Structural superposition was performed in PyMOL. All necessary input files for EM and MD were prepared using the
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web-based CHARMM graphical user interface (CHARMM-GUI) with default parameters (Jo et al., 2008). EM and MD runs were

executed with the CHARMM36 force field using the NAMD molecular dynamics tool (Phillips et al., 2005). We imposed a harmonic

restraint (force constant 90 kcal/mol/Å2) on the catalytic aspartate of the HRDmotif and on the substrate P0 residue to ensure correct

positioning of the phosphoacceptor residue.

In each case, the final model used for analysis was generated by finding a representative set of co-ordinates from the protein

trajectory. We used the Bio3D package to generate a Principal Components Analysis (PCA) plot of the substrate peptide trajectory

co-ordinates (Skjærven et al., 2016). Partition around medoids (PAM) was then used to cluster n PCA component scores, where n is

the lowest number of components that can account for 70% variation. We selected as the kinase-substrate model the set of peptide

co-ordinates that served as the medoid to the terminal cluster (i.e., the cluster of co-ordinates corresponding to the trajectory before

the end of simulation).

Construction of predictive models and cross-validation
Naive Bayes (NB) algorithms were used to predict the specificity of protein kinases on the basis of the kinase sequence alone. Five

separate classifiers were generated, corresponding to the five preferences–P+1, P-2, R-2, R-3, and L-5–supported by at least

20 kinases. We chose this conservative threshold to enable an adequate sample of amino acids per position and therefore to avoid

inaccurate predictions.

Each classifier was trained on the 119 Ser/Thr kinase sequences of known specificity. Kinase PWMs where the relative amino acid

frequency (e.g., for arginine at position - 3) is 3-fold greater than the background frequency in the proteomewere assigned a ‘positive’

label for model training while all other kinases were assigned a ‘negative’ label. In each case, the prior probability of classification was

set to 0.5 so that positive or negative classifications would be equally likely a priori. We also set a Laplace correction factor of 0.5

during training to account for the absence of particular amino acids in either positive or negative sets of the training data for a given

alignment position.

Leave one-out cross-validation (LOOCV) was then used for each classifier to identify the subset of input SDRs that would optimize

the performance of the model on the training data with respect to the AUC. Each classifier was initialised with the putative specificity-

determining alignment positions described in Figure 2A.

Using a threshold of 3x (i.e., the relative amino acid frequency must be 3-times greater than the background frequency in the pro-

teome), the following AUCswere calculated following cross-validation: 0.91 (P+1), 0.85 (P-2), 0.83 (R-2), 0.93 (R-3), 0.83 (L-5). Using a

threshold of 4x, yielded the following AUCs: 0.99 (P+1), 0.88 (P-2), 0.81 (R-2), 0.93 (R-3), 0.89 (L-5); and for 5x: 0.99 (P+1), 0.95 (P-2),

0.86 (R-2), 0.91 (R-3), 0.81 (L-5). Therefore, the cross-validation procedure was robust to the threshold used.

The input SDRs used were as follows, given by their kinase domain positions:

P+1: 159, 188, 196

P-2: 82, 162, 188

R-2: 127, 162, 189

R-3 (non-CMGC): 82, 86, 127, 162

R-3 (CMGC): 86, 127, 189

L-5: 86, 189

For R-2, positions 127 and 189were not predicted here as SDRs (Figure 2A) as themethods used for SDRdetection considers each

alignment position independently of other positions. Both positions however are strongly supported as co-operative SDRs in the liter-

ature (Ben-Shimon andNiv, 2011; Zhu et al., 2005b), and are included here for specificity prediction given that their prediction was not

possible using current methods. This is the only residue pair that we are aware of where this is the case. While this represents a

limitation of the current approach, it would not be feasible to automate the detection of correlated SDR associations given the

low sample size of kinases with known specificity, as approximately�250x125 residue pair associations would need to be calculated

for each specificity.

For R-3, separatemodels were trained for CMGC and non-CMGC kinases as the bindingmode in both cases are independent from

each other. Using the same set of SDRs across all kinases would therefore not be appropriate (Figure S3). Differences in substrate

binding between CMGC and non-CMGC kinases were also observed by the developers of the Predikin web server, and are ac-

counted for when making predictions (Saunders et al., 2008).

The same approach described above was used to benchmark the predictions against a set of 141 recently characterized S/T

PWMs (Sugiyama et al., 2019) that were not present in the original training set.

Analysis of kinase orthologs
For the orthology analysis of human, mouse, and yeast kinases, we used the 119 PWMs described in the main text in addition to the

61 yeast specificity matrices presented in Mok et al. (2010). Before further analysis, the pT and pY sites were removed from each of

the peptide screening models, and then the matrices were normalized so that all columns sum to 1. Human and mouse orthologs (if

any) for each yeast kinase were then identified using the Ensembl Rest API for the Ensembl Genomes Compara resource (Kersey

et al., 2016). The Frobenius distancewas then calculated for every possible pair of human-yeast andmouse-yeast PWMs. Thismetric
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represents the sum of the squared element-wise distances between two matrices, followed by square rooting. Distances for PWMs

of the same kinase were generated by subsampling phosphorylation sites (n = 23) from the same kinase and then calculating all

possible pairwise Frobenius distances between them. N = 23 corresponds to the median number of phosphorylation sites used

to construct the 119 PWMs presented in the main text. When counting the number of divergent yeast-human/mouse orthologous

pairs, specificity models from the Mok et al. (2010) study were not considered if the phosphosite-based model of the same kinase

was already present.

For the pan-taxonomic analysis of protein kinase orthologs, orthologous sequenceswere retrieved automatically from the Ensembl

Genomes database using the Ensembl Rest API and were aligned using the MAFFT L-INS-i method (Katoh et al., 2005). Orthologs

were only retrieved for human kinases with a > 0.9 probability of belonging to at least one of the P+1, P-2, R-2, R-3, or L-5 classes, as

determined using the naive Bayes predictors discussed above. Pseudokinases were filtered from the orthologous sets by identifying

substitutions at the 30, 123, and 141 domain positions. For each alignment of kinase orthologs, the bio3d substitution matrix was

used to assess the conservation of every alignment position (Skjærven et al., 2016)). These values were then averaged across the

groups ‘SDR’, ‘Catalytic’, and ‘Kinase Domain’ to generate the values presented in Figures 5C and S5. The ‘SDR’ group represents

the predicted SDRs given in Figure 2A. The ‘Catalytic’ group is the same as what is listed in the section below. ‘Kinase domain’ rep-

resents the complement of the kinase domain against the ‘SDR’ and ‘Catalytic’ groups.

For every sequence in an orthologous MSA, posterior probabilities for the corresponding human specificity were also calculated.

These values were then averaged across all sequences within an MSA to quantify the extent of specificity divergence among a group

of orthologs. A value of 1.0 would indicate the complete conservation of specificity among all orthologs and vice versa. Each data

point in Figure 5D therefore represents the average posterior probability (across all sequences in an MSA) of an ortholog having

the same specificity as that predicted for the human ortholog (‘P+1’, ‘R-20, ‘R-30, etc.)

Analysis of kinase mutations in cancer
Mutation data for primary tumor samples was obtained from The Cancer Genome Atlas (TCGA) (https://www.cancer.gov/about-nci/

organization/ccg/research/structural-genomics/tcga). Each kinase mutation was assigned to the correct protein isoform and then

mapped to the corresponding kinase domain position. The dataset was then filtered to exclude mutations mapping to tyrosine pro-

tein kinases.

All kinase domain positions were categorised as ‘SDR’, ‘Catalytic’, ‘Regulatory’, and ‘Other’. Catalytic and regulatory sites were

inferred from the literature. ‘SDR’ sites refers to residues that are both potential SDRs (Figure 2A) and often found in close (within 4Å)

contact (Figure 2C dark red) with the substrate peptide. ‘Other’ refers to every other position in the kinase domain.

The set of residues in each class (given by domain position) is as follows:

Catalytic: 8, 10, 13, 15, 28, 30, 48, 85, 123, 125, 128 129, 130, 131, 140, 141, 186, 190

Regulatory: 44, 52, 63, 121, 122, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 155, 156, 157, 158, 165, 166, 167

SDR: 86, 126, 127, 157, 158, 159, 161, 162, 164, 189

A comparison of mutation recurrence per site for P+1 and R-3 kinases is represented in Figure 4C. Per site, we used the proportion

of mutations mapping to that site for a given kinase, and then took the average of this value across all kinases of the same specificity.

This was preferred to the use of raw mutation frequencies, which would bias the analysis toward highly frequent kinase-specific mu-

tations (e.g., BRAF V600E).

GRK phylogeny and ancestral sequence reconstruction
Protein sequences were first retrieved from a taxonomically-broad set of non-redundant proteomes (representative proteomes)

(Chen et al., 2011), and then each representative proteome (rp35) was queriedwith a hiddenMarkovmodel (HMM) of theGRKdomain

(KinBase) using HMMsearch (E = 1e-75) (Eddy, 1998). The subfamily classifications of each GRK were then predicted using Kinan-

note (Goldberg et al., 2013). Sample sequences of the RSK family kinases, which are the most similar in sequence to the GRKs, were

also included as an expected outgroup in the phylogeny, as were two kinases of the basophilic PKA family.

The kinase sequences (GRK kinases plus outgroups) were then aligned using the L-INS-i algorithm of MAFFT (Katoh et al., 2005),

and filtered to remove pseudokinases and redundant sequences (97% threshold), resulting in 163 sequences to be used for phylo-

genetic reconstruction. A maximum likelihood phylogeny was generated with RAxML using a gamma model to account for the het-

erogeneity of rates between sites. The optimum substitution matrix (LG) for reconstruction was also determined with RAxML using a

likelihood-based approach (Stamatakis, 2014). FastMLwas then used for theML-based ancestral reconstruction of sequences for all

nodes in the phylogeny (Ashkenazy et al., 2012). Sequence probabilities were calculated marginally using a gamma rate model and

the LG substitution matrix.

Snf1 and Ypk1 mutants construction and in vitro kinase assays
The Snf1 and Ypk1 plasmids from the Yeast Gal ORF collection were used as a template for directed mutagenesis to create the

following mutants: Snf1 A218L and Snf1 V244R single mutants; Ypk1 F433H E510G double mutant and Ypk1 F433K, E510Q

E537R triple mutant. Wild-type and mutant plasmids were transformed into a BY4741 SNF1 KO or YPK1 KO strains, respectively.
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Snf1 and Ypk1 strains were grown to exponential phase in synthetic defined (SD) media lacking uracil, and protein overexpression

was induced with 2% galactose for 8h at 30�C. In both cases, cells were collected by centrifugation at 3200rpm for 5min and kept at

�80�C. Yeast cell pellets were resuspended in lysis buffer (20mM Tris pH8, 15mM EDTA pH8, 15mM EGTA pH8 and 0.1% Triton X-

100) containing a cocktail of protease (cOmplete, from Roche) and phosphatase inhibitors (PhosSTOP, from Sigma). Cells were

broken mechanically using glass beads beating at 4�C. Snf1 or Ypk1 protein-immunoprecipitation were performed using rabbit

IgG-Protein A agarose beads (Sigma) with rotation for 2h at 4�C. Agarose beads were washed 4 times with lysis buffer. Kinase assays

were performed using AQUA synthetic peptides (Sigma) as shown in Figure S4. Briefly, equal amounts of the indicated synthetic pep-

tides were added to each kinase mutant . Snf1 mutants were assayed with peptides WT (VQLKRPASVLALNDL), L-5 (VQDKRPASV-

LALNDL) and L+4 (VQLKRPASVLAANDL) and Ypk1mutants withWT (GRPRAASFAEK), E-3 (GGPEAASFAEK), E-5 (GEPGAASFAEK)

and E-3 E-5 (GEPEAASFAEK) peptides. ATP mix (ATP 300 mM, 15 mMMgCl2, 0.5 mM EGTA, 15 mM b-glycerol phosphate, 0.2 mM

sodium orthovanadate, 0.3 mM DTT) was added to kinase/substrate mix and incubated at 30�C for 0, 2, 7 and 20 minutes. The re-

actions were quenched by transferring the reaction mixture onto dry ice at the corresponding times. Ypk1 kinase activity assays (Fig-

ure S4C) were performed using the incorporation of g-32P ATP as a readout, as described before (Viéitez et al., 2020).

Mass spectrometry identification of phosphopeptides and quantification
Kinase reaction products were diluted with 0.1% formic acid in LC-MS grade water and 5 ml of solution (containing 10 pmol of

the unmodified peptide substrates) were loaded LC-MS/MS system consisting of a nanoflow ultimate 3000 RSL nano instrument

coupled on-line to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific). Gradient elution was from 3% to 35%

buffer B in 15 min at a flow rate 250 nL/min with buffer A being used to balance the mobile phase (buffer A was 0.1% formic acid

in LC-MS grade water and B was 0.1% formic acid in LC-MS grade acetonitrile). The mass spectrometer was controlled by Xcalibur

software (version 4.0) and operated in the positive ion mode. The spray voltage was 2 kV and the capillary temperature was set to

255�C. The Q-Exactive Plus was operated in data dependent mode with one survey MS scan followed by 15 MS/MS scans. The

full scans were acquired in the mass analyzer at 375- 1500 m/z with the resolution of 70 000, and the MS/MS scans were obtained

with a resolution of 17 500. For quantification of each phosphopeptide and its respective unmodified form, the extracted ion chro-

matograms were integrated using the theoretical masses of ions using a mass tolerance of 5 PWM. Values of area-under-the-curve

were obtained manually in Qual browser of Xcalibur software (version 4.0).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed in the R computing environment and statistical tests performed are described in the Results and

Method Details sections.
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Figure S1. Substrate binding profile of Ser/Thr kinases, Related to Figure 1 -             
Binding prevalence for Ser/Thr kinase residues (mapped to the eukaryotic protein           
kinase domain, PFAM: PF00069), in terms of proportion of Ser/Thr kinase-substrate           
cocrystal structures in which the residue is found to contact (within 4​Å​) the substrate at               
a given position (e.g. +1 position). Sets of homologous kinases (e.g. AKT1 and AKT2)  
were counted once only. 
 
 



 
 
 
Figure S2. Benchmark performance of naive Bayes specificity predictors, Related          
to STAR Methods - Receiver Operating Characteristic (ROC) curves for five specificity            
classifiers. a) Naive Bayes classifiers for P+1, P-2, R-2, R-3, and L-5 preferences were              
assessed using leave-one-out cross-validation b) Naive Bayes classifiers for P+1, P-2,           
R-2, R-3, and L-5 preferences were assessed using an independent test set of 141 S/T               
PWMs from ​ ​(Sugiyama, Imamura and Ishihama, 2019) ​. 
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Proline at position +1: ​The +1 proline 
amide group is unable to act as an 
H-bond donor to the backbone carbonyl 
at 159. In absence of this interaction 
(which occurs in non-Pro+1 kinases with 
glycine at 159) the arginine side chain at 
164 serves as an H-bond donor to the 
backbone carbonyl at 159. In many 
Pro+1 kinases the arginine side chain is 
stabilised by a negative side group (157 
pTyr here), which in turn forms polar 
contacts (2.6​Å​) with arginine at 161 in 
this example. Isoleucine at 158 is 
unlikely to be a direct specificity 
determinant, but instead probably 
contributes to the CMGC-specific 
stabilisation of the kinase via 
non-bonded contacts with activation 
segment residues. 

 

Leucine at position +4: Our analysis      
suggests that a substitution of     
isoleucine/leucine/methionine for  
alanine at position 164 contributes to      
selectivity for leucine at position +4.      
Mutation to alanine will result in a loss        
of packing interactions with the     
hydrophobic side chain at position +1.      
This is probably compensated for by a       
hydrophobic residue at position +4,     
which in the structure PDB: 3IEC can       
be observed to pack against the +1       
valine in the +1 pocket (3.9​Å​). 

 

 

Proline at position -2:​ kinases with this 
preference usually feature a bulky 
residue at position 162 (tyrosine or 
tryptophan), and either leucine or 
arginine at position 161. Hydrophobic 
contacts (161: 3.4​Å​, 162: 3.7​Å​) between 
these side chains and the proline side 
group likely confers modest Pro-2 
selectivity. Our analysis also suggests 
that this preference overlaps with 
modest Leu-2 selectivity. 

 
 

 

Leucine at position -5: The aromatic      
side chain at position 86 packs against       
the hydrophobic residue at substrate     
position -5 (3.4​Å​). The absence of a       
negatively-charged glutamate residue at    
189 is another factor that favours the       
binding of a hydrophobic residue at      
position -5. The other positions     
highlighted -- 90, 193, 194, 195 -- also        
constitute the -5 binding pocket and      
may be important. In addition to the       
evidence given in ​Figure 3​, recent      
experimental evidence also strongly    
suggests that position 189 is an SDR       
for the L-5 specificity ​(Chen ​et al.​,       
2017)​.  

 

Arginine at position -3: position 86       
mainly features a tyrosine or     
phenylalanine residue, which packs    
against the hydrophobic moiety of the      
arginine side chain. The glutamate at      
127 can be observed to bond with R-3 in         
a few co-crystal structures in which R-2       
or R-5 is not also present. Contact with        
aspartate/glutamate at 84 (2.8​Å​) is also      
observed in many co-crystal structures     
and has been validated as an SDR       
(Gibbs and Zoller, 1991; Huang ​et al.​,       
1995)​, but is not necessary for R-3       
selectivity in all kinases. Polar contacts      
between R-3 and aspartate at position      
87 (2.9​Å​) have so far been observed in        
CAMK kinases only ​(Pogacic ​et al.​,      
2007; Nesić ​et al.​, 2010)​. In CMGC       
kinases, the mode of binding is similar to        
that of R-2 binding in AGC kinases, with        
glutamates at 127 and 189 (3.0​Å and       
2.6​Å, respectively​) forming polar    
contacts with the substrate arginine. 

 

Aspartate/glutamate at position +1    
(CMGC): ​The construction of a     
structural model of a CSNK2A1-peptide     
complex suggest that positively-charged    
arginine residues at positions 157 and      
161, and a lysine residue at position at        
164, are important for    
aspartate/glutamate selectivity. The   
suggested role of 164 lysine in      
particular is supported by a previous      
experimental study ​(Sarno ​et al.​, 1997)​. 

 

 

Arginine at position -2: Glutamate at       
positions 127 and 189 are together      
strongly associated with R-2 selectivity     
(Zhu ​et al.​, 2005; Ben-Shimon and Niv,       
2011)​. The alignment-based method    
presented here however does not     
account for positional inter-dependency.    
Position 162 usually features a     
glutamate in R-2 kinases, although this      
residue contacts R-6 directly (2.9​Å​)     
rather than R-2. A previous study      
however suggests a role for 162 in       
substrate recognition beyond its    
interaction with R-6 ​(Moore, Adams and      
Taylor, 2003)​. 

 

Aspartate/glutamate at position +1    
(AGC): ​The construction of a structural      
model of a GRK2-peptide complex     
implicates the positively-charged lysine    
residue at position 202 as a determinant       
of +1 aspartate/glutamate selectivity.    
The lysine side chain at position 202       
form polar contacts with the glutamate      
side chain at +1 in the constructed       
model.  
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Figure S3. Structural rationalisation of several kinases SDRs, related to Figure 2            
and Figure 3 - ​Eight different kinase position preferences were rationalised using            
empirical or homology-based (D/E+1 CMGC and D/E+1 AGC) kinase-substrate models.          
Putative SDRs identified from kinase alignments ( ​Figure 1c ​and ​Figure 2​) are coloured             
in red and all other potential SDRs in orange. Substrate residues are coloured in yellow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S4. Experimental validation of kinase SDRs in yeast, Related to Figure 3             
and Figure 6 - ​a) Experimental setup used to introduce point mutations in Snf1 and               
Ypk1-tagged kinases in plasmids, overexpression in yeast, protein purification and in           
vitro kinase assays. For the Ypk1 assay, every kinase (WT or mutant) was individually              
tested with a pool of peptides: WT (orange), mutated at R-3 (blue), mutated at R-5               
(green) and mutated at R-3 and R-5 (grey). Incorporation of γ-32P ATP was measured              
by mass spectrometry. The residue numbers 433, 510, and 537 correspond to domain             
positions 86, 162, and 189, respectively. b) Phosphopeptide quantification after the           
Ypk1 kinase assay for 0 min (light color) and 30 min (dark color) at 30C (median and                 
standard deviation for 3 biological replicates) c) Ypk1 kinase activity shown as kinase             
autophosphorylation after 30 min incubation with γ-32P ATP (autoradiography). Protein          
abundance shown by western blot using anti-PAP antibody. 
 
 
 
 



 
 
Figure S5. Conservation of kinase SDRs, catalytic residues, and domain residues           
between orthologs, Related to Figure 5 - ​Conservation of domain residues, SDRs,            
and catalytic residues for the R-3, P-2, R-2, and L-5 specificities. Each data point              
represents the average conservation (among kinase domain positions, SDR, or catalytic           
residues) for an alignment of orthologous kinases where the human kinase is a             
predicted R-3, P-2, R-2, or L-5 kinase. 
 
 
 
 
 
 
 



 
 
Figure S6. Ancestral sequence reconstruction for the GRK family, related to           
Figure 6 - ​Topology of the GRK phylogeny (left) with a sample of the GRK multiple                
sequence alignment (right). Labels at the selected nodes (blue circles) represent the            
reconstructed probabilities of amino acids from the antecedent blue node to the labelled             
node. The labelled domain positions are found in the -2/-3 binding pocket and are              
discussed in the main text ( ​Figure 6c​).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PDB Kinase Group Kinase species Substrate Resolution (Å) Publication -5 -4 -3 -2 -1 0 1 2 3 4 5

2cpk* PKA AGC Human PKI-alpha 2.7 Knighton et al., 1991 T G R R N A I H D x x

4o21* PKA AGC M. musculus PKI-alpha 1.95 Gerlits et al., 2014 T G R R A S I H D x x

4wih PKA AGC C. griseus PKI-alpha 1.1 Kudlinzki et al., 2015 T G R R Q A I H D I x

4xw5* PKA AGC M. musculus PKI-alpha 1.82 Gerlits et al., 2015 T G R R A C I H D x x

3o7l PKA AGC M. musculus Pln 2.8 Masterson et al., 2010 A I R R A S T I x x x

2phk PHKg CAMK O. cuniculus Synthetic 2.6 Lowe et al., 1997 x x R Q M S F R L x x

1qmz CDK2 CMGC Human Synthetic 2.2 Brown et al., 1999 x x H H A S P R K x x

3qhr CDK2 CMGC Human Synthetic 2.2 Bao et al., 2011 x x x P K T P K K A K

1o6k AKT-2 AGC Human GSK3-beta 1.7 Yang et al., 2002 R P R T T S F A E x x

3cqw AKT-1 AGC Human Synthetic 2.0 Lippa et al., 2008 R P R T T S F A E x x

3mvh v-AKT AGC Human Synthetic 2.01 Freeman-Cook et al., 2010 R P R T T S F A E x x

2c3i PIM-1 CAMK Human Synthetic 1.9 Pogacic et al., 2007 R R R H P S G x x x x

4dc2 PKC-i AGC M. musculus Par-3 2.4 Wang et al., 2012 G F G R Q S M S x x x

2wo6 DYRK-1A CMGC Human Crb-2 2.5 Soundararajan et al., 2013 x A R P G T P A L x x

4jdh PAK-4 STE Human Synthetic 2 Chen et al., 2014 x x R R R T W Y F G G

4l67* PAK-4 STE Human Pak4 2.8 Wang et al., 2013 A R R P K P L V D P A

4ouc Haspin Other Human Histone H3.2 1.9 Maiolica et al., 2014 x x x A R T K Q T A x

3kl8* CAMKII CAMK C .elegans CAMK2n1 3.37 Chao et al., 2010 I G R S K R V V I x x

3iec* MARK2 CAMK H. sapiens cagA 2.2 Nesic et al., 2010 L K R H D K V D D L S

3tl8 BAK1 N/A A. thaliana HoAB2 2.5 Cheng et al., 2011 I D L G E S L V Q H P



Table S2 - List of PDB structures featuring Ser/Thr protein kinases in complex             
with a substrate peptide/protein at the active site, Related to STAR Methods. In             
4dc2 (PKC-i), the substrate peptide N-terminal to the phosphoacceptor ‘loops out’ from            
the active site to form a non-contiguous three-dimensional binding sequence. These           
substrate positions are therefore not comparable to structures in which the substrate            
peptide assumes a regular binding conformation. Inhibitor interactions are labelled with           
an asterisk. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Preference SDR positions Evidence
R-3 (55) 17, 82, 86, 127, 158, 162, 185 None, None, Mok et al., 2010, Mok et al., 2010 (CMGC), None, None, None
P+1 (36) 158, 159, 161, 164, 188, 196 Kannan 2004, Zhu et al 2005, Kannan 2004, Zhu et al 2005, Kannan 2004, Kannan 2004
R-2 (27) 27, 162 None, None
P-2 (25) 82, 161, 162, 188, 196 None, Kannan 2004, None, None, Mok et al 2010
L-5 (21) 86, 189 None, Chen et al 2017
R/K+2 (14) 45, 61, 126, 229 None, None, None, None
D/E-2 (13) 157, 189 None, None
D/E-3 (13) 86, 127, 140, 157 None, None, None, None
R-5 (12) 162 None
R/K+3 (10) 161, 237 None, None
D/E+1 (8) 85, 249 None, None
L-2 (8) 131 None
D/E+2 (7) 13, 34 None, None
P+2 (7) 145 None
L+4 (6) 164 None
D/E+4 (6) 73 142 165 249 None, None, None, None



Table S4 - Previous experimental evidence for the predicted SDRs, Related to            
Figure 2. ​The SDRs predicted for each preference are listed. For each SDR, the third               
column gives any available citations for previous literature evidence. The brackets in the             
first column represent the number of kinases with the given specificity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

Table S6 - Oligonucleotides used to mutate Snf1 and Ypk1, Related to STAR             
Methods 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Oligonucleotide to mutate SNF1V244R FW: 
CCTTTATCGTATGCTTTGTC This paper N/A 
Oligonucleotide to mutate SNF1V244R RV: 
ATAACCCCACATGACCACAC This paper N/A 
Oligonucleotide to mutate SNF1 A218L FW: 
CAATTATCTTGCTCCTGAAG This paper N/A 
Oligonucleotide to mutate SNF1 A218L RV: 
GGAGAACCACAAGAAGTCTT This paper N/A 
Oligonucleotide to mutate YPK1 Q510G FW: 
GTGGGACCCCAGGTTACTTGGCACCAGAAC  This paper N/A 
Oligonucleotide to mutate YPK1 Q510G RV: 
AAAAAGTATCTGTCTTATCATCATCCTTC This paper N/A 
Oligonucleotide to mutate YPK1 F433H FW: 
CAATGGTGGTGAGTTGCATTATCATCTACA This paper N/A 
Oligonucleotide to mutate YPK1 F433 RV: 
ATAAACGCTAAAACAAAGTATAATTTTTCCG
G This paper N/A 
Oligonucleotide to mutate YPK1 F433K FW: 
CAATGGTGGTGAGTTGAAATATCATCTACA This paper N/A 
Oligonucleotide to mutate YPK1 Q537R FW: 
CTTGTTATACAGAATGCTCACAGGTCTTC This paper N/A 
Oligonucleotide to mutate YPK1 Q537R RV: 
ACTCCCAATGTCCACCAATCTACTG This paper N/A 
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