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Supplementary Methods

S1. Preparation of liposomes

Liposomes (DPPC: cholesterol: DSPE-PEG-2000 =57:40:3) were formed by the lipid film
hydration method as described previously'. In brief, lipid mixture was dissolved in chloroform at
the concentration of 25 mg/mL, followed by being air-dried for 90 min and vacuum-dried for 30
min. The lipid film was hydrated with 2 mL PBS (pH 7.4) at 50 °C for 1.5 h with intermittent
shaking. Then the solution was extruded sequentially with 400 nm and 200 nm polycarbonate
membranes. The size and distribution (polydispersity index, PDI) were measured at room
temperature by dynamic light scattering using a Nanosizer ZS90 (Malvern Instruments,
Southborough, MA) and the concentration of liposomes (in terms of number per milliliter) was
measured using nanoparticle tracking analysis (Zetaview, Particle Metrix, Germany) after

dilution. The size of liposomes was 226 nm in diameter (PDI=0.152).

S2. Labeling liposomes with DiR dye

DiR-labeled liposomes were prepared using the same protocol as that for EVs. In brief,
liposomes of the concentration of 1.1 x 10" per milliliter were added with DiR dye (1,1'-
Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine lodide, ThermoFisher Scientific) to a final
concentration of 1 M. After incubation for 15 min with gentle shaking, the free DiR dye was

removed by eluting through a Sephadex G-50 column.

S3. Western blot analysis of EV markers

The iPCS-EV, E8 medium, FBS-EV, and FBS (5x diluted in PBS) were mixed with 4x XT
sample buffer (BioRad) under non-reducing conditions, boiled for 5 minutes at 100°C, and

subjected to PAGE gel electrophoresis on a 4%-15% Criterion TGX Stain-Free Precast gel (7.5%



for ApoB100 detection) (Biorad). Proteins were transferred to a PVDF membrane using the
iBlot2 system (ThermoFisher) run at program pO (for ApoB100: 1 min at 20V, 4 min at 23V, 5
min at 25V). After 1h of blocking in 5% Blotting-Grade Blocker (BioRad) in PBS + 0.05%
Tween-20 (PBS-T), blots were incubated overnight at 4°C with the following primary antibodies
in blocking buffer: mouse-anti-CD63 (1:500, sc-365604, SantaCruz), mouse-anti-CD81 (1 : 500,
sc-23962, SantaCruz), and goat-anti-ApoB100 (1 : 1000, 20A-G1b, Academy Bio-Medical).
Blots were washed 3x with PBS-T and incubated for 1.5h at room temperature with secondary
antibodies, goat-anti-mouse-IgG-HRP (H + L; LI-COR Biosciences, Cat #P/N 925-32,210,
Lincoln, NE, USA), and mouse-anti-goat-IgG-HRP (sc-2354, SantaCruz), all diluted 1 : 10,000
in blocking buffer. After washing 3x with PBS-T and 2x with PBS, SuperSignal West Pico
PLUS Chemiluminescent Substrate (Pierce) was used for detection on an iBright FL.1000

(ThermoFisher) in chemiluminescence mode.
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Figure S1. Fourier-transform infrared spectra of SP1IO-His and SPIO-COOH. SPIO-His but
not SPIO-COOH exhibited a characteristic peak of near 1680 cm™', confirming the formation of

amide bonds between carboxyl group and the amine group of histidine peptide.
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Figure S2. Photos of SPIO-His (left) and magneto EVs (right) before (eluent) and after

(eluate) passing through a Ni-NTA column three times, with PBS solutions included as the

control. Both SPIO-His and magneto-EVs eluents contain 0.67 mg/mL SPIOs. The eluate of

SPIO-His after Ni-NTA column purification has no color (at least not perceptive), indicative of

nearly complete removal of SPIO-His from the solution, whilst the eluate of magneto-EVs shows

a light brownish color, indicating that a small amount of SPIOs exist inside EVs.
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Figure S3. TEM images of magneto-EVs. A. A wide view TEM image of magneto-EVs. B.

Zoom-in views of individual magneto-EV's in which SPIOs are clearly visible.

Pelleting by
magnet
'Y E—
EVs Q;\ purify g . 24h
o —— ° .. ° ——
8, Iron-oxide R ® Solution 1 Solution 2
partlcles
Magnet
Q.Iron-oxide
® particles SPIOSs int lized Harvest EVs
Sb)l’nC:I;;;a e released by cells Labeling efficiency (%) = (1 - Nsolution 2/ Nsolution 1) X 100%
asesl = @
)
cells

Figure S4. Illustration of the experimental setup to compare labeling efficiency between
our proposed method and the previously reported method. Magneto-EVs were prepared
using either our electroporation method or by harvesting EVs from parent cells pre-incubated
with SPIOs for 24h. A Neodymium magnet fixed at the bottom of a microcentrifuge tube was
used to separate magneto-EV from those without SPIO labeling in solution 1. Twenty-four hours
later, the supernatant was collected (solution 2). The numbers of EVs in solution 1 and 2 were
measured using nanoparticle tracking analysis (NTA), and the labeling efficiency was calculated

as: labeling efficiency (%) = (1 — Nyotution 2/Niotution 1)X100%.
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Figure S5. Dynamics of AR,* contrast change in the kidneys generated by magneto-EVs.
A. Coronal T,*w image of a representative mouse showing the ROI selection of the kidneys. B.
Dynamic changes of AR,*, calculated by 1/Tg*xIn(Srost/Spr), of kidney of normal and LPS-AKI

mice after magneto-EV or SPIO-His injection.
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Figure S6. MRI of magneto-EV uptake in the liver. A. Axial UTE-MRI images containing
either the kidneys (K, top panel) or liver (L, bottom panel) acquired prior to (pre) and at 30 min
after magneto-EV injection. B. Dynamic changes of AR,* of the kidneys and liver. C. Ex vivo
MRI images of one liver samples harvested from LPS-AKI mice without (left) and with magneto-

EV injection (right). D. Histogram of pixel intensities in the two livers shown in (C).
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Figure S7. Ex vivo fluorescence imaging to assess biodistribution of DiR-labeled EVs and
liposomes. A. Representative bright field and fluorescence images of lung, kidney, liver, heart
and spleen of mice i.v. injected with DiR-labeled EV or liposomes. Organs were harvested at 30
min after injection. B. Quantitative analysis of the fluorescence intensities (without
normalization) of different organs (n=4). C. Relative ratios of the mean fluorescence intensity in
each organ to that in the liver. There was a significant difference between AKI and normal

groups in the kidneys and lungs (P=0.0252 and 0.238 respectively, n=4, unpaired Student’s t-
test).
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Figure S8. Survival of AKI mice treated with 2x10° iPSC-EVs at 3 (A) and 24 hours (B), as

compared with the group of vehicle control (PBS). n=5 in each group.



HE staining LPS-AKI

Figure S9. Hematoxylin-eosin (HE) stain of a representative section of LPS-AKI Kidney, in

which hemorrhages in the cortex of the kidney are indicated by black arrows.
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Figure S10. Characterization, MRI tracking, and therapeutic effect of FBS-EVs. (A) The
characterization of FBS-EVs, including size (DLS measurement) and CD63, CDS81, and
ApoB100 expression (Western Blots). In the ApoB100 analyses, E8 medium and FBS were used
as controls. The protein/particle ratio of FBS-EV was 12.5 ug/10° EV. B. Ex vivo MR images of
a representative LPS-AKI kidney at 30 min after the injection 2x10° FBS-derived magneto-EVs.
C. Survival of LPS-AKI mice co-injected with FBS-EV or PBS (vehicle control), respectively.
D. Serum creatinine (SCr) levels at 24 hours in the LPS-AKI mice receiving FBS-EV or PBS

(vehicle control), and normal mice without any treatment (negative control).
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Figure S11. LFQ intensity-based heatmap of the top differentially expressed proteins
between iPSC-EVs and plasma derived-EVs using ILFQ log2 fold-change intensityl >5 as a
threshold. The first two columns of the heatmap are the normalized log2 LFQ intensity values
from iPSC and plasma, respectively. The third column of the heatmap is the log2 fold-change
comparison between iPSC-EVs and plasma derived-EVs, with red color representing higher
expression in iPSC-EVs and blue color representing higher expression in plasma derived-EVs .

The row name of the heatmap is formatted as “protein ID/corresponding gene symbol”.
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Figure S12. GO pathway enrichment analysis for top differentially expressed proteins
between iPSC-EVs and plasma derived-EVs. p.adjust< 0.05 (multiple comparison adjusted p-
values, using Benjamini-Hochberg procedure) was used as the threshold to select GO terms.

Ontology.
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