
Supplementary Methods

Multi-fraction Repli-seq data generation

Exponentially growing K562 cells (ATCC CCL-243) cultured in IMDM-10% FBS were pulse-labeled
with 200 µM BrdU for 60 minutes, then fixed in 70% ethanol and stained with propidium iodide as
previously described for sorting by DNA content [1]. FACS sorting windows were defined as previously
published [2]. Briefly, the area between G1 and G2 peaks were divided into 6 windows evenly (S1-
S6). Another window (G1) was added immediately on the left of S1 to collect non-replicating cells.
At least 120,000 cells were collected from each fraction, then using 120,000 cells each, sequencing
libraries were made. From G1 fraction, the total genome library was made as the control. From S1-G2
fraction, libraries that represent nascent DNA were made by performing anti-BrdU immunoprecipitation
as described [1]. These libraries were sequenced on HiSeq 2500 with 50SE chemistry aiming to obtain
20-40 million reads each.

Simulation data generation

To evaluate the performance of SPIN, we generated simulation datasets and directly compared the results
with baseline methods such as K-means and Gaussian HMM. For simulation, we first generated a graph
on chromosome 1 at 25kb resolution where edges in the graph represent the significant Hi-C interactions.
We kept the ratio between the local interactions (<1Mb) and long-range interactions (>1Mb) as 3:1,
similar to the ratio derived from the real data. Given the graph structure, we used Gibbs sampling to
generate a series of simulated states and the corresponding TSA-seq and DamID signals. First, we
initialized the graph with random state labels. Then the Gibbs sampling sampled on each node in the
graph, one at a time. Gibbs sampling can take advantage of the conditional independence properties of
the Markov random field. Thus, when sampling the stateHi of node i, we only need to consider its direct
neighboring nodesN(i). The stateHi was sampled from distribution: P (Hi|{Hj|j∈N(i)}). We iteratively
updated node state labels until convergence (no changes in state labels). Given the simulated state, TSA-
seq and DamID signals on each node were sampled using the distribution learned from the real data and
then smoothed. We applied SPIN to estimate the hidden states based on TSA-seq, DamID, and the graph
structure as input. As a comparison, we also estimated the states using K-means and Gaussian HMM,
which only used TSA-seq and DamID signals as input. We evaluated the prediction accuracy of different
methods as well as different ways of defining Hi-C interactions and significant interaction p-value cutoffs
(see Additional file 1: Supplementary Results and Additional file 2: Fig. S18).

Considering structural variations in K562

Since K562 is a cancer cell line, we also took large structural variants (SVs) into account. For example,
if genomic region s and t are adjacent in the cancer genome but not in the normal genome, we would add
an edge (s, t) in the HMRF graph structure. We applied our recently developed SV caller Weaver [3] to
generate SVs in K562 based on the whole-genome sequencing (WGS) data from the CCLE project [4].
Weaver identified 121 large-scale (allele-specific) SVs in K562 (Additional file 4: Table S2). 64%
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of Weaver identified SVs were also reported in [5]. We then integrated these SVs into our HMRF
graph construction by adding/deleting edges (see below). Overall, 46 edges due to SVs were added
and 29 edges were removed. First, we assigned each breakpoint of SVs to the closest boundary of non-
overlapping 25kb genomic bins. We modified the original graph with SV information using the following
steps:

1. We call two breakpoints involved in an SV X and Y , and the genomic bins upstream/downstream
of breakpoint X are referred to as XL and XR, respectively. Similarly, the genomic bins up-
stream/downstream of breakpoint Y are referred to as YL and YR.

2. We count the copy number of each bin on two alleles separately (as part of the output from Weaver).
We denote the two alleles as A and B, respectively. For example, the copy number of bin XL on
allele A is notated as C(X

(A)
L ) and the copy number on allele B is C(X

(B)
L ).

3. Deletion of edges: for breakpoint X , we check the connectivity of the chromosome on each allele
based on copy number.

Con(X(A)) =


0, if C(X

(A)
L )) = 0

0, if C(X
(A)
R )) = 0

1, otherwise

(19)

where Con(X(A)) stands for the connectivity of allele A at breakpoint X . Con(X(A)) = 0 in-
dicates that all copies of allele A are completely disconnected at breakpoint X . Con(X(A)) = 1

indicates that at least one copy of the chromosome is connected at breakpoint X . The genome is
disconnected at breakpoint X when both alleles are broken. In other words, we will delete edge
(XL, XR) in the original graph when Con(X(A)) = 0 and Con(X(B)) = 0. Otherwise, we will
keep the original edge because at least one copy of the chromosome is connected near breakpoint
X . We do the same for breakpoint Y .

4. Adding edges. For breakpoints X and Y , we calculate the difference in copy numbers across
breakpoints. For example, the difference of copy number for breakpoint X is defined as:

D(X) = C(X
(A)
L )− C(X

(A)
R ) + C(X

(B)
L )− C(X

(B)
R ) (20)

If D(X) = 0, we do not expect SVs at breakpoint X . Otherwise, we add edges to the graph to
reflect the SV. Typically we only observe the change of copy number on one of the allele. The
orientation of edges to add can be determined by D(X) and D(Y ).

Collecting results from other chromatin state annotation methods

We compared the SPIN states with other chromatin state annotations, including Hi-C subcompartments,
chromatin state annotations from ChromHMM [6] as well as Segway [7] and Segway-GBR [8].

For Hi-C subcompartments, we used the SNIPER Hi-C subcompartments in K562 [9], although the
trend with SPIN state comparison is largely consistent with the original Hi-C subcompartment definitions
from GM12878 [10]. We focused on the five primary Hi-C subcompartments, i.e., A1, A2, B1, B2, and
B3.
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To compare SPIN states with Hi-C subcompartments, we calculated the genome-wide coverage fold
change of each SPIN state over each Hi-C subcompartment. For each Hi-C subcompartment, we cal-
culated the total length of regions covered by different SPIN states and normalized it by the expected
length, which was calculated by the genome-wide coverage of SPIN states (as shown in Fig. 1c). We
then defined the ratio between the observed length and the expected length as the fold change score of
the SPIN states. If one SPIN state is uniformly distributed along the genome, its fold change score for
each Hi-C subcompartments should be 1. A higher fold change score indicates certain SPIN states are
more likely to be found in a given Hi-C subcompartment.

We used the SNIPER Hi-C subcompartment calls in all 9 human cell lines: K562, GM12878, HAP1,
HeLa, HMEC, HSPC, HUVEC, IMR90, and T Cells from [9] to estimate the constitutive level of sub-
compartment annotations. We calculated entropy as a metric for the level of conservation of Hi-C sub-
compartments across different cell types. Within each 25kb genomic bin, we have the Hi-C subcompart-
ment calling in 9 cell lines, and for each subcompartment i, we use li to denote the total genomic length
across 9 cell lines. The entropy was thus calculated as:

E = −
∑

i∈{A1,A2,B1,B2,B3}

(
li
L

)
log

(
li
L

)
(21)

where L is the sum of genomic length for all subcompartments in that genomic bin across cell types.
We downloaded ChromHMM and Segway chromatin state annotations in K562 from the ENCODE

Project. In K562, there are 25 ChromHMM states and 25 Segway states identified from histone mod-
ifications, transcription factor binding, and open chromatin data. We also downloaded the combined
chromatin state definition in K562, which is a consensus merged from the results of ChromHMM and
Segway [11]. There are seven states in the combined segmentation. We calculated the total length of the
overlapping regions between ChromHMM/Segway/Combined and the SPIN states, and then normalized
it by the expected length. The expected length was calculated by the genome-wide coverage of the SPIN
states. We then calculated the fold enrichment of chromatin states from ChromHMM, Segway, and Com-
bined, respectively, over each SPIN state. For Segway-GBR chromatin domain annotations, we used the
original Segway-GBR annotations in [8] for GM12878 and IMR90 cell lines. For fair method compari-
son with Segway-GBR, instead of using TSA-seq and DamID as input, we ran SPIN using the same input
with Segway-GBR in IMR90 and GM12878 cell lines. The input data include 11 histone modifications
(H2A.Z, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac,
H3K9me3, H4K20me1), and DNase-seq. The histone modification and DNase-seq signals were aver-
aged on 25kb bins and reduced dimensions using PCA. The first 5 principal components were used as
input for SPIN. For Hi-C, we used H1 and IMR90 Hi-C data from [12] (same as what [8] used). We
downloaded 6-fraction Repli-seq in IMR90 and GM12878 from the ENCODE project to evaluate the
performance of these two different methods.

Methods for sequence feature analysis in SPIN states

To identify sequence features associated with SPIN states, we focused on quantifying of k-mers, trans-
posable elements (TEs), and TF motifs on SPIN states. For k-mers, we counted 6-mer occurrences on
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25kb genomic windows using Jellyfish [13]. Then we used t-SNE [14] to visualize all possible 6-mers,
where each dot represents a 25kb genomic bin with its SPIN states shown in colors (Additional file 2:
Fig. S14).

For transposable elements (TEs), we downloaded the annotations of TE families from the UCSC
Genome Browser [15]. The 16 TE families that we used are srpRNA, scRNA, snRNA, Alu, MIR, L1,
L2, CR1, ERVL, ERV1, Gypsy, ERVK, LTR, DNA, hAT, and PiggyBac. We further grouped the 16
TE families into 5 classes based on their sequence properties (RNA, SINE, LINE, LTR, and DNA).
We counted the density of each TE family on different SPIN states and compared to the genome-wide
average.

For known TF motifs, we used the 730 human TF motifs from CIS-BP database [16] and scanned
on the open chromatin regions of the whole genome for matches of each motif. The open chromatin
regions were defined from DNase-seq peaks in K562 from the ENCODE project (accession number:
ENCSR921NMD). Peak calling of DNase-seq was done by the ENCODE standard pipeline. We used
FIMO with p-value cutoff 1E-5 for motif matching. The known TF motifs were further grouped into 12
classes based on the annotation from CIS-BP.

We used MEME [17] for de novo motif discovery and motif enrichment analysis. On each SPIN
state, we extracted randomly sampled DNA sequences on that SPIN state as the primary sequence set
and randomly sampled DNA sequences of the whole genome as the control sequence set. We set the
length of motifs to be between 6 and 50 nt. We then used FIMO to find the distribution of discovered
motifs. We also used Tomtom to match the identified motifs to known TF motifs. The known motifs
used here are the human TF motifs from HOCOMOCO v11.
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Supplementary Results

Resolution of the genomic bin size in SPIN

Although the SPIN framework can in principle be applied to any resolution (the genomic bin size), here
we explain why we selected 25kb as the resolution in this work. The key input data types of SPIN
(TSA-seq and DamID) are in resolutions greater than 10kb (Additional file 2: Fig. S16a). For example,
the input data of TSA-seq scores are at 20kb resolution. Specifically, we calculated the differences of
TSA-seq and DamID signals between a pair of genomic loci as a function of their 1D genomic distance.
As shown in Additional file 2: Fig. S16b, the mean and variance of the differences increase as the
distance of two genomic loci increases. Among the three Hi-C data resolutions (5kb, 10kb, and 25kb)
where the Hi-C contact matrices are readily available, we found that the differences of TSA-seq/DamID
quantile scores at 5kb and 10kb resolution are very small (∆quantile < 1%) and greatly increase at 25kb
resolution (>2 times fold change). In addition, higher resolution does not show sharper histone transition
at SPIN states boundary (Additional file 2: Fig. S16c). Taken together, we chose 25kb as the resolution
for SPIN states in this work.

Comparison with other genome segmentation methods

We compared SPIN to Segway [7] and ChromHMM [6] results in K562 based on histone modification
data (Additional file 2: Fig. S19). We also included combined annotations of Segway and ChromHMM
from ENCODE. The fold enrichment of each state is calculated. Overall, we found similar results by
comparing to Segway and ChromHMM (Additional file 2: Fig. S19). Most enhancer (Enh-), promoter
(Prom), and gene-related states (Gen, Tss) have a stronger presence in the Speckle and Interior Act states.
Quiescent state (Quies) has more involvement in the Lamina state and the repressed polyComb state
(Repr) is enriched in the Interior Repr2 state. For combined annotation of Segway and ChromHMM,
we found that TSS, T (transcribed), E (Enhancer), WE (weak enhancer), and PF (promoter flanking)
all have a strong presence in the Speckle and Interior Act states. R (Repressed) state is enriched in
the Lamina Interior Repr and Near Lm states. These results are consistent with our observations that
spatial localization is highly correlated with chromatin states and transcription. Most gene-rich and active
chromatin regions are in the Speckle and Interior Act states. Polycomb/facultative repressed regions are
in the Interior Repr state. Heterochromatin and low transcription activity regions are in the Near Lm and
Lamina states.

We also compared SPIN with Segway-GBR [8], which uses graph-based regularization (GBR) to
integrate pairwise chromatin conformation data for genome segmentation (Additional file 2: Fig. S20).
In order to compare the two methods, we used the same input data in IMR90 and GM12878 from [8] to
run SPIN and set the number of states to be 5. We used six-fraction Repli-seq from ENCODE as a way to
evaluate the segmentation performance. We expect that a better segmentation will better stratify Repli-
seq data. We found that the states produced by SPIN have a clearer Repli-seq stratification as compared
to Segway-GBR. SPIN results can distinguish G1 from S1 and G2 from S4 fraction. In contrast, the
Repli-seq patterns are similar between SPC and BRD, QUI and CON in the Segway-GBR results, further
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suggesting the advantage of SPIN results.

Simulation study to evaluate the performance of SPIN

To assess the advantage of using SPIN to identify compartmentalization patterns based on TSA-seq,
DamID, and Hi-C, we compared the results from SPIN to the baseline methods K-means and Gaus-
sian HMM on the simulated data. We also used this simulation to assess the impact of different ways
of defining Hi-C interactions used in the method. We simulated SON TSA-seq, Lamin-B1 TSA-seq,
Lamin-B1 DamID, and Nucleolus DamID scores with 25kb window size on chromosome 1 (Additional
file 1: Supplementary Methods; Additional file 2: Fig. S18a). In order to generate TSA-seq and DamID
scores similar to the real data, we used the 10 SPIN states in K562 as ground truth and used multivari-
ate Gaussian distribution of each state to generate new TSA-seq/DamID scores. The TSA-seq/DamID
signals were then smoothed using Hanning window with the length of 21, and used as input for SPIN,
K-means, and Gaussian HMM. For a fair comparison, we set the number of states to be 10 forK-means,
Gaussian HMM, and SPIN. In addition, we evaluated different strategies to incorporate Hi-C data as ad-
ditional edges in the SPIN model. We compared the impact of using significant interactions called from
Hi-C O/E data with different p-value cutoffs (10−5 and 10−4). We also used Hi-C observed interactions
instead of O/E to call significant interactions. Finally, to demonstrate the effect of including Hi-C data,
we built a model with only edges between adjacent nodes (i.e., no Hi-C data used) for comparisons. We
found that including Hi-C data in SPIN significantly improves the performance for all states (Additional
file 2: Fig. S18b-c). In particular, we found that the SPIN without using Hi-C data has much lower accu-
racy on interior states (Additional file 2: Fig. S18c), mainly because the Interior Act and Interior Repr
states share similar distribution of TSA-seq and DamID signals which makes it more difficult to distin-
guish only based on TSA-seq and DamID signals. In addition, using Hi-C O/E data with p-value cutoff
10E-5 would have the best performance for SPIN states (0.92 overall accuracy) than the method using
O/E with cutoff 10E-4 (0.90 accuracy) and also the method using the observed Hi-C (0.77 accuracy)
(Additional file 2: Fig. S18d). We found that using Hi-C observed data as input has little improvement
on performance compared with when no Hi-C data is used, further suggesting the importance of incor-
porating long-range Hi-C O/E signals as input for compartmentalization pattern identification. We also
show that SPIN significantly outperforms both K-means and Gaussian HMM on all states. These sim-
ulation results suggest that by incorporating TSA-seq, DamID, and Hi-C O/E data, SPIN can identify
compartmentalization patterns with high accuracy.

Exploration of incorporating strength of Hi-C interactions as edge weight

We explored the possibility of incorporating strengths of Hi-C interactions into the SPIN framework
(Additional file 2: Fig. S21). One way to achieve this is to use Hi-C interaction strength as edge weight.
During loopy belief propagation, the message sent between a pair of nodes can be weighted accordingly
(weight normalization in Eqn. 14). In this work, edges are treated with equal weight in SPIN. Here
we assess whether incorporating strength of Hi-C interactions would make a difference in the SPIN
states (Additional file 2: Fig. S21a-c). We explored the possibility to convert Hi-C log2O/E strength
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to edge weights (result example in Additional file 2: Fig. S21b). To assess the overall quality of SPIN
states calling, we calculated the enrichment of histone modification and multi-fraction Repli-seq signals
on the SPIN states called from the framework with edge weights (Additional file 2: Fig. S21a). We
found that the enrichment patterns of histone modification and Repli-seq are similar to the original SPIN
states (Fig. 2a and Fig. 3a), while the transition of replication timing (S1 to G2) from interior states
to periphery states is smoother in the original SPIN states, suggesting better SPIN states calling from
the original results. Overall, we found that incorporating Hi-C strength as edge weights generates very
similar SPIN states calling compared with the original SPIN states. For example, over 84% Speckle and
99% Lamina states are overlapped between the original SPIN states and the states called after adding
log2O/E as edge weight (Additional file 2: Fig. S21c).

Next, we looked at the strength of Hi-C O/E interactions across different SPIN states. As shown in
Additional file 2: Fig. S21d, the distribution of Hi-C log2O/E strength is similar across different SPIN
states genome-wide. However, when we focused on significant intra-chromosomal Hi-C O/E interactions
(edges used in the SPIN framework), we did observe a trend that there are stronger edge weights and
more interactions between the same SPIN states. The edge weights and also the number of edges (per
50kb) for the same SPIN states are always the highest, followed by those SPIN states with similar spatial
localization context (Additional file 2: Fig. S21e; only Hi-C interactions with distance >100kb are
considered). This trend is consistent in the original SPIN states and also the SPIN states after adding
edge weight.

These observations suggest that although there is a general trend that genomic bins with higher Hi-C
O/E would be more likely to share SPIN states, which is already reflected in SPIN states without adding
edges weights, high Hi-C O/E interaction does not necessarily indicate the same state and the interaction
could come from SPIN states with similar, but different, spatial localization context.

TAD-TAD interactions in SPIN states

Recently, [18] showed that long-range TAD-TAD interactions form constitutive TAD cliques and the
formation of TAD cliques stabilizes heterochromatin at the nuclear lamina. However, it is unclear how
other large TAD cliques are spatially localized and contribute to genome compartmentalization. Here
we analyzed TAD-TAD interactions in K562 and compared them to the SPIN states (Additional file 2:
Fig. S9). We first used the DI method to call TADs, and we calculated the median of O/E Hi-C interaction
between each pair of TADs. For pairs with TADs with median O/E>2, we found that 55.6% are between
the same SPIN states, and 31.2% are between similar SPIN states (e.g., between Interior Act states). The
Lamina state has the most self TAD-TAD interaction where over 60% of its interactions are with another
TAD in the Lamina state. This is consistent with the observations in [18]. Speckle and Interior Act3
TADs also tend to self-interact (over 40%). If we separate the TADs into two groups based on their SPIN
states, interior (Speckle, Interior Act, Interior Repr) and periphery (Near Lm, Lamina Like, Lamina),
we found that there is only <1% interactions are between interior and periphery TADs. Our results
support the hypothesis that TADs form spatially separated cliques. We found that TAD cliques at the
Lamina states are the strongest and there are little TAD-TAD interactions between a pair of TADs that
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are localized separately at the interior and periphery.

SPIN states harbor distinct preferences of DNA binding proteins

We explored the DNA binding proteins in different SPIN states based on 381 ChIP-seq datasets in K562
from the ENCODE project. We utilized the conservative peaks provided by ENCODE if available and
called peaks using MACS2 [19] if the peaks were not available. For ChIP-seq dataset with replicates, we
kept peak regions shared in both replicates. We calculated the ratio of observed and expected length of
ChIP-seq peaks in different SPIN states (i.e., the fold enrichment of ChIP-seq peaks in each SPIN state).
To find proteins with similar patterns of occupancy in different SPIN states, we performed hierarchical
clustering of fold enrichment score for peaks that led to three clusters (Clusters 1-3) (Additional file 2:
Fig. S11a). We found that the majority of DNA binding proteins (314; >80%) preferentially bind to the
Speckle and Interior Act states (Cluster 2). Examples include CTCF, SMC3, SP1, and STAT1. 22 of
them (including BRCA1, SRSF9, RBM17, and NONO) have ChIP-seq peaks enriched in the Lamina
and Near Lm2 states (Cluster 1). There are also 46 DNA binding proteins (including AGO1, U2AF1,
KLF16, and FOXA1) that show preference in binding to Interior Act2 and Interior Act3 states (Cluster
3). This clustering analysis demonstrates that even though most of the proteins preferentially bind to
transcriptionally active SPIN states, there are many that bind to more target genes in the transcriptionally
less active SPIN states (e.g., Interior Act2 and 3). We also showed that the majority of RBPs have
binding sites in the Speckle state (Additional file 2: Fig. S22).

We then asked whether the target genes of the DNA binding proteins in different spatial clusters based
on the SPIN states exhibit functional enrichment. For each cluster, we merged all ChIP-seq peaks called
by MACS2, and used the merged list of peaks as input for GREAT [20]. As shown in Additional file 2:
Fig. S11a and Additional file 5: Table S3, the most enriched GO terms in different clusters vary, sug-
gesting different roles of these DNA binding proteins and their target genes in the entire transcriptional
regulatory network.

SPIN facilitates the identification of sequence features for nuclear compartmentalization

We asked what sequence features are enriched in different SPIN states. We analyzed the distribution
of all known human TF motifs (and then grouped by families) on different SPIN states using CIS-BP
motifs [16]. We found that some motif families (POU, Forkhead, Hemedomain, SOX, and Rel) are highly
enriched in the Lamina and Near lm2 states (p-value <2.2E-16) (Additional file 2: Fig. S11b). Motif
families such as ETS, bHLH, Nuclear receptor, and C2H2 have more presence in the Speckle state (p-
value <2.2E-16). These enriched TF motifs suggest that the sequence motifs and also the corresponding
TF families may also play roles in cooperatively modulating global spatial localization.

We next sought to identify TF binding motifs de novo in different SPIN states. Here we used DNA
sequences of each SPIN state as input for motif discovery using MEME [17] (Additional file 2: Fig. S12).
We identified 15 motifs enriched in different SPIN states (Additional file 2: Fig. S12), and matched them
to known human motifs (Additional file 2: Fig. S13). Specifically, for the Speckle state, we identified
three motifs matched to the known motifs of MAZ, ZN467, VEZF1, WT1, SP1, SP2 and KLF5 with
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p-value <10E-5 (Additional file 2: Fig. S12). These motifs belong to the C2H2 Zinc Finger families
that are enriched in the Speckle state (Additional file 2: Fig. S11b) and have been shown to play roles in
transcriptional activation [21].

Earlier studies have shown that transposable elements (TEs) correlate with nuclear localization [22–
24]. We assessed the association of TE families in each SPIN state based on repeat families with over
1000 occurrences on the whole genome that were subsequently grouped into five groups (see Additional
file 1: Supplementary Methods). For each TE family, we calculated the fold enrichment of repeat counts
on each SPIN state compared to the expected (Additional file 2: Fig. S11c). We found that different TE
families have different preferred spatial localization. All three small RNAs (srpRNA, scRNA, snRNA)
are highly enriched in the Speckle and Interior Act states (fold enrichment >1.5, p-value<2.2E-16),
and depleted in other states. For the SINE family, Alu is mostly abundant in the Speckle state (fold
enrichment 2.6) followed by the Interior Act states (fold enrichment >1.5). There is also enrichment of
L1 elements in the Lamina and Interior Repr2 states (p-value=3.3E-6), consistent with previous report
that L1 elements have higher density on LADs [22]. In addition, ERVK has significant abundance
in the Lamina Like and Interior Repr1 states (p-value<2.2E-16). Taken together, these results further
demonstrate the difference in sequence features associated with different SPIN states, suggesting their
potential roles in modulating nuclear compartmentalization globally.

Analysis of three consecutive SPIN states that reflect trajectory

We sought to ask what type of chromatin trajectories that the SPIN states can reveal. We used three
consecutive SPIN states to describe the spatial arrangement of the chromatin trajectory in the nucleus
(Additional file 2: Fig. S15). For example, a three consecutive Lamina–Near Lm–Speckle region sug-
gests a trajectory of a chromatin fiber at nuclear lamina on one end and at nuclear speckle on the other
end. For each genomic region of a SPIN state, we counted its adjacent SPIN states and merge symmet-
rical three consecutive patterns. We ignored all genomic fragments with size smaller than 100kb. We
found that all Speckle states are flanked by Interior Act1. Similarly, almost all Lamina states are flanked
by Near Lm2. We found that for genomic regions with the same SPIN state but different three connec-
tive patterns, the histone modification and Repli-seq could be different. For example, for Interior Act
states, the histone modification and Repli-Seq signal can be different depending on whether adjacent
states include the Interior Repr or Near Lm states. The average signal of active histone marks is 1.5
times higher if Interior Act is not adjacent to the Interior Repr states. These results strongly suggest that
the trajectories of chromatin (or the context of SPIN state) have important implications on the functional
roles of the chromatin.
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[13] Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences
of k-mers. Bioinformatics. 2011;27(6):764–770.

[14] Maaten Lvd, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research.
2008;9(Nov):2579–2605.

[15] Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al. The UCSC
genome browser database: update 2006. Nucleic Acids Research. 2006;34(suppl 1):D590–D598.

[16] Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination

11



and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158(6):1431–1443.

[17] Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for
motif discovery and searching. Nucleic Acids Research. 2009;37(suppl 2):W202–W208.

[18] Paulsen J, Ali TML, Nekrasov M, Delbarre E, Baudement MO, Kurscheid S, et al. Long-range
interactions between topologically associating domains shape the four-dimensional genome during
differentiation. Nature Genetics. 2019;51(5):835.

[19] Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis
of ChIP-Seq (MACS). Genome Biology. 2008;9(9):R137.

[20] McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves func-
tional interpretation of cis-regulatory regions. Nature Biotechnology. 2010;28(5):495.

[21] Chen C, Zhou Y, Zhou Z, Sun X, Otto KB, Uht RM, et al. Regulation of KLF5 involves the Sp1
transcription factor in human epithelial cells. Gene. 2004;330:133–142.

[22] Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, et al. Domain organi-
zation of human chromosomes revealed by mapping of nuclear lamina interactions. Nature.
2008;453(7197):948–951.

[23] Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harbor Perspectives in Biology.
2013;5(8):a010132.

[24] Yang Y, Gu Q, Zhang Y, Sasaki T, Crivello J, O’Neill RJ, et al. Continuous-trait probabilistic model
for comparing multi-species functional genomic data. Cell Systems. 2018;7(2):208–218.

[25] Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK, Adam SA, et al. Mapping 3D genome or-
ganization relative to nuclear compartments using TSA-Seq as a cytological ruler. J Cell Biol.
2018;217(11):4025–4048.

[26] Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, et al. Pervasive Chromatin-RNA Binding Protein
Interactions Enable RNA-Based Regulation of Transcription. Cell. 2019;178(1):107–121.

12


