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BHGZ METHOD IMPLEMENTATION

The decimation of free-fall data considers an integer
factor of the number of samples per experimental time,
Nexp, such that each experimental segment still contains,
after decimation, a fixed number of data points. In our
case, with data originally sampled at 10 Hz and Texp =
350.2 s, Nexp = 3502. The decimation factor applied is
equal to 103 which gives 34 samples per experimental
time, ntot, with sampling time Tsamp ∼ 10.3 s.

For the analysis, we remove Tcut = 2 s of data at the
beginning and at the end of each flight in order to avoid
transients which may be close to the kicks. The low-pass
filter length, Twin, is set up in such a way as to have an
integer number of finite windows per flight time, Tflight:

Twin = Tflight − 2Tcut − (nkeep − 1)Tsamp (1)

where nkeep is the number of samples maintained per
flight time. With 34 samples per experimental time, di-
vided into 25 samples in the flight time and 9 overlapping
with the impulse which are set to zero, the filter length is
equal to 98 s when Timp = 1 s and 94 s when Timp = 5 s.

REMARKS ON SPECTRAL ESTIMATION

According to the modified Welch periodogram
method [1], the mean value of the power spectral density
(PSD), at each discrete time frequency φk ≡ k 2π/N , of
a discrete time, zero-mean stochastic process, x[n], is:
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where N is the number of samples per data stretch (or
periodogram), w[n] is the normalized spectral window
applied to the periodogram to ensure that it smoothly
approaches zero at its ends [1]; within the LPF collabo-
ration, the minimum “4-term Blackman-Harris window”
(BH92) is used. Rx[n−m] ≡ 〈x[n]x[m]〉, is the autocorre-
lation of x[n], which is defined, according to the Wiener-
Khinchin theorem, as the inverse Fourier transform of
the PSD of the infinite length x[n] series, Sx(φ):

Rx[n−m] ≡ Rn,m =
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Defining the matrix:
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2π
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we can express the PSD estimate in the following matrix
form:

〈Sk〉 =

N−1∑
n,m=0

γk,nRn,mγ
†
m,k = [diag(γ ·R · γ†)]k. (5)

The k-mean value of the spectrum is thus given by the
triple matrix product of Eq. 5.

BIAS REMOVAL ALGORITHM

The gaps in the free-fall measurement data can bias
the spectral estimate, especially at low frequencies (≤
1 mHz). This effect can be calculated and removed by
means of an a-posteriori approach. It is possible to
rewrite Eq. 2 using Eq. 3 to obtain:
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where the window h(φ) is defined as:

h(φ) =
1√
N

N−1∑
n=0

w[n]e−iφn, (7)

in other words, h(φ) is the Discrete Time Fourier Trans-
form of the window: (1/

√
N) Θ[n] Θ[N-1-n]w[n], where

Θ[n] is the Heaviside theta function. Thus, Eq. 6 shows
that the PSD estimate is the result of the action of h(φ)
on the “true” PSD, Sx(φ). In the case of the “Blackman-
Harris Gap Zero” (BHGZ) method, explained in the pa-
per to which this supplemental material refers to, w[n]
is the result of the multiplication of the standard BH92
spectral window with a rectangular-wave with period
Texp and duty cycle nkeep/ntot, used to set the gaps to
zero. In other words, w[n] is a BH92 window containing
zeros at the positions of the kicks.

As shown in [2], the multiplication of data for a
rectangular-wave essentially down-converts noise at har-
monic multiples of Texp, producing an aliasing effect. For
the specific case of the white noise spectral component,
an analytic calculation reported in [2] demonstrates that,
to get rid of the lack of points set to zero, the spec-
trum must be multiplied by a normalization factor equal



2

Figure 1. Ratio between the PSD of noise data measured in con-
tinuous control in December 2016, which has been analyzed with
the BHGZ technique, gapped and multiplied by ntot/nkeep, and
the PSD of the same data, filtered and decimated only.

to the inverse of the duty cycle of the experiment (i.e.
ntot/nkeep).

To have an idea of the effect of gaps on the other spec-
tral noise contributions, let us consider an estimate of
∆g measured with continuous control along x, analyze it
with the BHGZ technique and insert artificial gaps of the
same duration and repetition rate as those in the free-fall
mode experiment. If we divide the resulting spectrum,
corrected with the normalization factor defined above,
by the spectrum of the same data, decimated and fil-
tered only, we obtain the result depicted in Fig. 1. As
shown, gaps cause an underestimation of the spectrum at
frequencies below 1 mHz, while spikes are visible at mul-
tiple frequencies of the experimental one (∼ 2.8 mHz).

Because of the non-invertibility of Eq. 6, the estimation
of the spectral bias due to gaps, beyond the white noise
contribution, is based on a “pseudo-inverse” approach:
we look for the optimal shape of Sx(φ) that, through the
action of the overall window, reproduces the estimated
PSD, 〈Sk〉. In practice, we assume that the PSD of ∆g
is composed of various contributions, the combination
of which gives a continuous spectrum that, when passed
through our analysis process, is expected to match the
calculated gapped-data spectrum. In the following we
will go through the steps of this procedure.

First, we define a continuous model for the spectrum.
Since we want to correct effectively the PSD at low fre-
quency, the model is a linear combination of the two noise
contributions arising at frequency below ∼ 30 mHz [3]:

Smod ' αwSw + α1/f2S1/f2 , (8)

where:

• Sw refers to a frequency-independent component
(white noise) of the spectrum, which dominates in
the [1, 30] mHz frequency range.

• S1/f2 is defined as:

S1/f2(f) =
1

2

1

1 + f2

f2
0

,

with a roll-off frequency, f0, of 1µHz after which it
decays as 1/f2.

and αw, α1/f2 are the free parameters in the fit. It is
worth noting that the result is independent on the choice
of the roll-off frequency of the S1/f2 term.

Then, the model is transformed according to what is
performed on free-fall mode data. In practice, we com-
pute, for both spectral terms, the corresponding autocor-
relation function and evaluate the matrix product as in
Eq. 5. Indeed, it is convenient, for numerical reasons, to
look for the best shape of R, instead of 〈S〉, that better
fits the data (see Eq. 5). In reality, since data are dec-
imated and filtered, the autocorrelations must be first
convolved with the impulse response of the BH low-pass
filter, hfilt, as follows:

Rfilt[m] = (hfilt ∗R ∗ hfilt)m×Nd , (9)

where ∗ indicate discrete convolution and Nd is the deci-
mation factor we apply to analyze the free-fall mode data.
The model to which we fit data is thus the following:

Sgapmod = αw[diag(γ ·Rfilt,w · γ†)]
+ α1/f2 [diag(γ ·Rfilt,1/f2 · γ†)],

(10)

where the γ matrices, defined in Eq. 4, contain the
“gapped” spectral window, w[n], applied on data (we
omit, for simplicity, the matrix indices).

The linear least-squares fit is performed in frequency
domain iteratively, each time assuming a theoretical un-
certainty based on the PSD estimate and using the fit
coefficients obtained at the preceding iteration. The fre-
quency range considered is [0.1, 10] mHz, where one bin
every four is used to avoid correlated data [4], while the
peaks are discarded from the fit. The resulting number
of degrees of freedom is 63, with 10 iterations for the fit.

BIAS REMOVAL ON FREE-FALL MODE DATA
MEASURED IN DECEMBER

The results of the bias removal procedure on the free-
fall mode data measured in December 2016, are shown
in Fig. 2. The red dashed line in Fig. 2a is obtained from
the best fit to the experimental gapped ASD of ∆g, which
is marked in blue. In practice, it is the result of Eq. 10
when the best fit values are used for the αi coefficients.
The values of the fit coefficients are reported in Table I.

It must be stressed that the values of the fit coeffi-
cients depend on the numerical method and thus they do
not have any physical significance, instead, the physical
result is independent on the method used to fit data.
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Parameter value error χ2

fm/s2/
√

Hz
√
αw 2.97 0.04 1.4

√
α1/f2 1.09 0.09

Table I. Values of the fit coefficients and reduced χ2 obtained by
fitting the spectrum of the free-fall mode experiment, carried out
in December 2016, to the model of Eq. 10.

Using the fit coefficients, we can extract the ∆g ASD
without gaps using Eq. 10 again, but with w[n] contin-
uous instead of gapped. The result is marked in dash-
dotted line in Fig. 2(a). In other words, the dash-dotted
line is an estimate of the “native” ASD of ∆g measured
in the free-fall mode experiment, which converts into the
dashed line when gaps are inserted. The ratio between
the two spectra, which assumes the functional form of
the model in Eq. 8 but is independent on the amplitudes
of the various terms, corresponds to the bias introduced
by gaps. We can thus remove it from the ∆g ASD of the
free-fall mode data, as explained in the paper to which
this supplemental material refers. Fig. 2(c) depicts the
ASD of free-fall data before (thin line) and after the bias
removal (thick line), where the latter has been normal-
ized for the transfer function of the BH filter used. Note
that, since the peaks are not fitted, they remain in the
final spectrum, as visible in the figure. Finally, the line
in Fig. 2(b) results from the subtraction of the ratio be-
tween the solid and the dashed spectra of Fig. 2(a), by
1. The difference between the distributions of the two
above mentioned spectra, is significant at the 5% level,
according to the Kolmogorov-Smirnov test [5].

CALIBRATION OF THE METHOD WITH
CONTINUOUS NOISE DATA

In order to test the accuracy of the bias removal algo-
rithm, we have applied it on noise data measured in con-
tinuous actuation mode with gaps inserted artificially, as
described in the first section. The final result, corrected
for the bias, is compared with the original ASD of ∆g
sampled at 10 Hz in Fig. 3. The figure includes also a
similar test where an additional window, namely an Hann
window, is applied to data between the gaps such that
they smoothly approach zero at their ends. The resulting
fit coefficients are collected in Table II.

As visible in Fig. 3, in both cases we achieve 1σ agree-
ment between the ASDs of the unbiased gapped data and
that of the original-continuous data at frequencies below
1 mHz and this result is confirmed by the agreement in
the estimate of the α1/f2 coefficient.

Figure 2. Bias removal procedure applied on data of free-fall mode
measured in December 2016 (see the text for details).

FINAL CONSIDERATIONS

We noted that the spectral leakage due to gaps, arising
from high towards low frequencies, is limited in free-fall
data thanks to the low noise level of the interferometer
measured on board LPF, which is well below the require-
ments [7]. Indeed, gaps do not cause a severe aliasing
of the spectrum in the LPF sensitivity band but rather
they induce an underestimation of the noise power which
is related to the duty cycle of the rectangular-wave used
to gap the data. Nevertheless, a sanity check of the data
analysis method has been performed using LPF data with
interferometer readout noise increased artificially by a
factor ∼ 100. Also in this case, the method has allowed
to remove the spectral bias effectively at low frequencies.
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Figure 3. Calibration tests using continuous noise data. The dots
depict the original ∆g ASD measured in December 2016 with con-
tinuous actuation mode (78 periodograms). The asterisks indicate
the result of applying the BHGZ technique to the previous data
with synthetic gaps set to zero and with bias removed. Finally, the
squares show the same analysis when an Hann window is applied
on data between gaps only. The errors are calculated as described
in [6].

Test Parameter value error χ2

fm/s2/
√

Hz

BHGZ
√
αw 2.95 0.02 1.06

√
α1/f2 0.92 0.04

BHGZ and Hann
√
αw 3.07 0.02 1.05

√
α1/f2 0.99 0.05

Table II. Fit results of the two calibration tests using the contin-
uous control ∆g estimate measured in December 2016.
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