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Fig. S1. Validation of lead hits from screen. (A) Representative Western blot showing
knockdown of BAK and BAX in MDA231 cells with actin as loading control. (B) Response of
MCF10a and MDA231 cells transfected with control or BAX and BAK to etoposide or (C) ABT-
737 following 48 hr treatment (n=3, mean + SD). (D) BH3 profiling examining the response of
MDAZ231 cells to BH3 peptides following control or BAX/BAK knockdown (n=3, mean + SD).
(E) Western of BAK and BAX knockdown in PC9 cells transfected with control or BAX/BAK
siRNA, with actin as loading control. (F) Response of PC9 cells control or BAX and BAK KD to
ABT-737 (n=3, mean+ SD) (G) Cell viability of cell lines treatment with indicated compounds for
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Fig. S2. BAS-2 induces the same phenotypical changed as HDAC6 knockdown in TNBC. (A)
A heat map showing the response of cells expressing the indicated shRNAs to known compounds.
Log-transformed RI values are shown. (B) Western blot demonstrating the acetylation of histone-
4 in the presence of BAS-2 and SAHA with actin as loading control. (C) A dose-response of a
panel of triple negative breast cancer and ER" breast cancer cell lines treated with BAS-2 for 48
hrs (n = 3, mean = SEM). (D) Images of a migration assay of MDA231 cells following 24 hrs
treatment. The bar graph represents the number of migratory cells (n=3, mean + SD). (E) Images
of a migration assay of BT-549 cells following 24 hrs treatment. Migratory cell numbers are
graphed (n=3, mean + SD). (F) Images of an invasion assay of MDA231 cells following 48 hrs.
The number of invasive cells is graphed (n=3, mean = SD). (G) Images of an invasion assay of
BT-549 cells following 48 hrs treatment. The number of invasive cells is graphed (n=3, mean +
SD). (H) Western blot showing HDAC6 levels and acetylated tubulin in HDAC6 KO and control
4T1 cells, with actin as a loading control. (I) Images of 4T1 cells grown in matrigel for 7 days with
HDACG6 KO or following treatment with 30 uM BAS-2. (J) Dot plots show the size of colonies in
all treatment groups (n=3, mean + SD). (K) Proliferation of MDA231 cells stably expressing a
shRNA against HDAC6 (HDAC6 KD) or a scramble shRNA (Control).
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Fig. S3. BAS-2 reduces tumor volume in different cancer models. (A) BALB/cJ mice were
subcutaneously inoculated with 4T1 (0.1x10°) cells and treated with 50 mg/kg BAS-2 for 14
days. Waterfall plot illustrating response to BAS-2 treatment after 8 days of treatment. Each
column represents one mouse, compared to baseline tumor measurement. (B) C57BL/6 mice
were subcutaneously inoculated with KP (0.5x10%) cells and following tumor formation mice
were treated with vehicle or 50 mg/kg BAS-2. The mice were culled at the end of the experiment
day 14. Tumors were measured and plotted as percentage change in tumor size following
treatment (mean + SEM, n=3, *P-value<0.05, unpaired student T-test). Waterfall plot illustrating
response to BAS-2 treatment after 14 days of treatment. Each column represents one mouse,
compared to baseline tumor measurement. (C) Weight of mice from 4T1 model taken each week.
(D) Weight of mice from KP model taken each week.



A 33 Common Peptides changed in BAS-2 treated and HDAC6 KD

Gene Name Protein Name Gene Name Altered Peptide Gene Name Altered Peptide

CCT4 T-complex protein 1 subunit delta ACOT9 EK(1)YLTVQNTVR HSP90 EK(1)YIDQEELNK
CLIC1 Chloride intracellular channel protein 1 ANXA1 SEIDMNDIK(1)AFYQK HSPA9 RYDDPEVQK(1)DIK
EEF1A1 Elongation factor 1-alpha-1 ATAD3A MYFDK(0.999)YVLK(0.001)PATEGK KPNB1 TLATWATK(1)ELR
EIF4A1 Eukaryotic initiation factor 4A BCLIL GHCPPAPAK(1)PMHPENK LDHA IVSGK(1)DYNVTANSK
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SHMT2 Isoform 3 of Serine hydroxymethyltransferase, mitochondrial ENO1 SILK(1)IHAR PPIA ALSTGEK(1)GFGYK
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Fig. S4. Overlap of acetylated peptides and HDACG6 interactions. (A) Overlap of proteins
identified between the significantly enriched proteins of the HDAC6 immunoprecipitation and
enriched acetylated peptides from BAS-2 and HDAC6 experiments. Tables show names of
proteins that are common between groups, in particular the 33 overlapping peptides between BAS-
2 treated and HDAC6 KD. The figure in brackets refers to the modification localization score
(acetylation) calculated by Maxquant program. (B) Western blot demonstrating HDAC6 level and
acetylated tubulin in HDAC6 KO and control MDA231 cells, with actin as loading control (C)
Bar graph showing the biological pathways altered by HDACG6 interacting proteins, as assessed by
Panther. (D) List of 15 proteins which were identified in the LC-MS/MS acetylome and
interactome experiments. (E) Measurement of aldolase enzymatic activity in BT-549 cell lysates
following 24 hr BAS-2 treatment or ACY-1215 treatment. Activities were normalized to the total
protein amount. (F) Same as (E) for HDAC6 KO. (G) Measurement of GAPDH enzymatic activity
in BT-549 cell lysates following 24 hr BAS-2 treatment or ACY-1215 treatment. Activities were
normalized to total protein. (H) Same as (G) for HDAC6 KO. (I) Western blots demonstrating the
expression of Aldolase and GAPDH in MDA231 and BT-549 cells following HDAC6 KO. (n=3,
mean = SEM).
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Fig. S5. The effect of inhibition and knockout of HDAC6 on metabolic pathways in TNBC.
(A) ECAR traces (mpH/min/pg protein) for MDA231 cells treated with DMSO or Tubacin (2 pM)
for 24 hrs (B) Fold change in glycolysis and glycolytic capacity was graphed (n=3, mean + SEM,
unpaired Student T-test). (C) ECAR traces for 4T1 cells treated with DMSO or Tubacin (2 pM)
for 24 hrs. (D) Fold change in glycolysis and glycolytic capacity was analyzed (n=3, mean + SEM,
unpaired Student T-test). (E) ECAR traces for 4T1 cells following HDAC6 KO with or without
BAS-2 treatment for 24 hr. (F) Fold change in glycolysis and glycolytic capacity was graphed
(n=3, mean + SEM). (G) ECAR traces for BT-549 cells treated with DMSO or BAS-2 for 24 hrs.
(H) Fold change in glycolysis and glycolytic capacity was graphed (n=3, mean £ SEM). (I)
Representative ECAR traces for BT-549 cells treated with DMSO or Tubacin (2 uM) for 24 hrs.
(J) Fold change in glycolysis and glycolytic capacity was graphed (n=3, mean £ SEM) (K)
Representative ECAR traces for BT-549 cells treated with DMSO or ACY-241 for 24 hrs. (L)
Fold change in glycolysis and glycolytic capacity (n=3, mean £ SEM). (M) ECAR traces for BT-
549 cells following HDAC6 KO. (N) Fold change in glycolysis and glycolytic capacity was
graphed (n=3, mean + SEM). (OQ) BT-549 cells were traced with 10 mM Uiz glucose following 10
uM BAS-2 treatment or 1 uM of ACY 1215 for 24 hrs. Percentage of lactate and pyruvate (M+3)
from glucose are shown (n=3, mean = SEM). (P) The percentage survival of BT-549 cells after



exposure to BAS-2 in the conditions indicated for 24 hrs (n=3, mean = SEM). (Q) The percentage
survival of BT-549 HDAC6 KO following growth in low glucose for 48 hr.
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Fig. S6. The effect of inhibition of HDAC6 on metabolic pathways in TNBC and lung cancer
models (A and B) Mitochondrial membrane potential in MDA231 cells (A) and BT-549 cells (B)
following 24 hrs BAS-2 or ACY-241 treatment (n=3, mean + SEM). (C and D) The percentage
survival of MDA231 cells (C) and BT-549 cells (D) after exposure to BAS-2 or ACY-241 for 24
hrs (n=3, mean + SEM). (E) MDA231 cells were traced with 10 mM 1,2-13C glucose following 24
hrs with 10 uM BAS-2 treatment. (F) Percentage of lactate and pyruvate (M+1) from glucose are
shown (mean = SEM, n = 3). (G) OCR traces (mpH/min/pg protein) for MDA231 cells treated
with BAS-2 (mean + SEM). (H) Fold change in basal respiration and ATP production is plotted
(n=3, mean £ SEM). (I) Same as (G) for BT-549 cells (J). Same as (H) for BT-549 cells. (K)
C57BL/6 mice were subcutaneously inoculated with KP cells and following tumor formation mice
were treated with vehicle or 50 mg/kg BAS-2. The mice were culled at day 14 (L) Metabolites
were extracted from tumors and analyzed by GC-MS (n=4, mean + SEM, unpaired Student T-test).
(*P-value<0.05, ***P-value<0.001, 2-way ANOVA with Tukey post hoc test).



Data S1. (separate file)
Compounds used in the secondary cherry pick screen. Table provides information on the

difference in response between the MDA231 siBAX/BAK cells and the MCF10a cells

Data S2. (separate file)

LCMS-MaxQuant analysis of proteins with increased acetylation in the presence of BAS-2
when compared to the DMSO control. Table provides information on the peptides which were
altered in the presence of BAS2.

Data S3. (separate file)

LCMS-MaxQuant analysis of proteins with increased acetylation in HDAC6 KD cells. Table
provides information on the peptides which were altered in the HDAC6 KD cells compared to
control vector cells.

Data S4. (separate file)

List of proteins found to interact with immunoprecipitated HDAC6.
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