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Supplementary Discussion 
In their impressive recent analysis, Timms and co-workers (61) used the high-

throughput Global Protein Stability (GPS) methodology (73) to characterize degron 

motifs in human proteins. The GPS system adopts the ubiquitin (Ub) fusion technique 

(74) (“Ub-GPS”), whereby proteolytic cleavage of the N-terminal Ub by endogenous 

deubiquitinating enzymes leads to exposure of peptides at the N-terminus of GFP, 

whose levels are subsequently measured against an internal reference.  

This powerful approach allowed the authors to compare the relative stability of GFP 

fusion proteins in which any N-terminal residue (X) was or was not preceded by Met 

after removal of Ub (74). Their results provide unequivocal evidence that when X is 

one of the following residues, C, V, G, P, T, A, S, or M (a class herewith referred to 

arbitrarily as Z and coinciding with substrates of methionine aminopeptidase), no large 

differences in the stability of the MX and X pairs is observed, and, importantly, that 

both are among the most stable fusions (61).  

This observation may seem to contradict our conclusion that sequences starting with 

several of the residues in this class (most notably, but not limitedly to, A and S) have 

the potential to be destabilizing if not acetylated. Indeed, post-translational proteolytic 

removal of the fused Ub ought to generate the perfect IBM-like motifs for IAPs, and if 

these were destabilizing, strong differences in the stability of MX and X sequences 

would be expected.  

While this concern requires further investigations, we reason that in the absence of 

evidence on when precisely the Ub moiety is removed from the Ub-GPS fusion 

proteins, whether the resulting N-termini will be treated “post-translationally” or “co-

translationally” is unknown. Because Ub (iso)peptidases are known to be very active 

enzymes, and Ub is only ~70 residues, it is plausible that the endoproteolytic 

separation of Ub from the rest of the protein occurs while the protein is being 

translated. In this case, the resulting N-termini will be treated as if they had been the 

“real” N-termini on the nascent chain, including cleavage of Meti for the MZ sequences, 

and acetylation for both the “natural” Z sequences or for those generated after removal 

of Meti. This would provide a simple explanation for why MZ and Z sequences have 

comparable stability and why they do not activate IAPs.  



  

This interpretation would also fit the other crucial observation in the analysis by Timms 

and co-workers that when N-terminal myristylation of glycine is inhibited, the 

unmodified glycine acts as a potent degron, regardless of whether it is preceded by 

methionine in the Ub-GPS system (61), at least implying that Met is removed. The 

authors additionally identified CUL2ZYG11B and CUL2ZER1 as Ub-ligases that target 

unmodified N-terminal glycine, and demonstrated that their depletion leads to 

complete or near-complete stabilization of peptide-GFP fusion constructs. However, 

combined mutations of ZYG11B and ZER1 only resulted in partial re-stabilization of 

endogenous proteins with N-terminal glycine when N-terminal myristylation of glycine 

was inhibited. In our analysis of BIR-domain binding partners in NatA-depleted cells, 

we also identify several proteins predicted to have N-terminal glycine (Supplementary 

Table 5), including proteins predicted to be myristoylated. This suggests the 

interesting possibility that IAPs complement CUL2ZYG11B and CUL2ZER1 as Ub-ligases 

in the degradation of glycine N-degrons.  
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Supplementary Figure Legends 
Figure S1 
Experimental scheme and numbers of the HeLa N-terminome measured by MS 
(A) Scheme of experimental design for HeLa N-terminome measurements by MS 

(SAX: strong anion exchange). (B) Venn diagram with numbers of identified peptides 

and percentages of acetylated and unmodified (di-methylated or mono-methylated) 

peptides is presented. Every protein can have up to four entries: N-terminus with or 

without methionine and dimetylated or acetylated. (C) Venn diagram with numbers of 

identified peptides and percentages of acetylated, unmodified (di-methylated or mono-

methylated) and the overlap of peptides identified with both modifications is shown. 

Entries from (B) have been collapsed to unique sequences starting with methionine or 

with the second amino acid. Data have been further collapsed to a non-redundant 

protein list shown in Figure 1A. 
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Figure S2 
Control peptide pull-downs of Nt-free and Nt-Ac peptides  
(A-D) Peptide pull-downs with Nt-free (Nt-free refers here and elsewhere to a free Nt-

α-amino group at the N-terminus of a peptide/protein) and Nt-Ac peptides from RPS3A 

(A), HTRA2 (B), ACTB (C), AFAP1 (D). (A), (C) and (D) are SILAC experiments and 

two experiments with inverted labelling were plotted against each other. Experiments 

were repeated twice. (B) is a volcano plot of label-free triplicates. (E) Volcano plots 

with pull-downs from Nt-free COMMD10 (“wt” N-terminus) and Meti retaining 

COMMD10 are shown. (F)  Pull-downs of Nt-free and Nt-Ac Meti retaining COMMD10 

are shown. T-test cut-off for all volcano plots was FDR < 0.01, S0 > 2). IAPs are 

highlighted in green. All experiments were performed at least in triplicates. All 

quantified proteins and binders of the pull-downs are listed in Supplementary Table 2. 
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Figure S3 
Nt-free N-terminal peptides bind to BIR domains in vitro 
(A) Coomassie-stained gel of purified BIR domain constructs.  (B) 20 nM of FITC-

labelled peptides (Nt-Ac or Nt-free) of NIT1 (upper panel) or CDC20 (lower panel) 

were incubated for 30 min with increasing amounts of His-tag BIR domain constructs 

(XIAPLinker-BIR2-BIR3, BIRCBIR3, XIAPBIR1). Fluorescence polarization was measured at 

excitation and emission wavelength of 470 and 525 nm, respectively, and data 

(millipolarization units, mP) were plotted as function of BIR domain concentration and 

fitted with a logistic fit with Origin7.0. Kd values are reported in the figures and 

summarized in Supplementary Table 3. Panel lower left side: legend of used 

constructs and combinations for (B). 
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Figure S4 
The Nt-free N-terminus of COMMD10 competes with DIABLO for IAP binding 
(A) Volcano plot of peptide pull-downs using Nt-free biotinylated DIABLO versus 

beads as control.  (B,C) Lysates have been incubated before pull-down with 10-fold, 

100-fold and 1000-fold molar excess of DIABLO-FITC as control (B) or COMMD10-

FITC (C). Volcano plots (cut-off: FDR < 0.01, S0 > 2) are shown for every pull-down. 

IAPs are highlighted in green. All experiments were performed at least in triplicates. 

All quantified proteins and binders are listed in Supplementary Table 4. 
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Figure S5 
Additional information to His-tag BIR domain pull-downs and whole proteome 
analysis of NatA RNAi and mock cells 
(A) A Venn diagram summarizing number of significant protein binders from the 

samples treated with RNAi for NatA versus mock from BIRC3BIR3, XIAPLinker-BIR2-BIR3 

and XIAPBIR1 (t-test cut-off: FDR < 0.05, S0 > 2) marked in yellow in Figure 3 and 

reported in Supplementary Table 5 is shown. (B, C, D) Unsupervised hierarchical 

clustering of intensities (raw intensities in log2 and z-scored without imputation) from 

Nt-free and Nt-Ac N-terminal peptides identified as significant binders to the BIR 

domains in their unmodified form (Figure 3B-D and 3F-H). (E) Whole proteome 

analysis of RNAi and mock treated HeLa lysates (t-test cut-off: FDR < 0.05, S0 > 2). 

All identifications are reported in Supplementary Table 6. (F,G) Volcano plots (t-test 

cut-off: FDR < 0.05, S0 > 2) from pull-downs using HeLa cell lysates comparing 

binding of proteins to BIRC3BIR3 and XIAPBIR1 (F) or  XIAPLinker-BIR2-BIR3 and XIAPBIR1 

(G). Color codes are the same as in Figure 3. Dark red: baits and known interactors, 

green: significant peptides comparing RNAi versus mock for BIRC3BIR3 or XIAPLinker-

BIR2-BIR3 (Figure 3B-C), respectively. Yellow: significant binding proteins comparing 

RNAi versus mock for BIRC3BIR3 or XIAPLinker-BIR2-BIR3 (Figure 3F-G), respectively. (H,I) 
Enrichment analysis for significant binders to BIRC3BIR3 versus the whole data set 

comparing to XIAPBIR1 (Fisher Exact test, Benjamini-Hochberg FDR < 0.02) (H) and 

significant binders to XIAPLinker-BIR2-BIR3 versus the whole data set comparing to 

XIAPBIR1 (Fisher Exact test, Benjamini-Hochberg FDR < 0.01) (I). The most enriched 

terms from Keywords, GOCC (cellular compartment) and GOMF (molecular function) 

are shown. A complete list of identified proteins and the enrichment analysis can be 

found in Supplementary Table 6. (J) Volcano plot of peptide pull-down with free Nt-α-

amino (Nt-free) and Nt-ac peptides from ATP5J2. T-test cut-off values: FDR < 0,05, 

S0 > 2. IAPs are highlighted in green (additional pull-down to Figure 4 and reported 

with all identifications in Supplementary Table 7).     
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Figure S6 
RNAi of NatA induces apoptosis 
(A) Column diagram of three independent flow cytometry analysis of HeLa cells 

transfected with RNAi for NatA (25 nM) or mock. Cells were treated for the indicated 

times. As control, cells were treated with 300 nM Staurosporine for 4 hours. Cells were 

stained with Annexin-V-FITC and Propidium Iodid and analyzed by flow cytometry. An 

unpaired t-test was used to determine significant apoptosis. Ns: not significant, *: p-

value < 0.05, **: p-value < 0.01. (B) HeLa cells treated with RNAi for NatA or mock 

were analyzed in an IncuCyte® reader. Apoptosis was monitored by a fluorescent 

Casp3/7 reagent every two hours over 48 hours. Numbers were normalized to cell 

count by using a nuclear stain in parallel. Results of three independent experiments 

each in triplicate are shown. (C) HeLa cells have been treated for 72 hours with NAA10 

RNAi, mock or 4 hours Staurosporine as control or with a combination of 72 hours 

NAA10 RNAi and 24 hours LCL161. In addition, all conditions have been as well 

treated or not with the pan-caspase inhibitor Z-VAD. IB anti-PARP, anti-NAA10 and 

anti-Vinculin are shown. 

 

Supplementary Tables 
Supplementary Table 1 
N-terminal proteome analysis 
List of all MS identified N-termini with their N-terminal modifications considering 

proteins starting with position 1 and 2. Used proteins/peptides in the paper are 

highlighted in green. 

 

Supplementary Table 2  
Pull-downs with Nt-free and Nt-Ac peptides using HeLa lysates 
All identified and quantified proteins for the indicated pull-downs from Figure 1D-I and 

Figure S2A-F are listed. Color codes are corresponding to the figures. 

 

Supplementary Table 3 
Summary of fluorescence polarization assay 
Summary of all measured Kd values. 

 

Supplementary Table 4 



  

Competition assay 

All identified and quantified proteins for the indicated competition pull-downs from 

Figure S4 are shown. Color codes are corresponding to Figure S4.  

 

Supplementary Table 5 
Pull-down with His-tag BIR-domains using RNAi or mock treated cellular lysates 
All identified and quantified N-terminal peptides and proteins for the indicated pull-

downs from Figure 3B-D and 3F-H are shown. Color codes are corresponding to the 

figures. 

 
Supplementary Table 6 
Pull-down experiments using XIAPLinker-BIR2-BIR3, XIAPBIR1 and BIRC3BIR3 with 
enrichment analysis and full proteome analysis of RNAi and mock treated 
lysates 
All identified and quantified proteins for the pull-downs and whole proteome analysis 

and enrichment analysis for the pull-downs from Figure S5 are reported. 
 
Supplementary Table 7 
Pull-downs with Nt-free and Nt-Ac peptides using HeLa lysates 
All identified and quantified proteins for the pull-downs from Figure 4 and Figure S5J 

are shown. 

 

Glossary of Excel columns 
Protein Names: Name(s) of protein(s) contained within the group. 

Gene Name: Name of gene(s) this peptide(s) is associated with. 

Majority protein IDs: These are the UNIPROT ID(s) of those proteins that have at 

least half of the peptides that the leading protein has. 

significant in t-test: +, proteins which are significant in a t-test with certain cut-off 

values, stated in the figures and the column header. 
-log10 of t-test p-value: inverted, logarithmized p-values of the t-test between two 

conditions plotted in the volcano plots in the figures on the y-axis. 

Student’s t-test difference: log2 of the difference between the two conditions plotted 

on the x-axis in the volcano plots. 

Peptides: Total number of peptide sequences associated with the protein group.  



  

Sequence coverage (%): Percentage of the sequence that is covered by the identified 

peptides of the best protein sequence contained in the group. 

Mol. weight (kDa): Molecular weight of the leading protein sequence contained in the 

protein group. 

MS/MS count: Number of MS/MS events for the protein group or peptide. 

Sequence: Identified aa of the peptide. 

Modifications: Post-translational modifications contained within the sequence. When 

no modifications exist, this is set to “unmodified”. 

Mass: Charge corrected mass of the precursor ion. 

PEP: Posterior Error Probability of the identification. This value essentially operates 

as a p-value, where smaller is more significant. 

Score: Andromeda score for the best identified among the associated MS/MS spectra. 

LFQ intensities (70): Summed up extracted Ion Current (XIC) of all isotopic clusters 

associated with the identified AA sequence and validated for relative quantification of 

proteins, peptides are reported with intensities no LFQ values can be determined. 
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