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Section S1. Supporting Notes

S1.1 XPS assignments for V205 electrode materials

Fig. S2a shows that the values of the three peaks in the literature were demanded to fit the V
2p? peak (36). Fig. S2b exhibits that the O s spectra can be fitted into two typical characteristic
peaks (530.3 and 531.0 eV), which belong to the metal-oxygen bonds and hydroxyl groups or

oxygen vacancy defects, respectively (37).

S1.2 Structural characterization (SEM and TEM) of the VN electrode materials

Fig. S3a and b show that the as-prepared product embraces the one-dimensional nanowire
structure when the as-prepared V>0Os was annealed under the NH3 atmosphere, and the length of
the samples can reach several of micrometers with a diameter of = 200 nm. It can be observed that
the as-prepared samples consisted of nanoparticles, and the highly porous microstructure was
obtained, which is beneficial for the penetration of the electrolyte into the electrode and
improving the capacitance characteristics (Fig. S3b). Fig. S3c exhibits the typical high-resolution
TEM (HRTEM) image of the as-prepared sample. From Fig. S3c, the lattice spacing of 0.25 nm
was obtained, which corresponds to the crystallographic plane of (200) VN. Moreover, the
selected area electron diffraction (SAED) patterns show the monocrystalline nature of the porous

VN nanowires (Fig. S3d).

S1.3 XRD assignments for VN/MWCNTs electrode materials

Fig. S6 exhibits that the five typical diffraction peaks are discovered at 20 values of 37.9°,
44.2°, 64.1°, 77.1°, and 81.2°, which correspond to the crystallographic planes of (111), (200),
(220), (311), and (222) of cubic VN. No other diffraction peaks ascribed to VOx can be observed,
demonstrating the product is pure VN. In addition, the diffraction peak at 20 = 25.6° confirms the

existence of MWCNTs.



S1.4 XPS assignments for VN/MWCNTs electrode materials

In order to investigate the chemical states of the as-prepared samples, XPS was conducted.
XPS confirms the formation of the VN/MWCNTs products (Fig. S7a). Moreover, the high-
resolution XPS spectrum of the VN/MWCNTs is depicted in Fig. S7b-d. The main XPS peaks at
517.2, 524.7, and 530.1 eV that correspond to the binding energy of V 2p°, V 2p!, and O 1s
electrons, respectively (Fig. S7b) (39). Additionally, the XPS peaks at 284.8 and 397.1 eV,

corresponding to the C 1s of MWCNTs and the N 1s of VN, respectively (Fig. S7c, d) (10).

S1.5 Electrochemical performances of the as-prepared V:0s NWs/MWCNTs and VN

NWs/MWCNT:s fiber electrode

To investigate the electrochemical properties of the 3D printing coaxial FASC device, the
electrochemical performances of V20Os NWs/MWCNTs fiber and VN NWs/MWCNTs fiber were

measured by CV, GCD and EIS in a three-electrode system with a 1 M KOH electrolyte.

Fig. S12a exhibits the CV curves of the V,0s NWs/MWCNTs fiber electrode in comparison
with the pure MWCNTSs fiber achieved at a scan rate of 5 mV s™!. The signal from the pure
MWCNTs fiber was negligible compared with the V,0s NWs/MWCNTs fiber positive electrode.
The CV curves of the prepared V,Os/MWCNTs fiber at different scan rates were exhibited in Fig.
S12b, indicating the typical faradaic pseudocapacitive behavior (3). The reaction process can be
described by the following equation: V2Os + xH* + xe” <> HxV20s. The maximum Ca value of
805.6 mF ¢cm™ at the current density of 1 mA cm™, and the specific capacitance value of 631.3
mF c¢cm™? is achieved at 10 mA cm™, demonstrating the excellent rate capability (Fig. S12c).
Additionally, the small intrinsic resistance (Ry) value of = 1.0 Q was obtained (Fig. S12d). In
order to achieve the 3D printing coaxial FASC device with excellent performance, the diameter of
the VN NWs/MWCNTs fiber was rationally designed by the charge match, the diameter of 120

um was observed from Fig. S5c.



As shown in Fig. S13a, the signal of the pure MWCNTs fiber was negligible in comparison
with the VN NWs/MWCNTs fiber electrode. Fig. S13b reveals the CV curves of the VN
NWs/MWCNTs fiber electrode taken between -1.2 and -0.2 V in 1.0 M KOH electrolyte,
exhibiting the excellent electrochemical performance. The reaction process can be interpreted by
the following equation: VN + OH™ <> VN//OH". From the GCD curves, the quasi-triangular
shapes were obtained even at the current density of 10.0 mA c¢cm, exhibiting the pseudocapacitive
behavior (Fig. S13c¢) (33). In addition, the VN NWs/MWCNTs fiber negative electrode embraces

a smaller Ry value of approximately 1 Q (Fig. S13d).
S1.6 The self-discharge tests of the 3D printing coaxial FASC device

Additionally, the self-discharge tests of the device are also executed. Fig. S16a exhibits the
relationship between the leakage currents and time, and the leakage currents are recorded for the
device charged to 1.6 V at the current density of 5 mA cm™. From Fig. S16a, the leakage current
is relatively high in a short time, and then it will reduce with the increasing of time and eventually
reach a stable current, demonstrating an appropriate self-discharge rate. Fig. S16b shows that the
open-circuit voltage will decrease with the increasing of time, and ultimately achieve the steady-

state voltage.

S1.7 The comparison of the areal, volumetric and gravimetric performance of the 3D

printing coaxial FASC device

Fig. S19a, b exhibit that the device embraces the highest Cyv and Cq of 27.83 F ¢cm™ and
59.26 F g!, respectively, which surpasses most of the previous work (3, 5-9, 11, 14, 51, 52, 55).
Table S1 shows that the as-fabricated 3D printing coaxial FASC device embraces the highest Ea
of 54.29 uWh cm™2, the Ev of 9.88 mWh c¢cm™ and the E, of 21.07 Wh kg™!, which exceeds the

most of the traditional FASC devices (3, 5-11, 14, 16-18, 51-56).



Section S2. Supporting Figures
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Fig. S1. Characterization of as-prepared V:0s. (a) SEM image. (b) Low-magnification TEM image. (c)
High-resolution TEM image. Inset is the corresponding SAED pattern. (d) XRD pattern. (e) Energy

dispersive spectroscopy (EDS) pattern. (f) XPS spectrum.



~
=
~
~
=3
~

Vi S

V52p1/2

\

OH/H,0

Intensity (a. u.)

Intensity (a. u.)

V+¥*2p3/2
o P:

528 526 524 522 520 518 516 514 512 510 536

5.;:4 532 530 528
Binding energy (eV)

Binding energy (eV)

Fig. S2. XPS spectra and fitted curve. (a) V 2p and (b) O s of V205 samples.



Fig. S3. Characterization of as-prepared VN. (a) Low-magnification SEM image, inset is a high-
magnification SEM image. (b) Low-magnification TEM image. (c) High-resolution TEM image. (d) The

corresponding SAED pattern.
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Fig. S4. Rheological properties of gel electrolyte ink. (a) Apparent viscosity as a function of shear rate

for gel electrolyte ink. (b) Storage modulus, G', and loss modulus, G”, as a function of shear stress for gel

electrolyte ink.
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Fig. S5. Low-magnification SEM images of fiber electrodes. (a) MWCNTs fiber. (b) V205

NWs/MWCNTs fiber. (¢) VN NWs/MWCNTs fiber.
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Fig. S6. XRD pattern of the as-fabricated VN/MWCNTs fiber.
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Fig. S7. XPS spectra of as-prepared VN/MWCNTs fiber. (a) Full-spectrum and High-resolution

spectrum of (b) V 2p and O 1s, (¢) N 1s, and (d) C 1s.
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Fig. S8. Raman spectras of fiber electrodes. (a) V205 NWs/MWCNTs fiber. (b) VN NWs/MWCNTs
fiber.
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Fig. S9. BET test of the gel electrolyte. (a) N2 adsorption/desorption isotherms. (b) Pore size

distribution.
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Fig. S10. The stress-strain performance of the printed fiber electrodes and devices.
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Fig. S11. BET tests of fiber electrodes. N> adsorption/desorption isotherms of the as-fabricated (a) V2Os
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Fig. S12. Electrochemical performance of V;0s NWs/MWCNTs fiber. (a) The CV curves of the V205
NWs/MWCNTs fiber in comparison with pure MWCNTSs fiber at a scan rate of 5.0 mV s’'. (b) The CV
curves at the different scan rates. (¢c) The GCD curves at the different current densities. (d) Nyquist plot. It
should be noted that Fig. S12b shows the different CV shape than the same material in the panel “a” is

because of the existing of the polarization phenomenon when the scan rates increase.
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Fig. S13. Electrochemical performance of VN NWs/MWCNTs fiber. (a) The CV of the VN
NWs/MWCNTs fiber in comparison with pure MWCNTs fiber. (b) The CV curves at the

different scan rates. (¢c) The GCD curves at the different current densities. (d) Nyquist plot.
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fiber electrodes at 5.0 mV s.
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Fig. S16. Self-discharge performance of the as-prepared 3D printing coaxial FASC device. (a)

Variation of leakage current with time. (b) Decay of open-circuit voltage for the device after being

charged with the charge current density of 5 mA cm™.



.

=]

=}
1

1 mA em™

k. k.
L -
=R
1 1

120 1
100 1
80 1
60 -
40 -
20 1

Specific capacitance (mF cm™)

<>

1 2 3 4 5 6 7 8 9 10
Device length (cm)
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Fig. S19. GCD tests of the device. (a) GCD curves of the device at different volumetric current densities.

(b) GCD curves of the device at different gravimetric current densities.
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Fig. S21. The digital photos of the assembled 3D-printed coaxial FASC device at different bending.

Photo credit: Hongyu Lu, Xi’an University of Technology.
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Fig. S22. Nyquist plots of the 3D printing coaxial FASC device, and the as-fabricated FASC with

twisted and the traditional coaxial architectures before and after 3,000 cycles of bending.
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Fig. S24. Photograph of a 3.0 V blue LED illuminated by the charged energy textile consisting of our

3D printed coaxial FASC device. Photo credit: Yan Zhang, Nankai University.



Fig. S25. Photographs of the chip-based FASC device to power the movements of pinwheel. Photo

credit: Hongyu Lu, Xi’an University of Technology.
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Fig. S26. Schematic diagram of water pumping system with solar cell and self-powered system. (a)
Schematic diagram of water pumping prototype with solar cell only. (b) Schematic diagram of water
pumping prototype with the self-powered configuration including chip-based FASC device and solar cell.

Photo credit: (a and b) Jingxin Zhao, University of Macau.
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Fig. S27. Schematic and photographs of the running of the electric car with solar cell and self-
powered system. (a) Schematic and photographs of the movements of the electric car with solar cell only.
(b) Schematic and photographs of the movements of the electric car with the self-powered system,
including chip-based FASC device and solar cell. Photo credit: (a and b) Jingxin Zhao, University of

Macau.
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Fig. S28. The relationship between the running distance and time of the mechanical configuration. (a)

The electric car with solar cell only and with a self-powered system. (b) The sightseeing cable car with

solar cell only and with self-powered system.



(a) ; Electric vehicle + solar cell

(b) " Electric vehicle + solar cell + FASC

—_—

K S

~ Solar cell

pe ™= Chip-based device

Fig. S29. Schematic diagram of the movements of the sightseeing cable car with solar cell and self-
powered system. (a) Schematic diagram of the running of sightseeing cable car with solar cell only, the
sightseeing cable car can run a short distance without extra energy storage. (b) Schematic diagram of the
running of sightseeing cable car with the self-powered configuration including chip-based FASC device
and solar cell, the sightseeing cable car can run the long-distance with energy storage, demonstrating the

longer durability.



Fig. S30. The digital photo of the self-energy monitoring system. Photo credit: Hongyu Lu, Xi’an
University of Technology.



Fig. S31. SEM images of the obtained multiscale structured materials. (a) PDMS and (b) PPy/PDMS

stamps.
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Fig. S32. Response signal of the pressure sensor under the pressure load.



Table S1.

Comparison of the 3D printing coaxial FASC device with the reported FASC device.

Device
configurati
on

coaxial

parallel

parallel

twisted

coaxial

Parallel

coaxial

Electrode
materials

MnO@MWCN
T fiber

Ni(OH)@rGO/
Ni wire-rGO/Ni
wire

N-Doped
graphene fiber

FCNO
NWASs/GF-
CNR/GF

MnO>@CNT
fiber/Ppy@CNT
film

PHCFs/PANi

ZnCo04@Zn-
Co-
S/CNTFs//H-
Co304@CoNC/
CNTFs

Mass

Specific
loading capacitance
10.9 Fcm?
/
103F g
/ 1.9 F cm™
95.1 mF cm?
/
149F cm™
61.6 mF cm™
164 F cm™
60.4 mF cm?
/ 9.5 F cm?
77Fg!
2.4 mg cm”
1
622.0 mF cm™
>0 ng em 49.1 F cm?
1
710.1 mg 69.1Fg
cm
/ 117.2 mF cm™

Energy
density

1.51 mWh cm

1.4 Wh kg

0.8 mWh cm

25.6 pWh cm™

10.0 mWh cm?

16.8 uWh cm

4.5 mW cm™

18.9 ]JW h cn’r2
3.0mWh cm‘3

2.4 Whkg'!

553 }/I,W h cm™?
1.6 mWh cm?

6.1 Whkg'!

32.0 uW h cm?

Power
density

52.9 mW cm?

49.9 W kg

3.4 Wcm?

550.2 uW cm?

216.0 mW cm

69.9 tW cm2

18.7 mW cm™

522.0 uW c¢m?
82.5 mW cm?

0.8 W kg

447.0 uW cm?
12.0 mW cm?

444 W kg'!

698.4 W cm

Reference

10




79.6 mF cm™ 21.7 uWh cm? 349.8 uW c¢m?
rGO/CNT-
twisted NiCo-BOH / 53Fcm? 1.4 mWh cm? 23.2 mW cm? 11
Yarn
22F g! 0.6 Wh kg'! 9.5 W kg!
V,05/SWCNTS- 116.2 mF ¢cm™ 41.3 pyWh cm™? 480.0 uW cm™
twisted VN/SWCNT / 14
§ 18.6 F cm™ 6.6 mWh cm 76.8 mW cm
CNT yarn or 3
coaxial sheet//Ti NTs/Ti / 1.8 mF cm’ 0.2 lc()m;nW h 0.01 mW cm 16
wires
0.1 mgem
1
CCCH@NiCoL
twisted Az Ié A l‘scig_ing 1472 mFem?  662pWhem? 2.9 mW hem? 17
CuO/Cu
318.471
mg cm??
parallel MnOé}I/\é?:s/CF- / 4.50 mF cm? 1.41 pyWh cm™? 48.5 uW cm? 18
60.0 mF cm™ 33.5 uW h cm™? 600.0 uW cm
parallel PEB%]I;Q\/IOH O / 7.2 F cm? 4.0 mWh cm? 72.0 mW c¢m 51
304
335Fg! 18.6 Wh kg 3345 Wkg'!
twisted N-doped 5.5 mF cm? 3.0 uW h em™? 51.8 uW cm?
/ 52
rGO/CNT fiber 2.6 F cm? 0.4 mWh cm™ 3.0 Wcem?
PEDOT-S: PSS / 93.1 mF cm™? 8.3 uW h cm™? 400.0 uW cm™ 53

coaxial
fiber




parallel rGO-Ni yarns / 72.1 mF cm™ 1.6 uWh cm™? 145.7 uW cm 54

273.7 mF cm™ 24.3 uW h cm™ 673.5 uW c¢cm?
twisted CNT;%iaI\I]’ihe“e/ / 912 F em? 8.1 mW h cm? 224.3 mW cm? 55
1375F g! 12.2 Wh kg 338.4 W kg'!
MnOz/Porous 5 5 2
parallel Ni fiber / 211.8 mF cm 18.8 pWh cm 16.3 mW cm 56
2.1 mg em’
1
- V205 1527 mFem?  54.3 pWh em™ 801.4 pW cm’?
. .3 uWh cm 4 pW cm
3Dc§;:il:1ng NWSMWENT 64 m
FASC s//VN . g 27.8 F cm? 9.9 mWh cm? 4000.1 mW c¢m? This Work
device NWs/MWCNT om ] ; }
s 1639.4 mg 593Fg 21.1 Wh kg 8000.6 W kg

cm?
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