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Fig. S1. Overview of the analysis workflow on the microbial 16S sequencing data, metabolite
profiling data, and integration of the two types of data.

Fig. S2. B-diversity Principal Coordinates Analysis (PCoA) of twin fecal microbial communities
with weighted UniFrac measure.

Fig. S3. Binary heatmap of the 64 OTUs differentially abundant between healthy and allergic
groups.

Fig. S4. The aggregated OTU abundance score is significantly higher in healthy relative to
allergic group in the discordant twin pairs (12 pairs, n=24).

Fig. S5. Test statistics of the differentially abundant OTUs from all samples (n=34) is correlated
with that computed from monozygotic twins only (#=28) comparing healthy and allergic groups.
DS-FDR was used to compute the test statistics from permutation.

Fig. S6. The aggregated OTU abundance score remains significant in healthy relative to allergic
group in monozygotic twins (n=28).

Fig. S7. Principle Component Analysis (PCA) of twin fecal metabolites.

Fig. S8. Test statistics of the differentially abundant metabolites from all samples (#=36) is
correlated with that computed from monozygotic twins only (»=28) comparing healthy and
allergic groups. Two-sided Welch’s two-sample #-test was used.

Fig. S9. 32 metabolites differentially abundant between healthy and allergic group in the
discordant twin pairs (13 pairs, n=26).

Fig. S10. Representative examples of metabolites significantly higher in healthy relative to

allergic group in the discordant twin pairs, or vice versa (13 pairs, n=26).



Fig. S11. Correlation between the 64 OTUs from Fig. 3 and the 97 metabolites from Fig. 5a and
5b.

Fig. S12. Distribution of metabolite Spearman’s correlation coefficient between healthy-
abundant OTU clusters 1 to 3 for each metabolite group from Fig. 7.

Fig. S13. Quantitative PCR (qPCR) validation of Phascolarctobacterium faecium discovered by
the 16S sequencing platform, shown in discordant twin pairs (10 pairs, n=20).

Fig. S14. qPCR validation of Ruminococcus bromii discovered by the 16S sequencing platform,

shown in discordant twin pairs (10 pairs, n=20).

Tables S1 to S13 are provided as Supplementary Data File in Excel Spreadsheet format.
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Fig. S1. Overview of the analysis workflow on the microbial 16S sequencing data,

metabolite profiling data, and integration of the two types of data.
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Fig. S2. B-diversity Principal Coordinates Analysis (PCoA) of twin fecal microbial
communities with weighted UniFrac measure. Shown is a plot of the first two principal
coordinate axes (PC1 and PC2) explaining 44.4% and 11.6% of the total variance among 34
samples from the healthy and allergic twins. Each dot represents one sample. Line connects
samples from the same twin pair. PERMANOVA was used to test the diversity differences

between healthy and allergic groups (P=0.82).
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Fig. S3. Binary heatmap of the 64 OTU:s differentially abundant between healthy and

allergic groups. Green indicates the presence of an OTU in a sample, and light grey indicates

absence. The 64 OTUs were from Fig. 3. Out of 64 OTUs, 62 are more abundant in the healthy

group, and 2 are more abundant in the allergic group. OTU IDs are shown on the row in the

format of “OTU_ID|Family”, and those annotated with family Lachnospiraceae,



Ruminococcaceae, or Clostridiales unclassified are highlighted in pink. Sample IDs are shown
on the column, with annotation bars above the heatmap indicating concordant/discordant twin

members, sex, and zygosity.
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Fig. S4. The aggregated OTU abundance score is significantly higher in healthy relative to
allergic group in the discordant twin pairs (12 pairs, n=24). The result of all 34 samples is
shown in Fig. 4b. Each dot denotes one sample. The bounds of the boxes represent the 25th and
75th percentiles, the horizontal center line indicates the median, and the whiskers extend to data
points within a maximum of 1.5 times the interquartile range (IQR). Two-sided Wilcoxon signed-

rank test was used to compute the p-value.
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Fig. SS. Test statistics of the differentially abundant OTUs from all samples (n=34) is
correlated with that computed from monozygotic twins only (#=28) comparing healthy and
allergic groups. For each of the 64 OTUs differentially abundant between healthy and allergic
groups using all samples, 51 are present in at least 4 out of the 28 monozygotic twin samples,

hence were included for re-computing the DS-FDR permutation test statistics using samples

from monozygotic twins only, and are shown on the figure.
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Fig. S6. The aggregated OTU abundance score remains significant in healthy relative to
allergic group in monozygotic twins (n=28). (a) 28 samples from 14 pairs of monozygotic
twins. (b) 18 samples from 9 pairs of monozygotic twins that are discordant. Each dot denotes
one sample. The bounds of the boxes represent the 25th and 75th percentiles, the horizontal
center line indicates the median, and the whiskers extend to data points within a maximum of 1.5

times the IQR. DS-FDR was used in a, two-sided Wilcoxon rank-sum test was used in b.
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Fig. S7. Principle Component Analysis (PCA) of twin fecal metabolites. Shown is a plot of

PC2 (8.54%)

the first two principal component axes (PC1, PC2) explaining 21.66% and 8.54% of the total
variance among 36 samples from the healthy and allergic groups. The one sample (S5077) and
the corresponding twin pair (#13) excluded from 16S analysis due to low sequencing depth was
included for metabolite analysis. Each dot represents one sample. Line connects samples from
the same twin pair. PCA was performed on normalized and log10-transformed quantification of

1,308 metabolites in total.
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Fig. S8. Test statistics of the differentially abundant metabolites from all samples (n=36) is
correlated with that computed from monozygotic twins only (#=28) comparing healthy and
allergic groups. For each of the 97 metabolites differentially abundant between healthy and
allergic groups using all samples, test statistics was re-computed using samples from

monozygotic twins only, and are shown on the figure. Two-sided Wilcoxon signed-rank test was

used.
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Fig. S9. 32 metabolites differentially abundant between healthy and allergic group in the

discordant twin pairs (13 pairs, n=26). This is a subset of the 97 metabolites differentially



abundant between healthy and allergic groups across all 36 samples. The one sample (S5077)
and the corresponding twin pair (#13) excluded from 16S analysis due to low sequencing depth
was included for metabolite analysis, forming 13 discordant twin pairs. Four metabolites are
shown per row. For each metabolite, two panels are shown: comparison between the two groups
across all samples (left, n=36), and within discordant twin pairs only (right, 13 pairs, n=26),
hence eight panels per row. P-values are shown in each panel. For comparison across all
samples, two-sided Welch Two-Sample #-test was used; for comparison within discordant twin
pairs only, two-sided paired #-test was used. All measure was normalized and log10-transformed
before statistical tests (see Methods). The bounds of the boxes represent the 25th and 75th
percentiles, the horizontal center line indicates the median, and the whiskers extend to data

points within a maximum of 1.5 times the IQR.
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Fig. S10. Representative examples of metabolites significantly higher in healthy relative to
allergic group in the discordant twin pairs, or vice versa (13 pairs, n=26). The two metabolites
shown are from Fig. 6b and 6c. Units shown on the y-axis in a and b represent the normalized raw
area counts of UPLC MS/MS peaks, rescaled to set the median equal to 1.00 for each biochemical
(see Methods). Each dot denotes one sample. The bounds of the boxes represent the 25th and 75th
percentiles, the horizontal center line indicates the median, and the whiskers extend to data points

within a maximum of 1.5 times the IQR. Two-sided paired ¢-test was used to compute the p-values.
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Fig. S11. Correlation between the 64 OTUs from Fig. 3 and the 97 metabolites from Fig. Sa

and 5b. Metabolites are shown on the row in the format of

“COMP_ID|Biochemical Name|Super Pathway|Sub Pathway”, and OTU IDs are shown on the

column in the format of “OTU_ID|Family”. On the heatmap, between each OTU and each



metabolite, a positive correlation is shown in red, and a negative correlation is shown in blue.

Spearman’s correlation was used.
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Fig. S12. Distribution of metabolite Spearman’s correlation coefficient between healthy-
abundant OTU clusters 1 to 3 for each metabolite group from Fig. 7. Spearman’s correlation
coefficient p from Fig. 7 is shown on the y-axis. Healthy-abundant OTU clusters 1 to 3 from Fig.
7 are shown on the x-axis. Pairwise comparison p-values are computed between C1/C2, C1/C3,
and C2/C3 for each metabolite group. Tukey’s honestly significant difference (HSD) test was
used which controls false discovery rate for multiple comparisons. Each dot denotes one
metabolite. The bounds of the boxes represent the 25th and 75th percentiles, the horizontal center
line indicates the median, and the whiskers extend to data points within a maximum of 1.5 times

the IQR.



a 16S Sequencing b gPCR

P =0.092 P =0.033
-3.8
10722 108
w100l £
O] A O 6
Q o 10
@ S 10427 Y
28 | Q
8 S 10-44 S 10t
i R c
5 & : 3
g 10-4.6 _] é 2
S 10
3 10-4.8 -
LD LD P
Healthy Allergic Healthy Allergic

Fig. S13. Quantitative PCR (qPCR) validation of Phascolarctobacterium faecium discovered
by 16S sequencing platform, shown in discordant twin pairs (10 pairs, n=20). 2 out of 12
discordant pairs did not have DNA materials left for qPCR validation, hence not included. The
result of all samples is shown in Fig. 8b and 8¢. (a) OTU 556835 (family Acidaminococcaceae)
is significantly more abundant in healthy compared to allergic group by 16S sequencing. This OTU
was annotated as Phascolarctobacterium faecium at the species level with 99% sequence identity
(NCBI accession ID NR_026111.1). P-value was re-calculated amongst the 10 twin pairs shown
here from the 16S sequencing data, instead of 12 twin pairs total. (b) Quantitative PCR (qPCR)
validates the abundance differences between healthy and allergic groups using P. faecium-specific
primers. Units shown on the y-axis in represent 2" normalized to total 16S rRNA copies per gram
of fecal material and multiplied by a constant (1x10%?) to bring all values above 1 (see Methods).

Samples with abundance above the detection limit in both platforms are shown. Each dot denotes



one metabolite. The bounds of the boxes represent the 25th and 75th percentiles, the horizontal
center line indicates the median, and the whiskers extend to data points within a maximum of 1.5
times the IQR. Two-sided Wilcoxon signed-rank test was used in a and b. qPCR data in b were

log10 transformed before statistical testing.
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Fig. S14. Quantitative PCR (qPCR) validation of Ruminococcus bromii discovered by 16S
sequencing platform, shown in discordant twin pairs (10 pairs, n=20). 2 out of 12 discordant
pairs did not have DNA materials left for qPCR validation, hence not included. The result of all
samples is shown in Fig. 8d and 8e. (a) OTU188079 (family Ruminococcaceae) is significantly
more abundant in healthy compared to allergic group by 16S sequencing. This OTU was annotated
as Ruminococcus bromii at the species level with 99% sequence identity (NCBI accession 1D
NR 025930.1). P-value was re-calculated amongst the 10 twin pairs shown here from the 16S
sequencing data, instead of 12 twin pairs total. (b) qPCR validates the abundance differences
between healthy and allergic groups using R. bromii-specific primers. Units shown on the y-axis
represent 2" normalized to total 16S rRNA copies per gram of fecal material and multiplied by a
constant (1x10%2) to bring all values above 1 (see Methods). Samples with abundance above the

detection limit in both platforms are shown. Each dot denotes one metabolite. The bounds of the



boxes represent the 25th and 75th percentiles, the horizontal center line indicates the median, and
the whiskers extend to data points within a maximum of 1.5 times the IQR. Two-sided Wilcoxon

signed-rank test was used in a and b. qPCR data in b were logl0 transformed before statistical

testing.



