Borie et al. "Correction of vasopressin deficit in the lateral septum ameliorates social deficits of mouse autism model"

Supplementary figures

Figure Suppl.1. *Magel2* deficiency impairs the changes of EEG power in the theta band during a new encounter with a mouse but not with an object

(A) Change of EEG power in the theta band at T1 during the exploration of a new mouse or a new object (50-mL falcon tube). Data (means±SEM) expressed as % relative to T0 in n=12 *Magel2* +/+, 13 *Magel2* +/-p. Three-way ANOVA: effect of the theta band $F_{1,72}$ =37.7 *p*<0.0001; effect of genotype $F_{1,72}$ =0.06 *p*=0.7; effect of social versus non-social stimuli $F_{1,72}$ =0.006 *p*=0.7; effect of the theta band X genotype $F_{1,72}$ =2.09 *p*=0.1; effect of social versus non-social stimuli X theta band $F_{1,72}$ =0.12 *p*=0.7; interaction of 3 factors $F_{1,72}$ =4.99 *p*=0.028. Wilcoxon test results as indicated comparing % change from baseline (set as 0) **p*<0.05, ***p*<0.01, ****p*<0.001, ns= not significant. Effect of genotype by unpaired t-test in 2-8Hz band #*p*=0.05 and 9-15Hz band †*p*=0.03.

(B) Change of EEG power in the theta band at T4 during the exploration of the same mouse or same object. Data (means±SEM) expressed as % relative to T1 in n=12 *Magel2* +/+, 13 *Magel2* +/-p. Three-way ANOVA: effect of the theta band $F_{1,74}$ =8.4 p=0.0049; effect of genotype $F_{1,74}$ =0.03 p=0.8; effect of social versus non-social stimuli $F_{1,74}$ =3.5 p=0.06; effect of the theta band X genotype $F_{1,74}$ =0.07 p=0.7; effect of social versus non-social stimuli X theta band $F_{1,74}$ =0.08 p=0.7; interaction of 3 factors $F_{1,74}$ =0.004 p=0.9. Wilcoxon test results as indicated comparing % change from baseline (set as 0) *p<0.05, **p<0.01, ***p<0.001.

(C) Change of EEG power in the theta band at T5 during the exploration of an familiar mouse or unfamiliar object (Lego). Data (means±SEM) expressed as % relative to T4 in n=12 *Magel2* +/+, 13 *Magel2* +/-p. Three-way ANOVA: effect of the theta band $F_{1,78}$ =0.02 p=0.8; effect of genotype $F_{1,78}$ =0.69 p=0.4; effect of social versus non-social stimuli $F_{1,78}$ =0.3 p=0.57; effect of the theta band X genotype $F_{1,78}$ =1.23 p=0.26; effect of social versus non-social stimuli X theta band $F_{1,78}$ =0.54 p=0.46; interaction of 3 factors $F_{1,78}$ =0.65 p=0.4. Wilcoxon test results as indicated comparing % change from baseline (set as 0) *p<0.05, **p<0.01, ***p<0.001.

Immunolabeling of cells with c-Fos and p-S6 antibodies in dorsal lateral septum 15 min after the end of the social novelty trial.

Figure Suppl.3. Displacement of d[Lys(Alexa-Fluor647)8]VP binding ex vivo by TGOT and AVP.

(A) Acute live brain slices incubated with 150 nM d[Lys(Alexa-Fluor647)8]VP (total binding) for 1hr at 12°C labeled cells in regions where AVPR1a, AVPR1b and OXTR are expressed (1). Slices were pre-incubated with 5 μ M TGOT (AVPR1a/ AVPR1b binding) or with 1 μ M AVP (non specific binding) for 1hr and further incubated with d[Lys(Alexa-Fluor647)8]VP for 1hr. Experiments are representative of 6-8 slices from 4 adult male mice. Cytological binding of

d[Lys(Alexa-Fluor647)8]VP +TGOT most likely results from AVPR1a binding sites at least in the lateral septum based on the affinity of d[Lys(Alexa-Fluor647)8]VP shown in the Table S1 and the enrichment of AVPR1a in the septum compared to the others receptors.

(B) Zoom in specific brain areas. Most labeling is in the cortex, olfactory tubercles, septum, hippocampus, hypothalamus and thalamus. The striatum is poorly labeled except for blood vessels. This pattern is similar to that observed with the autoradiographic labeling of V1a (see figure 3A).

REFERENCE

1. Dumais KM & Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. *Frontiers in Neuroendocrinology* 40:1-23.

Supplementary Table

d[Lys(Alexa647)8]VP Ki (nM)				dLysVP Ki (nM)		TGOT (nM)		
Murine receptors	Mean	±SEM	Ν	Mean	±SEM	Ν	Mean	Ref.
AVPR1a	765	182	7	5.9	1.46	7	>1000	(2)
AVPR1b	200	36	4	0.8	0.18	4	>1000	(2)
							0	
AVPR2	10429	745	4	4.8	0.9	4	n.d.	n.d.

Table S1. Affinity of d[Lys(Alexa647)8]VP compared to dLysVP for murine AVP receptors

Affinity of d[Lys(Alexa-Fluor-647)⁸]VP *in vitro* for the indicated mouse receptors: AVPR1b transfected in HEK293 cells, AVPR1a and AVPR2 are the endogenous from liver and kidney, respectively. K_i values for d[Lys(Alexa-647)⁸]VP were calculated from dose response curves against 1 nM [³H]AVP. One-way ANOVA $F(2,9)=168.2 \ p<0.0001$ post-hoc Tukey test comparing AVPR2 with AVPR1a p<0.0001 and AVPR2 with AVPR1b p<0.0001. In contrast, dLysVP without the conjugation of Alexa-Fluor647 showed little selectivity among the murine AVPRs. One-way ANOVA $F(2,12)=4.06 \ p=0.045$ post-hoc Tukey test comparing AVPR1a with AVPR1b p=0.038. Therefore, d[Lys(Alexa-647)⁸]VP has selective profile for the subtypes 1a and 1b amongst the murine AVPRs. The affinity of TGOT on the murine AVPR1a and AVPR1b are based on the supplemental reference 2.

REFERENCE

2. Busnelli M, Bulgheroni E, Manning M, Kleinau G, & Chini B (2013) Selective and potent agonists and antagonists for investigating the role of mouse oxytocin receptors. *J Pharmacol Exp Ther* 346(2):318-327.

Table S2: List of reagents

	Antiboo	lies		
Immunogen	Details	Source	Use	Manufacturer
Neurotensin (NT)	Cat# 418 005,	Guinea pig	1:100	Synaptic systems
× ,	RRID:AB 2782980	polyclonal		
Neurogranin	Cat# ab5620,	Mouse	1:100	Merck
(NG)	RRID:AB 2171427	monoclonal	0	
NeuN	Cat# MAB377,	Mouse	1:500	Merck
	RRID:AB 2298767	monoclonal		
GAD67	Cat# MAB5406,	Mouse	1:500	Merck
	RRID:AB 2278725	monoclonal		
Calretinin (CalR)	Cat# 6B3, RRID:AB 10000320	Mouse	1:100	Swant
()	, <u> </u>	monoclonal	0	
Calbindin D28k	Cat# CB38, RRID:AB 2721225	Mouse	1:500	Swant
(CalB)		monoclonal	0	
Somatostatin	Cat# ab30788.	Rat polyclonal	1:50	Abcam
(SST)	RRID:AB 778010	F J		
GFP	Cat# ab13970.	Chicken	1:300	Abcam
	RRID:AB 300798	polyclonal	0	
c-Fos (9F6)	Cat# 2250. RRID:AB 2247211	Rabbit	1:100	Cell Signaling
		polyclonal	0	Technology
c-Fos (E8)	Cat# sc-166940.	Mouse	1:100	Santa Cruz
(-)	RRID:AB 10609634	monoclonal		Laboratories
Neurophysin I	Cat# PS-38, RRID:AB 2315026	Mouse	1:100	H. Gainer at NIH
(NPI)		monoclonal	0	USA
Neurophysin II	Cat# PS41, RRID:AB 2313960	Mouse	1:500	H. Gainer at NIH
(NPII)		monoclonal		USA
Fab anti mouse	Cat# BI 1013C		1:500	Abliance
IgG				
Goat anti-guinea				m 1 x 1
pig Alexa-	Cat#A-110/3, RRID:		1:200	Thermo Fisher
Fluor488	AB_2534117		0	Scientific
~	Cat#A-11034/11037/21244;			
Goat anti-rabbit	RRID: AB 2576217, RRID:		1:200	Thermo Fisher
Alexa-	AB 2534095, RRID:		0	Scientific
Fluor488/594/64	AB 2535812		-	
Goat anti-mouse	Cat#A-11029/11032/21236:		1:200	Thermo Fisher
Alexa-	RRID: AB 2534088; RRID:		0	Scientific
Fluor488/594/64'	AB 2534091; RRID:			
	AB ⁻ 141725			
	Drug	s		
Compound Et	ffect Working co	omments		Manufacture

name		concentration		r
Arg-	Avpr agonist	<i>Ex vivo</i> : 10 ⁻⁶	Used in Whole cell	Merck
vasopressin	CAS#113-79-1	М	recordings	
		<i>In vitro</i> : 10 ⁻⁶	Used as competitor in	
		М	binding tests	
		<i>In vivo</i> : 3x10 ⁻	Used in intraseptal	
		М	injections	
TGOT	Specific oxtr	Ex vivo : 10^{-7} N	Used in Whole cell	Merck
	agonist	<i>In vivo</i> : 3x10 ⁻⁶	recordings	
	CAS# 60786-59	М	Used in intraseptal	
	6		injections	
Atosiban	Oxtr antagonist	<i>In vivo</i> : 10 ⁻⁸ N	Used in behaving mice	Merck
	CAS#90779-69-	<i>Ex vivo</i> : 10 ⁻⁶	Used in Whole cell	
	4	М	recordings	
Manning	AVPR	<i>In vivo</i> : 10 ⁻⁸ N	Used in intraseptal	Bachem
Compound	antagonist	<i>Ex vivo</i> : 10 ⁻⁶	injections	
(MC)	CAS#73168-24-	М	Used in Whole cell	
	8	<i>Ex vivo</i> : $5x10^{-1}$	recordings	
		⁶ M	Used in combination with	
			d[L(Alexa-647)8]VP for	
			selectivity	
SR95531	GABA-A	$Ex vivo : 6x10^{\circ}$	Used in Whole cell	Merck
(GABAzine)	antagonist CAS#	⁶ M	recordings	
	104104-50-9			
Tetrodotoxin	CAS# 4368-	$Ex vivo : 3x10^{-1}$	Used in Whole cell	Merck
(TTX)	28-9	7 M	recordings	
	T8024			
6-Cyano-7-	CAS# 115066-	<i>Ex vivo</i> : 10 ⁻⁶	Used in Whole cell	Merck
nitroquinoxa	14-3 FG-9065	М	recordings	
line-2,3-				
dione				
(CNQX)				

Other	compounds
-------	-----------

Alexa-594-	Cell tracer	<i>Ex vivo :</i> 5x10 ⁻⁵ M	Used to label patched	Life
cadaverine	Cat# A30678	<i>In vivo</i> : 5x10 ⁻⁵ M	cells	Technology
			Used in vivo to visualize	
			the diffusion area in the	
			septum	
d[L(Alexa-Fluor-	Fluorescent	<i>In vivo :</i> 5x10 ⁻⁵ M	Used in combination	Homemade
647)8]VP	peptide	<i>In vitro</i> : 3x10 ⁻⁸ M	with oxtr or avpr	
		<i>Ex vivo :</i> 15x10 ⁻⁸ M	competitors for	
			specificity	
[³ H]-AVP	AVPR agonis	<i>In vitro :</i> 3x10 ⁻⁹ M	Radioligand binding	Perkin-Elmer
	CAT#NET80		assays	

[¹²⁵ I]-LVA	0 AVPR ligand CAT#NEX31	In vitro : 1x	х10 ⁻⁹ М	Radioligand bin assays	ding	Perkin-Elmer
Desamino-Cys ¹ ,	0010 CAS#16679-	In vitro : 1x	х10 ⁻⁶ М	Synthesis of d[L	.(Alexa-	Bachem
Lys ⁸]Vasopressin	58-6			647)8]VP		
Paraformaldehyde	Cat#P6148	4%	aa 106	Tissue fixation	() 1	Merck
Alexa647 carboxylic acid	Fluorescent tracer	In vitro : 1. M	25x10-0	Synthesis of d[L 647)8]VP	.(Alexa-	ThermoFishe Scientific
pentobarbital	Anesthetic VetCode ON51AA01	In vivo : 50	mg/kg	Intraperitoneal i	njection	Ceva Santé Animale
xylazine	anesthetic VetCode	<i>In vivo :</i> 1.3	8 g/kg	Use in combinat ketamine. Intrap	ion with eritonea	Ceva Santé Animale
Ketamine	anesthetic VetCode	In vivo : 6.6	ó g/kg	Use in combinat xylazine. Intrapo	tion with eritoneal	Ceva Santé Animale
	QN01AX03			injection		
		V	irus			
Virus name	Co	oncentration	volur iniect	ne Manut ed	facturer	
EF1a::DIO-ChR2-	2x	1011	500	U Penr	n Lot #C	S0384
eYFP;WPRE::hGH	l vir	uses/mL	nL/he	misphere		
		Rea	agents			
Name		Comment	ţ		Manuf	facturer
Lipofectamine CA	Г# 11668019	Transfecti	on of cell	S	Life Te	echnology
Fluoromount CAT	# 00-4958-02	Preservation	on of fluc	prescence	Therm	oFisher
$\mathbf{UEV}\mathbf{202T} = 11 1 0$		mounting	medium	OVTD	Scienti	f1C
HEK2931 cells (CI	KL-3216)	Do not exp	press end	ogenous OXIR		repository,
DMFM CAT# 119	60044	Cell cultur	·e		USA Life Te	chnology
Fetal bovine serum	CAT#A31605	Cell cultur	re Te		Life Te	chnology
OPTIMEM CAT#3	81985062	Transfecti	on of cell	S	Life Te	chnology
Dental cement CA	Г#203097	surgerv			Paladu	r. Henry
		8 5			Schein	, ,
Mandrin double pa CAT#C235DCS-5/	s de projection /3/0	cannula			Phyme	d
Small dust cap CA' Canule interne dou 1mm CAT# C2351	T# 303DC/1 ble projection S-5/3/1	cannula			Phyme	d
Guide canule doub C235GS-5-0,8/3 0.	le 26G CAT# 8mm 3mm	cannula			Phyme	d

E C	Branching Fiberoptic Patchcord CAT# BFP(2) 200/220/900-	patchcord	Doric lenses
	0.53_1m_FCM-GS0 Dual fiber optic cannula with Guiding Socket CAT#	0.53 NA	Doric lenses
0 S F 3 L	0.53_3.5mm_GS0.8_FLT Standard 6-pin headmount 8231-SN PREAMPLIFIERS FOR MICE - 3-CHANNEL SYSTEM 8202- DSE3	EEG electrodes Preamplifier for EEG recordings	Pinnacle Technology Pinnacle Technology
6	5-pin Mouse Commutator/Swivel	Commutator for EEG recordings	Pinnacle Technology
3	B-Channel Analog Adapter 8242-K	ANALOG ADAPTERS for EEG recordings	Pinnacle Technology
	Data acquisition system sampling	1Hz, gain 5000-10000V/V	Pinnacle Technology
S	SYNCHRONIZED VIDEO	30 frames per second	Pinnacle Technology
Č	Cage for mice 8228	25.4 x 20.3 cm	Pinnacle Technology
		2.61	
		Mice	
N	Name bac	Mice kgrou Details	Source
N A	Name bac nd Avptm1.1(cre)Hze/. Avp-CRE C57	Mice kgrou Details 7BL6J Cat#023530; RRID: IMSR JAX:023530	Source Jackson laboratories
N A N	Name bac nd Avptm1.1(cre)Hze/. Avp-CRE C57 Magel2tm1.1Mus/J Magel2K C57	Mice Ekgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506	Source Jackson laboratories F. Muscatelli, INMED Fr
N A N	Name bac nd Avptm1.1(cre)Hze/. Avp-CRE C57 Magel2tm1.1Mus/J Magel2K C57 O C57BL6J C57	Mice kgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR_JAX:000664	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
N A N	Name bac nd Avptm1.1(cre)Hze/. Avp-CRE C57 Magel2tm1.1Mus/J Magel2K C57 O C57BL6J C57	Mice Skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR_JAX:000664 Genotyping Primers	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
	Namebac ndAvptm1.1(cre)Hze/. Avp-CREC57Magel2tm1.1Mus/JMagel2KC57C57BL6JC57GeneSequence	Mice Skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR_JAX:000664 Genotyping Primers	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
	Namebac ndAvptm1.1(cre)Hze/. Avp-CREC57Magel2tm1.1Mus/JMagel2KC57C57BL6JC57GC57GC57GC57GC57GC57C57BL6JC57GC57GSequenceCre-recombinase5'-TCTGTCCC	Mice Skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR_JAX:000664 Genotyping Primers GTTTGCCGGTCGT-3' and 5'-	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
	Name bac nd Avptm1.1(cre)Hze/. Avp-CRE C57 Magel2tm1.1Mus/J Magel2K C57 O C57BL6J C57 Gene Sequence Cre-recombinase 5'-TCTGTCCC Illele AGACCGCGCGC	Mice Skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR_JAX:000664 Genotyping Primers GTTTGCCGGTCGT-3' and 5'- CGCCTGAAGATA-3'	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
	NamebacAvptm1.1(cre)Hze/. Avp-CREC57Magel2tm1.1Mus/JMagel2KC57OC57BL6JC57C57BL6JC57GeneSequenceCre-recombinase5'-TCTGTCCCIlleleAGACCGCGCAVP-cre WTallel/5'-GAGTCCG7	Mice Skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR_JAX:000664 Genotyping Primers GTTTGCCGGTCGT-3' and 5'- CGCCTGAAGATA-3' TGGATTCTGCCAA-3' and 5'-	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
	Namebac ndAvptm1.1(cre)Hze/. Avp-CREC57Magel2tm1.1Mus/JMagel2KC57C57BL6JC57C57BL6JC57GeneSequenceCre-recombinase5'-TCTGTCCCIlleleAGACCGCGCAVP-cre WTallel.5'-GAGTCCGCTATGCACG	Mice Skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR JAX:000664 Genotyping Primers GTTTGCCGGTCGT-3' and 5'- CGCCTGAAGATA-3' IGGATTCTGCCAA-3' and 5'- ACTTCGGGTGT-3'	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
	Name bac nd Avptm1.1(cre)Hze/. Avp-CRE C57 Magel2tm1.1Mus/J Magel2K C57 Magel2tm1.1Mus/J Magel2K C57 C57BL6J C57 Gene Sequence Cre-recombinase 5'-TCTGTCCC Illele AGACCGCGCG AVP-cre WT allele 5'-GAGTCCG7 CTATGCACG Magel2- (KO) allele 5'-TGCTTCCTGC	Mice Skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR JAX:000664 Genotyping Primers GTTTGCCGGTCGT-3' and 5'- CGCCTGAAGATA-3' TGGATTCTGCCAA-3' and 5'- ACTTCGGGTGT-3' CCCTTCAGTTAC-3' and 5'-GCTTATCGAT	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River
N A N C C C C C C C A M M M	NamebacAvptm1.1(cre)Hze/. Avp-CREC57Magel2tm1.1Mus/JMagel2KC57Magel2tm1.1Mus/JMagel2KC57C57BL6JC57C57BL6JC57GeneSequenceCre-recombinase5'-TCTGTCCCAVP-cre WT allele5'-GAGTCCG7CTATGCACGCTATGCACG5Magel2- (KO)allele5'-GTCACACACAC	Mice skgrou Details 7BL6J Cat#023530; RRID: IMSR_JAX:023530 7BL6J MGI:4849506 7BL6J Cat#000664; RRID: IMSR JAX:000664 Genotyping Primers GTTTGCCGGTCGT-3' and 5'- CGCCTGAAGATA-3' TGGATTCTGCCAA-3' and 5'- ACTTCGGGTGT-3' CCCTTCAGTTAC-3' and 5'-GCTTATCGAT CCATTCGACCT-3' and 5'-TACCCTCGGGA	Source Jackson laboratories F. Muscatelli, INMED, Fr Charles River

	0
Name	Source
Graphpad prism 8.0 SCR_002798	http://graphpad.com
Adobe Creative Suite 6 (Photoshop,	https://www.adobe.com/de/products/cs6.html
Illustrator)	

Fiji Image J SCR_003070	http://imagej.net/Fiji
Sirenia acquisition and seizure	https://www.pinnaclet.com/software.html
NeuroScore [™] CNS Software	https://www.datasci.com/products/software/neuroscore
pClamp software	https://www.moleculardevices.com/products/axon-
	patch-clamp-system/acquisition-and-analysis-software

Table S3: Statistical analyses

Fi g.	Sample size	Effect size (Cohen's d)	Type of test	Statistical data
1B	Mice: 12 +/+, 13 +/-p	d NOVELTY =0.88 d HABITUATION =0.49 d DISCRIMINATION =1.96	1-way ANOVA	F TRIALS (5,125)=16.47, p<0.0001*
1C	Mice: 14 +/+, 16 +/-p	d genotype =0.47 d trials =0.55 d genotype x trials =0.46	2-way ANOVA RM	F GENOTYPE (1,28)=2.55, p =0.001* F SOCIAL TRIALS (2,56)=6.82, p =0.002* F GENOTYPE X SOCIAL TRIALS (2,56)=4.69, p=0.01*
1D	Mice: 8 +/+, 8 +/-p	d novelty =0.013 d habituation =0.17 d discrimination =1.15	1-way ANOVA	F TRIALS (5,125)=5.69, p<0.0001*
1E	Mice: 9 +/+, 9 +/-p	d _{GENOTYPE} =0.17 d _{TRIALS} =1.47 d _{GENOTYPE X TRIALS} =0.087	2-way ANOVA RM	F GENOTYPE (1,16)=0.4, p =0.5 F OBJECT TRIALS (2,32)=28.33, p <0.0001 F GENOTYPE X OBJECT TRIALS (2,32)=0.09, p=0.9
2C	+/+ mice: 5 T0, 5 T1, 4 T4, 4 T5	d NOVELTY MS =2.4 d NOVELTY LSD =4.3 d NOVELTY LSI =2.88 d NOVELTY LSI =2.88 d HABITUATION MS =5.4 d HABITUATION LSD =2.17 d HABITUATION LSI =2.8 d HABITUATION LSV =2.84 d DISCRIMINATION MS =3.73 d DISCRIMINATION LSD	2-way ANOVA RM	<i>F</i> SOCIAL TRIALS in +/+ (3,56)=31.7, p<0.0001* <i>F</i> SEPTAL REGIONS in +/+ (3,56)=2.95, $p=0$.
	+/-p mice: 7 T0, 5 T1, 4 T4, 9 T5	=2.0 d discrimination lsi =2.19 d discrimination lsv =3.66 d novelty ms =1.38 d novelty lsd =0.4 d novelty lsi=0.2 d novelty lsv =0.83	2-way ANOVA RM	<i>F</i> SOCIAL TRIALS in +/-p (3,88)=6.87, <i>p</i> =0.0003* <i>F</i> SEPTAL REGIONS in +/-p (3,56)=2.39, <i>p</i> =0

		d habituation MS =1.56 d habituation LSD = 0.3 d habituation LSI = 0.16 d habituation LSV = 0.59 d discrimination MS = 1.55 d discrimination LSD = 0.52 d discrimination LSI = 0.5 d discrimination LSI = 0.5 d discrimination LSV = 1.19		
2D	+/+ mice: 7 T0, 6 T1, 7 T4, 7 T5, 5 T1+2hrs +/-p mice: 7 T0, 5 T1, 6 T4, 6 T5, 5 T1+2hrs	d trials =1.11 d genorype =0.97 d septal regions x trials =0.262	2-way ANOVA	F genotype (1,52)=14.05, p =0.0004* F trials (4,52)=18.36, p <0.0001* F genotype x trials (4,52)=1.0, p =0.4
2E	Mice: 5 NaCl, 5 AVP, 4 TGOT	d _{INJECTIONS} =2.89	Kruskal Wallis	<i>p</i> =0.0012*
3A	Mice: 8 +/+, 7 +/-p	d genotype =0.8 d septal regions =0.2 d genotype x septal regions =0.26	2-way ANOVA	$F_{\text{GENOTYPE}}(1,26)=2.08, p=0.16$ $F_{\text{SEPTAL REGIONS}}(1,26)=0.13, p=0.71$ $F_{\text{SEPTAL REGIONS X GENOTYPE}}(1,26)=0.2$ p=0.64
3D	Mice: 5 +/+, 5 +/-p	d CELL MARKER =1.6 d dLVP647 =1.85 d GENORYPE =0.356 d CELL MARKER X dLVP647 =1.93 d CELL MARKER X GENOTYPE =0.6 d dLVP647 X GENOTYPE =0.41 d GENOTYPE X CELL MARKER X dLVP647 =0.68	3-way ANOVA	F CELL MARKER $(2,59)=37.27, p<0.0001$ F dLVP647 $(1,59)=49.85, p<0.0001*$ F GENOTYPE $(1,59)=1.83, p<0.18$ F CELL MARKER X dLVP647 $(2,59)=54.01, p<0.0001*$ F CELL MARKER X GENOTYPE $(2,59)=5.26, p=0.0079*$ F GENOTYPE X dLVP647 $(2,59)=2.5, p=0.11$ F GENOTYPE X dLVP647 X CELL MARKER $(2,59)=5.35, p=0.0073*$
4B	Cells +/+: 27 excited, 33 insensitive Cells +/-p: 14 exited, 14 insensitive	$\begin{array}{c} d_{\text{TIME}} = 0.71 \\ d_{\text{AVP}} = 0.95 \\ d_{\text{GENORYPE}} = 0.256 \\ d_{\text{TIME X AVP}} = 0.682 \\ d_{\text{TIME X GENOTYPE}} \end{array}$	3-way ANOVA RM	F_{TIME} (30,2259)= 9.5, $p < 0.0001^*$ F_{AVP} (1,76)=16.89, $p < 0.0001^*$ F_{GENOTYPE} (1,76)=1.22, p =0.27 $F_{\text{TIME X AVP}}$ (30,2259)=8.67, $p < 0.0001$ $F_{\text{TIME X GENOTYPE}}$ (30,2259)=1.39, p =0

		=0.27 d genotype x avp =0.188 d genotype x avp x time =0.23		<i>F</i> GENOTYPE X AVP (1,76)=0.66, <i>p</i> =0.41 <i>F</i> TIME X AVP X GENOTYPE (30,2259)=1.04 <i>p</i> =0.4
4C	Cells +/+: 31 inhibited, 33 insensitive Cells +/-p: 4 inhibited, 14 insensitive	d $_{\text{TIME}} = 0.43$ d $_{\text{AVP}} = 0.59$ d $_{\text{GENORYPE}} = 0.209$ d $_{\text{TIME}} x \text{ AVP} = 0.47$ d $_{\text{TIME}} x \text{ GENOTYPE} = 0.21$ d $_{\text{GENOTYPE}} x \text{ AVP} = 0.093$ d $_{\text{GENOTYPE}} x \text{ AVP} x$ $_{\text{TIME}} = 0.185$	3-way ANOVA RM	F TIME $(30,2077)=2.55, p<0.0001*$ F AVP $(1,71)=4.9, p=0.029*$ F GENOTYPE $(1,71)=0.6, p=0.43$ F TIME X AVP $(30,2077)=3.045, p<0.000$ F TIME X GENOTYPE $(30,2077)=0.65, p=0$ F GENOTYPE X AVP $(1,71)=0.13, p=0.71$ F TIME X AVP X GENOTYPE $(30,2077)=0.47$ p=0.99
4D	Loose patch: 32 +/+, 26 +/-p cells Whole cell: 103 +/+, 45	d LOOSE PATCH =0.99 d WHOLE CELL =0.62	Chi- square	$X^{2}(2)=11.47, p=0.003*$ $X^{2}(2)=13.22, p=0.0013*$
5B	Mice: 13 NaCl, 10 AVP	d frequency =0.38 d avp 10 min =1.255 d avp 10 min x frequency =0.449 d frequency =0.27 d avp 60 min =1.73 d avp 60 min x frequency =0.57	2-way ANOVA RM	$F_{\text{FREQUENCY}}(25,546) = 0.77, p=0.78$ $F_{\text{AVP 10 MIN}}(1,546) = 8.13, p=0.0045*$ $F_{\text{FREQUENCY}} \times \text{AVP 10 MIN}(25,546) = 1.04$ p=0.41 $F_{\text{FREQUENCY}}(25,650) = 0.38, p=0.99$ $F_{\text{AVP 60 MIN}}(1,650) = 15.59, p<0.0001*$ $F_{\text{FREQUENCY}} \times \text{AVP 60 MIN}(25,650) = 1.73$ p=0.017*
5C	+/-p mice: 14 NaCl, 16 AVP	d _{TRIALS} =1.6 d _{AVP} =0.021 d _{AVP X TRIALS} =0.573	2-way ANOVA RM	$F_{\text{TRIALS}}(2,42)=17.99, p<0.0001*$ $F_{\text{AVP}}(1,21)=0.003, p=0.8$ $F_{\text{AVP X TRIALS}}(2,42)=2.29, p=0.11$
5D	+/-p mice: 14 NaCl, 9 AVP	d frequency t1 =0.75 d $_{AVP}$ =0.485 d $_{AVP}$ =0.485 d $_{AVP}$ x frequency t1 =0.505 d frequency t5 =0.39 d $_{AVP}$ =0.589 d $_{AVP}$ x frequency t5 =0.59	2-way ANOVA RM	F FREQUENCY T1 (23,504)=2.84, $p<0.000$ F AVP (1,504)=1.176, $p=0.27$ F AVP X FREQUENCY T1 (23,480)=1.275, p=0.17 F FREQUENCY T5 (23,480)=0.76, $p=0.77$ F AVP (1,480)=1.738, $p=0.18$ F AVP X FREQUENCY T5 (23,480)=1.74, p=0.016*
5E	+/+ mice: 15 NaCl, 11 MC	d _{TRIALS} =1.37 d _{MC} =0.648	2-way ANOVA	F_{TRIALS} (2,48)=11.12, p=0.0001* F_{MC} (1,24)=2.46, p=0.12

		$d_{MC X TRIALS} = 0.56$	RM	$F_{MC X TRIALS}$ (2,48)=1.83, p =0.17
5F	+/+ mice: 17 NaCl, 11 MC	d frequency t1 =0.676 d mc =0.644 d mc x frequency t1 =0.298 d frequency t5 =0.32 d mc =2.24 d mc x frequency t5 =0.565	2-way ANOVA RM	$F_{\text{FREQUENCY T1}}$ (25,650)=2.833, $p<0.0001^*$ F_{MC} (1,650)=2.56, $p=0.1$ $F_{\text{MC X FREQUENCY T1}}$ (25,650)=0.55, p=0.96 $F_{\text{FREQUENCY T5}}$ (25,676)=0.63, $p=0.9$ F_{MC} (1,676)=31.38, $p<0.0001^*$ $F_{\text{MC X FREQUENCY T5}}$ (25,676)=1.98, $p=0.003^*$
6B	Mice: 5 +/+, 5 +/-p		Kolmogo rov- Smirnov	<i>p</i> <0.0001*
6D	+/+ mice: 8 T0, 8 T1, 12 T4, 7 T5	d Novelty PVN = 2.41 d Novelty LH = NA d Novelty Son= 1.37 d Novelty BNST = NA d Habituation PVN = 1.17 d Habituation LH = 0.33 d Habituation Son = 0.83 d Habituation BNST = 0.44 d Discrimination PVN	2-way ANOVA	<i>F</i> SOCIAL TRIALS (3,96)=4.34, <i>p</i> =0.006* <i>F</i> SEPTAL REGIONS in +/+ (3,96)=23.76, <i>p</i> <0.0001* <i>F</i> SEPTAL REGIONS in +/+ X SOCIAL TRIALS (3,96)=4.36, <i>p</i> <0.0001*
	+/-p mice: 9 T0, 8 T1, 5 T4, 5 T5	=5.3 d discrimination LH =NA d discrimination son =NA d discrimination bnst =0.9 d novelty pvn =0.6 d novelty LH =0.07 d novelty son=0.24 d novelty bnst =0.86 d habituation pvn =0.35 d habituation LH =0.5 d habituation son =0.6 d habituation bnst =0.7	2-way ANOVA	<i>F</i> SOCIAL TRIALS (3,75)=2.53, <i>p</i> =0.06 <i>F</i> SEPTAL REGIONS in +/-p (3,75)=1.76, <i>p</i> =0 <i>F</i> SEPTAL REGIONS in +/-p X SOCIAL TRIALS (3,75)=1.173, <i>p</i> =0.32

		d discrimination pvn =0.1 d discrimination lH =0.5 d discrimination son =0.44 d discrimination pnst		
7C	BNST: 6 no light, 6 light stimulation PVN: 9 no light, 11 light stimulation	d DISCRIMINATION BNST = 0.7 d TRIALS = 2.61 d CHR2 in BNST = 0.268 d CHR2 in BNST X TRIALS = 1.2 d TRIALS = 1.4 d CHR2 in PVN = 0.79 d CHR2 in PVN X TRIALS = 0.8	2-way ANOVA RM	$F_{\text{TRIALS}}(2,10)=17.11, p=0.0006*$ $F_{\text{CHR2 in BNST}}(1,5)=0.18, p=0.6$ $F_{\text{TRIALS X CHR2 in BNST}}(2,10)=3.61, p=0$ $F_{\text{TRIALS}}(2,26)=8.84, p=0.0012*$ $F_{\text{CHR2 in PVN}}(1,13)=2.8, p=0.11$ $F_{\text{TRIALS X CHR2 in PVN}}(2,8)=2.9, p=0.11$
7D	BNST: 11 no light, 6 light stimulation	d FREQUENCY T1 =0.275 d CHR2 =2.3 d CHR2 X FREQUENCY T1 =0.4 d FREQUENCY T5 =0.45 d CHR2 =0.054 d CHR2 X FREQUENCY T5 =0.711	2-way ANOVA RM	$F_{\text{FREQUENCY T1}}$ (25,390)=0.26, p=0.99 F_{CHR2} (1,390)=18.27, p<0.0001* $F_{\text{CHR2 X}}$ Frequency T1 (25,390)=0.6, p= $F_{\text{FREQUENCY T5}}$ (25,400)=0.7, p=0.84 F_{CHR2} (1,16)=0.01, p=0.8 $F_{\text{CHR2 X}}$ Frequency T5 (25,400)=1.73, p=0.016*
7E	BNST: 6 no light, 6 light stimulation PVN: 6 no light. 6 light stimulation	d _{BNST} =1.44	Kruskal Wallis	<i>p</i> =0.0117*
Ta ble 1	EPSC: 40 excited cells	d _{AVP} =0.26 d _{TTX} =0.76 d _{AVP X TTX} =1.69 d _{CNQX} =2.27 d _{AVP X CNQX} =4.3	1-way ANOVA	$F_{\text{EPSC EXCITED CELLS}}(5,74)=10.52, p<0.0001*$
	EPSC: 21 inhibited cells	d _{AVP} =0.7 d _{TTX} =0.03 d _{AVP X TTX} =1.04 d _{CNQX} =3.1 d _{AVP X CNQX} =1.03	1-way ANOVA	F EPSC INHIBITED CELLS (5,36)=5.1, p=0.0012*
	IPSC: 26 excited cells	d _{AVP} =1.19 d _{TTX} =0.6 d _{AVP X TTX} =3.7	1-way ANOVA	F ipsc excited cells (3,49)=8.97,

IPSC: 13 inhibited cells	d _{AVP} =1.23 d _{TTX} =0.6 d _{AVP X TTX} =6.9	1-way ANOVA	<i>p</i> <0.0001*
EPSC+IPSC: 52 excited cells	d AVP = 0.85 d TTX = 0.49 d GABAZINE = 0.45 d AVP + GABAZINE = 2.0	1-way ANOVA	F ipsc inhibited cells $(3,22)=5.1$, $p=0.0077*$
EPSC+IPSC: 30 inhibited cells	d $_{AVP}$ =1.43 d $_{TTX}$ =0.6 d $_{GABAZINE}$ =0.56 d $_{AVP}$ + $_{GABAZINE}$ =1.46	1-way ANOVA	<i>F</i> IPSC EXCITED CELLS (4,99)=6.45, $p < 0.0001*$
			<i>F</i> IPSC INHIBITED CELLS (4,55)=8.33, $p < 0.0001*$