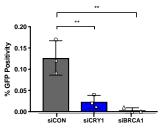

Supplementary Figure 1. Altered CRY1 expression is associated with different types of cancer. A. AR binding sites on CRY1 in PCa data sets of VCaP cells (Asangani *et al.* 2014 and Massie *et al.* 2011) and LNCaP cells (McNair *et al.* 2017, in early G1, late G1, early S, late S, and G2M phase). Genomic traces showing AR binding sites on CRY1. B. CRY1 mRNA expression across the phases of the cell cycle. C-D. Frequency of CRY1 alterations (i.e. amplifications, mutations, and/or deletions) in different cancer types (C) and in primary and/or metastatic PCa datasets (D) from cBioPortal. E. Frequency of core circadian clock gene alterations (i.e. amplifications, mutations, and/or deletions) in primary and metastatic PCa datasets from cBioPortal. F. Frequency of CRY1, AR, KLK3, FKBP5, TP53, and PTEN alterations in primary PCa. G. Number of patients at risk in each cohort (low, middle, and high) in the JHMI retrospective cohort for poor metastatic PCa outcome.

<u>Supplementary Figure 2</u>. The CRY1 cistrome is enriched for cancer-associated pathways. A. Schematic describing the comparison of ChIP-Seq data with known circadian factors. Briefly, the CRY1-bound circadian genes were identified by comparing all the circadian genes (curated from the MSigDB of circadian pathways) to the genes with a CRY1 binding site within a TSS (transcriptional start site) of binding. **B.** List of all the MSigDB Gene Sets used for curating the list of circadian genes used in the comparison. **C.** KEGG and Hallmark Pathway analysis of genes bound by CRY1 within a transcriptional start site (TSS) of a gene with CRY1 binding with an FDR<0.25. **D.** Known motif enrichments for promoter specific and non-promoter specific motifs of CRY1 binding in vehicle treated C4-2 cells within 500 bp binding window on each side of the center of binding. **E.** List of known motifs factors for promoter specific and non-promoter specific regions.


<u>Supplementary Figure 3.</u> Genome-wide assessment of CRY1 transcriptome identifies several DNA repair processes. A. Principal component analysis (PCA) plots of the RNA-Seq samples run. B. GSEA of RNA-Seq (KEGG and HALLMARKS Pathway Analysis from MSigDB) was used to identify enriched and deenriched pathways for CRY1-regulated pathways using FDR<0.25. C. Leading-edge plots of the DNA repair pathways identified from the GSEA of the RNA-Seq data (KEGG and Hallmarks Pathway Analysis). D. CRY1 expression was knocked down in C4-2-shCRY1 and 22Rv1-shCRY1 cells (in hormone-proficient media) for indicated days. C4-2 and 22Rv1 cells were treated with 10 µM KL001 at Day 0 and harvested at days 0, 3, and 6 for Pico Green to assess relative growth. Cells were counted for each time point and graphed as relative growth. N=3 independent experiments. Data are presented as mean values +/- SEM and analyzed using one-way Anova (*p<0.05, **p<0.01, ***p<0.001, &, ****p<0.0001). Statistical significance was evaluated at 0.05 alpha level with GraphPadPrism, version 8.3.1, Mac. Source data are provided in the Source Data file.

<u>Supplementary Figure 4.</u> DNA damage stabilizes CRY1 protein expression. A-B. C4-2 and 22Rv1 cells were treated 5 Gy IR for 0-8 hours and with 10 μ M KL001 for 6 and 24 hours, respectively. C. C4-2 and 22Rv1 cells were treated 1 μ M MG132 and 2 or 5 Gy IR for 1, 2, 4, 8, and 24 hrs. D. C4-2 and 22Rv1 cells were treated 1 μ M MG132 and 10 nM DOX for 8, 16, 24, 28, and 32 hrs. E. C4-2 and 22Rv1 cells were treated 10 μ g/mL CHX and 2 or 5 Gy IR for 1, 2, 4, 8, and 22Rv1 cells were treated 10 μ g/mL CHX and 2 or 5 Gy IR for 1, 2, 4, 8, and 24 hrs. F. C4-2 and 22Rv1 cells were treated 10 μ g/mL CHX and 2 or 5 Gy IR for 1, 2, 4, 8, and 24 hrs. F. C4-2 and 22Rv1 cells were treated 10 μ g/mL CHX and 2 or 5 Gy IR for 1, 2, 4, 8, and 24 hrs. F. C4-2 and 22Rv1 cells were treated 10 μ g/mL CHX and 10 nM DOX for 8, 16, 24, 28, and 32 hrs. A-F. Cells were harvested and protein expression of CRY1 and Vinculin was analyzed. N=3 independent experiments.

ſ	Gene Sets Used for Each Type of DDR				
	Homologous Recombination (HR)				
	GO REGULATION OF DOUBLE STRAND BREAK REPAIR VIA HOMOLOGOUS				
Ľ	RECOMBINATION				
	KEGG HOMOLOGOUS RECOMBINATION				
	REACTOME HOMOLOGOUS RECOMBINATION REPAIR OF REPLICATION				
ľ	INDEPENDENT DOUBLE STRAND BREAKS Mismatch Repair (MMR)				
GO MISMATCH REPAIR					
Ľ	30 MISMATCH REPAIR COMPLEX				
Ľ	30 MISMATCHED DNA BINDING				
Ľ	KEGG MISMATCH REPAIR				
ŕ	Nucleotide Excision Repair (NER)				
k	GO GLOBAL GENOME NUCLEOTIDE EXCISION REPAIR				
k	30 NUCLEOTIDE EXCISION REPAIR				
k	GO NUCLEOTIDE EXCISION REPAIR COMPLEX				
k	GO NUCLEOTIDE EXCISION REPAIR DNA DAMAGE RECOGNITION				
k	30 NUCLEOTIDE EXCISION REPAIR DNA DUPLEX UNWINDING				
k	30 NUCLEOTIDE EXCISION REPAIR DNA GAP FILLING				
k	30 NUCLEOTIDE EXCISION REPAIR DNA INCISION				
k	30 NUCLEOTIDE EXCISION REPAIR PREINCISION COMPLEX ASSEMBLY				
k	GO NUCLEOTIDE EXCISION REPAIR PREINCISION COMPLEX STABILIZATION				
k	GO TRANSCRIPTION COUPLED NUCLEOTIDE EXCISION REPAIR				
ŀ	KEGG NUCLEOTIDE EXCISION REPAIR				
r	NUCLEOTIDE EXCISION REPAIR				
Base Excision Repair (BER)					
E	BASE EXCISION REPAIR				
k	30 BASE EXCISION REPAIR				
ŀ	KEGG BASE EXCISION REPAIR				
F	REACTOME BASE EXCISION REPAIR				
F	REACTOME NUCLEOTIDE EXCISION REPAIR				
Non-Homologous End Joining (NHEJ)					
ŀ	KEGG NON HOMOLOGOUS END JOINING				

C.

b.

		G	enes in Ea	ach List	
HR	MMR		NER		BER
ATM	ABL1	AQR	NTHL1	SUMO3	APEX1
BLM	EXO1	ATXN3	OGG1	TCEA1	APEX2
BRCA1	LIG1	BRCA2	PARP1	TP53	CCNO
BRCA2	MLH1	CCNH	PCNA	UBA52	DNA2
BRIP1	MLH3	CDK7	PNKP	UBB	ERCC6
C12orf48	MSH2	CETN2	POLB	UBC	FEN1
CHEK1	MSH3	CHD1L	POLD1	UBE2I	HMGA1
EME1	MSH4	CHRAC1	POLD2	UBE2N	HMGA2
FIGNL1	MUTYH	COPS4	POLD3	UBE2V2	HMGB1P10
FIGNL2	PCNA	COPS5	POLD4	USP45	HMGB1P40
H2AFX	PMS1	COPS6	POLE	USP7	HMGB2
HELB	PMS2	COPS7A	POLE2	XAB2	HUWE1
KDM1A	PMS2CL	COPS7B		XPA	LIG1
KIAA0146	PMS2P1	COPS8			LIG3
LIG1	PMS2P3	CUL4A			MBD4
	PMS2P5	CUL4B		XRCC1	MPG
MDC1	POLD1	DDB1	POLR2A	ZNF830	MSH2
MRE11A	POLD2	DDB2	POLR2B		MSH3
MUS81	POLD3	EP300	POLR2C		MSH6
NBN	POLD4	ERCC1	POLR2D		MUTYH
POLD1	RFC1	ERCC2	POLR2E		NEIL1
POLD2	RFC2	ERCC3	POLR2F		NEIL2
POLD3	RFC3	ERCC4	POLR2G		NEIL3
POLD4	RFC4	ERCC5	POLR2H		NTHL1
POLQ	RFC5	ERCC6	POLR2I		OGG1
PPP4C	-	ERCC8	POLR2J		PARP1
PPP4R2	RPA1	FAN1	POLR2K		PARP2
RAD50	RPA2	GPS1	POLR2L		PARP3
RAD51	RPA3	GTF2H1	PPIE		PARP4
RAD51AP1	RPA4	GTF2H2	PRPF19		PCNA
RAD51B	SETD2	GTF2H2B	RAD23A		POLB

POLD1

POLD2

POLD3

POLD4

POLE

POLE2

POLE3

POLE4

POLG

POLL

POLQ

RPA1

RPA2

RPA3

SIRT6

TDG

TP53

SMUG1

PRMT6

RECOL4

UNG

WRN

ХРА

USP47 DNTT

XRCC1

NHEJ

DCLRE1C

LOC731751 MRE11A

FEN1

LIG4

NHEJ1

RAD50

XRCC4

XRCC5 XRCC6

POLL

Supplementary Figure 5. Genome-wide assessment of CRY1 identifies direct regulation of DNA repair processes. A. List of all the MSigDB Gene Sets used for all the different types of DDR - HR, MMR, NER, BER, and NHEJ used in the comparison of RNA-Seq and ChIP-Seq. B. List of all the DDR genes regulated by CRY1 in each specific type of DDR pathway. C. CRY1 expression was knocked down in U20S-DR-GFP cells for 72 hrs via siRNA or cells were treated siBRCA1 for 24 hrs and then transfected with I-Sce1 to induce double-strand breaks. Cells were harvested for flow cytometry to analyze GFP positive cells. N=3 independent experiments. Data are presented as mean values +/- SEM and analyzed using one-way Anova (**p<0.01). Statistical significance was evaluated at 0.05 alpha level with GraphPadPrism, version 8.3.1, Mac. Source data are provided in the Source Data file.

RAD51C

RAD51D

RAD54B

RAD54L

RPA1

RPA2

RPA3

RPA4

RTEL1

SHFM1

SIRT6

SSBP1

TEX15

торза

торзв

TP53BP1

XRCC2

XRCC3

TERF2IP

RAD52

SSBP1

TDG

TP73

WRN

XPC

TREX1

GTF2H2C

GTF2H2D

GTF2H3

GTF2H4

GTF2H5

HMGN1

HUS1B

KIAA1530

LOC652672

LOC652857

MMS19

MNAT1

NEIL1

NEIL2

NEIL3

HUS1

ISY1

I IG1

LIG3

IIG4

RAD23B

RAD51D

RBBP8

RBX1

RFC1

RFC2

RFC3

RFC4

RFC5

RPA1

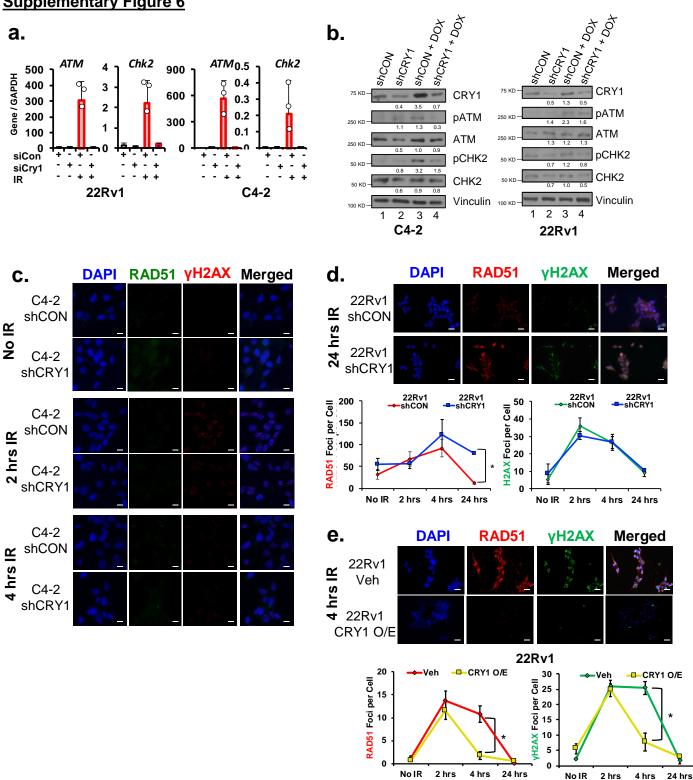
RPA2

RPA3

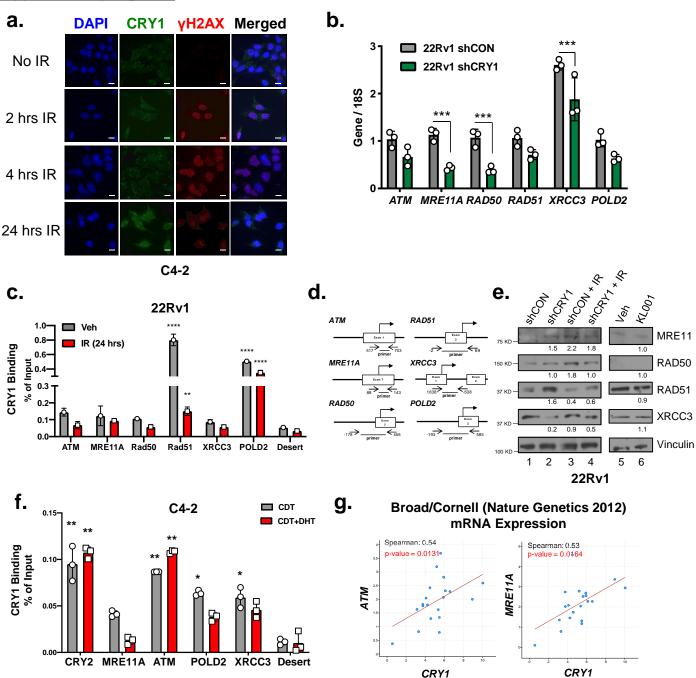
RPS27A

SLC30A9

SIRT1


SLX4

SUM01


SUMO2

RPA4

RNF111

Supplementary Figure 6. CRY1 promotes homologous recombination (HR)-mediated DNA damage response. A. C4-2 and 22Rv1 cells were treated with siCON and siCRY1 for 72 hours, treated with IR, and harvested for RNA. B-D. CRY1 expression was knocked down in C4-2-shCRY1 and 22Rv1-shCRY1 cells for 72 hrs. B. Cells were treated with 10 µM DOX for 24 hrs. Cells were harvested for protein. Expression of CRY1, pATM, ATM, pCHK2, CHK2, and Vinculin protein were analyzed. C-D. Cells were treated with 5 Gy for 2, 4, or 24 hrs. Cells were fixed at the indicated time points, stained with γ-H2AX and RAD51 antibodies, and imaged by confocal microscopy. Scale bar 250 μm. E. CRY1 expression was transiently overexpressed with transfection of a CRY1 plasmid for 48 hrs and then treated with 5 Gy IR for 2, 4, and 24 hrs in 22Rv1 cells. Cell were stained with y-H2AX & RAD51 antibodies and imaged by confocal microscopy. Scale bar 250 µm. N=3 independent experiments. Data are presented as mean values +/- SEM and analyzed using one-way Anova (*p<0.05). Statistical significance was evaluated at 0.05 alpha level with GraphPadPrism, version 8.3.1, Mac. Source data are provided in the Source Data file.

Supplementary Figure 7. CRY1 directly binds to promoters of HR genes and regulates HR gene expression to promote DNA repair. A. C4-2 cells were treated with 5 Gy IR for 2, 4, and 24 hrs. Cells were fixed at the indicated time points, stained with y-H2AX and CRY1 antibodies, and imaged by confocal microscopy. Scale bar 250 µm. B. CRY1 expression was knocked down in 22Rv1-shCRY1 cells for 72 hrs. Cells were harvested for RNA. ATM, Mre11A, Rad50, Rad51, XRCC3, POLD2, and 18S mRNA. C. CRY1 ChIP qPCR was performed on the promoter of ATM, Rad51, Mre11A, Rad50, XRCC3, POLD2, and a desert region to determine the binding of CRY1 after 24 hrs of 5 Gy IR treatment in 22Rv1 cells and in vehicle condition in 22Rv1 cells. Binding is plotted as percent input. D. Schematic of primers designed for each CRY1 ChIP site on the HR genes. Numbers indicate nucleotides from start of exon. E. CRY1 expression was knocked down in 22Rv1-shCRY1 cells for 72 hrs and then cells were treated with 5 Gy IR for 24 hrs. 22Rv1 cells were treated with 10 µM KL001 (CRY1 activator) for 24 hrs. Cells were harvested for protein. MRE11A, RAD50, RAD51, XRCC3, and vinculin were analyzed. F. CRY1 ChIP qPCR was performed on CRY2, Mre11A, ATM, XRCC3, POLD2, and a desert region to determine the binding of CRY1 in CDT and CDT+DHT (10 nM, 2 hours) treatment in C4-2 cells. Binding is plotted as percent input. G. Co-expression of CRY1 and either ATM, MRE11A, and RAD50 mRNA in PCa tissue from publicly available data from Broad/Cornell (Nature Genetics 2012). N=3 independent experiments. Data are presented as mean values +/- SEM and analyzed using one-way Anova (*p<0.05, **p<0.01, ***p<0.001, &, ****p<0.0001). Statistical significance was evaluated at 0.05 alpha level with GraphPadPrism, version 8.3.1, Mac. Source data are provided in the Source Data file.

	Sequence (5' to 3')			
Target	Forward	Reverse		
CCND3	ACGGAGGCTCAGGTGTGG	GGATAGCACGTGGAGGAGTT		
CCNE1	AATGCACAGGGGCTCTTAGG	GAGCACCTACGTACAGCCAG		
CDK2	GGAGTTGTGTACAAAGCCAGAA	ACGTGTCCAGGCGGATTTT		
CDK4	TGTGACCAGCTGCCAAAGAG	AGAGCAATGTCAAGCGGTCA		
CUL4A	AGAGCAATGTCAAGCGGTCA	TCACCTGGTAGAGCTCCTCG		
E2F3	CACTTCCTCCTGCTCGCC	GAGGAGAGGGAGGGTGGC		
MCM7	GCCATCGCTTCCGCTCTTA	CGGTGTCTCTGGGTGTGATG		
POLD2	GAGCTTTTGGCTCGAACGTG	TGAGTGGGGTCCAGGGAAAC		
POLE4	CTAGGCGCGTGGGAAGAG	CCACACCCTGTGTAGGCG		
ATM	AAAACCACAGCAGGAACCAC	TCCAAGTCTGAGGACGGAAG		
MRE11A	CTTGTACGACTGCGAGTGGA	TTCACCCATCCCTCTTTCTG		
RAD50	CTTTGGGATCATTGCCCTGTG	CGAAGTGGTGGTCTTGTTGCT		
RAD51	CACTCTGTCGCCCAGGC	TCATCTTGGGCCAGGTG		
XRCC3	ATCTGCACGGAGGGATGGTT	GCCAACCGGTGAGTCTGTTATC		
Desert	CTAGGAGGGTGGAGGTAGGG	GCCCCAAACAGGAGTAATGA		

ChIP qPCR Primer Sequences

	Sequence (5' to 3')				
Target	Forward	Reverse			
CRY1	CAACCTCCATTCATCTTTCC	CTCATAGCCGACACCTTC			
p21	GGCAGACCAGCATGACAGATT	GCGGATTAGGGCTTCCTCT			
FAS	GGGCATCTGGACCCTCCTAC	GATAATCTAGCAACAGACGTAAGAAC CA			
CCND3	CTCATCAAGAGCTATCTGTTCC	TTTAAGGTCTCGGTGGAGG			
CCNE1	TTATGAAGCTGTTGGATCTCTG	AATGATACAAGGCCGAAGC			
CDK2	CTCATCAAGAGCTATCTGTTCC	TTTAAGGTCTCGGTGGAGG			
CDK4	TGTAGACCAGGACCTAAGGA	CGCATCAGATCCTTGATCG			
CUL4A	CACAGATCCTTCCGTTTAGAG	GATCATGATCATTTGTCTGCAG			
BRCA1	TTTGGAGTATGCAAACAGCT	TCTGTAGCCCATACTTTGGA			
BRCA2	CAAAGTTTGTGAAGGGTCGT	ACCAAGACATATCAGGATCCA			
GTF2H1	CTGTCTAGAGTTGTAGCTTCC	TCTTCAGATGAGGTTGCCA			
MCM7	AGTATGGGAACCAGTTGGT	ATTTACCACTTCCCTCTCCT			
POLD2	AATGAGACCCTTCCTGGAG	CTTCACTCCCACTCCACTG			
POLD4	GTTGTGAAGAGGAGGAGG	TAGAGATGCCAGAGACGGT			
POLE4	CTGTTTGTGGAGACCATTGC	GGCAATCAATCTAAAGTACCTTCC			
PTTG1	TGGACCTTCAATCAAAGCC	TTTAGGTAAGGCTGGTGGG			
RFC3	GAGATAATAATGAAGGGCCTTC TC	TAGTAAGCTGCCATTTGTGC			
TEX15	GAATACTCGTGAAGTCAATCCT	ACGTGCATCTATTCTTTCTCAG			
ATM	GCGTTGCTTCTTCCTCCAGA	ATCACTGTCACTGCACTCGG			
MRE11A	AGAAGATAGACATTAGTCCGGT	CATCTGGAATGGATCCTAAACC			
RAD50	GAGATGGAGCAGTTAAACCA	GTTCATCTTTGTCAGCTTTGTC			
RAD51	TCACGGTTAGAGCAGTGTG	AACAGCCTCCACAGTATGG			
RAD54B	TGCCATTAAGACAACTACAGC	TCATTCTGAATTGGAGTACCAG			
XRCC3	CATCCTTACAGCACTGCAG	TTCCGTGCAGATGTAGACG			

qPCR Primer Sequences