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Supplementary Figure 1. Altered CRY1 expression is associated with different types of cancer. A. AR binding sites on CRY1 in PCa

data sets of VCaP cells (Asangani et al. 2014 and Massie et al. 2011) and LNCaP cells ( McNair et al. 2017, in early G1, late G1, early
S, late S, and G2M phase). Genomic traces showing AR binding sites on CRY1. B. CRY1 mRNA expression across the phases of the cell
cycle. C-D. Frequency of CRY1 alterations (i.e. amplifications, mutations, and/or deletions) in different cancer types (C) and in primary
and/or metastatic PCa datasets (D) from cBioPortal. E. Frequency of core circadian clock gene alterations (i.e. amplifications, mutations,
and/or deletions) in primary and metastatic PCa datasets from cBioPortal. F. Frequency of CRY1, AR, KLK3, FKBP5, TP53, and PTEN
alterations in primary PCa. G. Number of patients at risk in each cohort (low, middle, and high) in the JHMI retrospective cohort for poor
metastatic PCa outcome.
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Supplementary Figure 2. The CRY1 cistrome is enriched for cancer-associated pathways. A. Schematic describing the
comparison of ChIP-Seq data with known circadian factors. Briefly, the CRY1-bound circadian genes were identified by comparing
all the circadian genes (curated from the MSigDB of circadian pathways) to the genes with a CRY1 binding site within a TSS
(transcriptional start site) of binding. B. List of all the MSigDB Gene Sets used for curating the list of circadian genes used in the
comparison. C. KEGG and Hallmark Pathway analysis of genes bound by CRY1 within a transcriptional start site (TSS) of a gene
with CRY1 binding with an FDR<0.25. D. Known motif enrichments for promoter specific and non-promoter specific motifs of CRY1
binding in vehicle treated C4-2 cells within 500 bp binding window on each side of the center of binding. E. List of known motifs
factors for promoter specific and non-promoter specific regions.
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Supplementary Figure 3. Genome-wide assessment of CRY1 transcriptome identifies several DNA repair processes. A. Principal
component analysis (PCA) plots of the RNA-Seq samples run. B. GSEA of RNA-Seq (KEGG and HALLMARKS Pathway Analysis from MSigDB)
was used to identify enriched and deenriched pathways for CRY1-regulated pathways using FDR<0.25. C. Leading-edge plots of the DNA repair
pathways identified from the GSEA of the RNA-Seq data (KEGG and Hallmarks Pathway Analysis). D. CRY1 expression was knocked down in C4-
2-shCRY1 and 22Rv1-shCRY1 cells (in hormone-proficient media) for indicated days. C4-2 and 22Rv1 cells were treated with 10 µM KL001 at Day
0 and harvested at days 0, 3, and 6 for Pico Green to assess relative growth. Cells were counted for each time point and graphed as relative
growth. N=3 independent experiments. Data are presented as mean values +/− SEM and analyzed using one-way Anova (*p<0.05, **p<0.01,
***p<0.001, &, ****p<0.0001). Statistical significance was evaluated at 0.05 alpha level with GraphPadPrism, version 8.3.1, Mac. Source data are
provided in the Source Data file.



Supplementary Figure 4

Supplementary Figure 4. DNA damage stabilizes CRY1 protein expression. A-B. C4-2 and 22Rv1 cells were
treated 5 Gy IR for 0-8 hours and with 10 µM KL001 for 6 and 24 hours, respectively. C. C4-2 and 22Rv1 cells were
treated 1 µM MG132 and 2 or 5 Gy IR for 1, 2, 4, 8, and 24 hrs. D. C4-2 and 22Rv1 cells were treated 1 µM MG132
and 10 nM DOX for 8, 16, 24, 28, and 32 hrs. E. C4-2 and 22Rv1 cells were treated 10 µg/mL CHX and 2 or 5 Gy IR for
1, 2, 4, 8, and 24 hrs. F. C4-2 and 22Rv1 cells were treated 10 µg/mL CHX and 10 nM DOX for 8, 16, 24, 28, and 32
hrs. A-F. Cells were harvested and protein expression of CRY1 and Vinculin was analyzed. N=3 independent
experiments.
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a. b.Gene Sets Used for Each Type of DDR
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Supplementary Figure 5. Genome-wide assessment of CRY1 identifies direct regulation of DNA repair
processes. A. List of all the MSigDB Gene Sets used for all the different types of DDR – HR, MMR, NER, BER, and
NHEJ used in the comparison of RNA-Seq and ChIP-Seq. B. List of all the DDR genes regulated by CRY1 in each
specific type of DDR pathway. C. CRY1 expression was knocked down in U20S-DR-GFP cells for 72 hrs via siRNA or
cells were treated siBRCA1 for 24 hrs and then transfected with I-Sce1 to induce double-strand breaks. Cells were
harvested for flow cytometry to analyze GFP positive cells. N=3 independent experiments. Data are presented as mean
values +/− SEM and analyzed using one-way Anova (**p<0.01). Statistical significance was evaluated at 0.05 alpha
level with GraphPadPrism, version 8.3.1, Mac. Source data are provided in the Source Data file.
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Supplementary Figure 6. CRY1 promotes homologous recombination (HR)-mediated DNA damage response. A. C4-2 and 22Rv1 cells were
treated with siCON and siCRY1 for 72 hours, treated with IR, and harvested for RNA. B-D. CRY1 expression was knocked down in C4-2-shCRY1
and 22Rv1-shCRY1 cells for 72 hrs. B. Cells were treated with 10 µM DOX for 24 hrs. Cells were harvested for protein. Expression of CRY1,
pATM, ATM, pCHK2, CHK2, and Vinculin protein were analyzed. C-D. Cells were treated with 5 Gy for 2, 4, or 24 hrs. Cells were fixed at the
indicated time points, stained with γ-H2AX and RAD51 antibodies, and imaged by confocal microscopy. Scale bar 250 µm. E. CRY1 expression
was transiently overexpressed with transfection of a CRY1 plasmid for 48 hrs and then treated with 5 Gy IR for 2, 4, and 24 hrs in 22Rv1 cells. Cell
were stained with γ-H2AX & RAD51 antibodies and imaged by confocal microscopy. Scale bar 250 µm. N=3 independent experiments. Data are
presented as mean values +/− SEM and analyzed using one-way Anova (*p<0.05). Statistical significance was evaluated at 0.05 alpha level with
GraphPadPrism, version 8.3.1, Mac. Source data are provided in the Source Data file.
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Supplementary Figure 7. CRY1 directly binds to promoters of HR genes and regulates HR gene expression to promote
DNA repair. A. C4-2 cells were treated with 5 Gy IR for 2, 4, and 24 hrs. Cells were fixed at the indicated time points, stained with
γ-H2AX and CRY1 antibodies, and imaged by confocal microscopy. Scale bar 250 µm. B. CRY1 expression was knocked down in
22Rv1-shCRY1 cells for 72 hrs. Cells were harvested for RNA. ATM, Mre11A, Rad50, Rad51, XRCC3, POLD2, and 18S mRNA. C.
CRY1 ChIP qPCR was performed on the promoter of ATM, Rad51, Mre11A, Rad50, XRCC3, POLD2, and a desert region to
determine the binding of CRY1 after 24 hrs of 5 Gy IR treatment in 22Rv1 cells and in vehicle condition in 22Rv1 cells. Binding is
plotted as percent input. D. Schematic of primers designed for each CRY1 ChIP site on the HR genes. Numbers indicate
nucleotides from start of exon. E. CRY1 expression was knocked down in 22Rv1-shCRY1 cells for 72 hrs and then cells were
treated with 5 Gy IR for 24 hrs. 22Rv1 cells were treated with 10 µM KL001 (CRY1 activator) for 24 hrs. Cells were harvested for
protein. MRE11A, RAD50, RAD51, XRCC3, and vinculin were analyzed. F. CRY1 ChIP qPCR was performed on CRY2, Mre11A,
ATM, XRCC3, POLD2, and a desert region to determine the binding of CRY1 in CDT and CDT+DHT (10 nM, 2 hours) treatment in
C4-2 cells. Binding is plotted as percent input. G. Co-expression of CRY1 and either ATM, MRE11A, and RAD50 mRNA in PCa
tissue from publicly available data from Broad/Cornell (Nature Genetics 2012). N=3 independent experiments. Data are presented
as mean values +/− SEM and analyzed using one-way Anova (*p<0.05, **p<0.01, ***p<0.001, &, ****p<0.0001). Statistical
significance was evaluated at 0.05 alpha level with GraphPadPrism, version 8.3.1, Mac. Source data are provided in the Source
Data file.
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Sequence (5’ to 3’)

Target Forward Reverse

CCND3 ACGGAGGCTCAGGTGTGG GGATAGCACGTGGAGGAGTT

CCNE1 AATGCACAGGGGCTCTTAGG GAGCACCTACGTACAGCCAG

CDK2 GGAGTTGTGTACAAAGCCAGAA ACGTGTCCAGGCGGATTTT

CDK4 TGTGACCAGCTGCCAAAGAG AGAGCAATGTCAAGCGGTCA

CUL4A AGAGCAATGTCAAGCGGTCA TCACCTGGTAGAGCTCCTCG

E2F3 CACTTCCTCCTGCTCGCC GAGGAGAGGGAGGGTGGC

MCM7 GCCATCGCTTCCGCTCTTA CGGTGTCTCTGGGTGTGATG

POLD2 GAGCTTTTGGCTCGAACGTG TGAGTGGGGTCCAGGGAAAC

POLE4 CTAGGCGCGTGGGAAGAG CCACACCCTGTGTAGGCG

ATM AAAACCACAGCAGGAACCAC TCCAAGTCTGAGGACGGAAG

MRE11A CTTGTACGACTGCGAGTGGA TTCACCCATCCCTCTTTCTG

RAD50 CTTTGGGATCATTGCCCTGTG CGAAGTGGTGGTCTTGTTGCT

RAD51 CACTCTGTCGCCCAGGC TCATCTTGGGCCAGGTG

XRCC3 ATCTGCACGGAGGGATGGTT GCCAACCGGTGAGTCTGTTATC

Desert CTAGGAGGGTGGAGGTAGGG GCCCCAAACAGGAGTAATGA

Supplementary Table 1

ChIP qPCR Primer Sequences



Supplementary Table 2

Sequence (5’ to 3’)

Target Forward Reverse

CRY1 CAACCTCCATTCATCTTTCC CTCATAGCCGACACCTTC

p21 GGCAGACCAGCATGACAGATT GCGGATTAGGGCTTCCTCT

FAS GGGCATCTGGACCCTCCTAC
GATAATCTAGCAACAGACGTAAGAAC
CA

CCND3 CTCATCAAGAGCTATCTGTTCC TTTAAGGTCTCGGTGGAGG

CCNE1 TTATGAAGCTGTTGGATCTCTG AATGATACAAGGCCGAAGC

CDK2 CTCATCAAGAGCTATCTGTTCC TTTAAGGTCTCGGTGGAGG

CDK4 TGTAGACCAGGACCTAAGGA CGCATCAGATCCTTGATCG

CUL4A CACAGATCCTTCCGTTTAGAG GATCATGATCATTTGTCTGCAG

BRCA1 TTTGGAGTATGCAAACAGCT TCTGTAGCCCATACTTTGGA

BRCA2 CAAAGTTTGTGAAGGGTCGT ACCAAGACATATCAGGATCCA

GTF2H1 CTGTCTAGAGTTGTAGCTTCC TCTTCAGATGAGGTTGCCA

MCM7 AGTATGGGAACCAGTTGGT ATTTACCACTTCCCTCTCCT

POLD2 AATGAGACCCTTCCTGGAG CTTCACTCCCACTCCACTG

POLD4 GTTGTGAAGAGGAGGGAGG TAGAGATGCCAGAGACGGT

POLE4 CTGTTTGTGGAGACCATTGC GGCAATCAATCTAAAGTACCTTCC

PTTG1 TGGACCTTCAATCAAAGCC TTTAGGTAAGGCTGGTGGG

RFC3
GAGATAATAATGAAGGGCCTTC
TC TAGTAAGCTGCCATTTGTGC

TEX15 GAATACTCGTGAAGTCAATCCT ACGTGCATCTATTCTTTCTCAG

ATM GCGTTGCTTCTTCCTCCAGA ATCACTGTCACTGCACTCGG

MRE11A AGAAGATAGACATTAGTCCGGT CATCTGGAATGGATCCTAAACC

RAD50 GAGATGGAGCAGTTAAACCA GTTCATCTTTGTCAGCTTTGTC

RAD51 TCACGGTTAGAGCAGTGTG AACAGCCTCCACAGTATGG

RAD54B TGCCATTAAGACAACTACAGC TCATTCTGAATTGGAGTACCAG

XRCC3 CATCCTTACAGCACTGCAG TTCCGTGCAGATGTAGACG

qPCR Primer Sequences
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