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Supplementary Methods

Overview

Here, we provide the technical details of the 4G-HDNNP method. The total energy consists of two parts, the
short-range energy and long-range electrostatic energy,

Etotal = Eelec + Eshort . (1)

The electrostatic energy is calculated from the atomic charges, which are obtained from a charge equilibration
scheme (Qeq) based on environment-dependent electronegativities that are predicted by atomic neural networks.
The short-range energy is a sum of atomic energies computed by atomic neural networks, which compared to
2D-HDNNPs have an additional input node providing the atomic charge. With this additional information the
short-range atomic neural networks are able to accurately predict energetic changes due to modifications in the
local electronic structure resulting from long-range charge transfer. Atomic forces are calculated by taking the
negative analytic derivatives of the total energy in Eq. 1 with respect to the atomic positions.

Charge equilibration

The charge equilibration method [1] is based on the idea that the electrons in a system are distributed in a way
that minimizes the total energy. This energy does not only include the electrostatic Coulomb terms but also a term
that describes the local energy caused by some amount of charge on an atom. This local energy is usually described
using a Taylor series up to second order. The expansion factor for the linear term is called the electronegativity (χi),
while the second order factor is called the atomic hardness (Ji). The charge on each atom is Gaussian distributed
with width σi. This results in the energy expression for the charge equilibration scheme

EQeq = Eelec +

Nat∑
i=1

χiQi +
1

2
JiQ

2
i . (2)

Nat is the number of atoms in the system. Eelec is the electrostatic energy resulting from the Gaussian charge
distributions,

Eelec =

Nat∑
i<j

erf
(

rij√
2γij

)
rij

QiQi +

Nat∑
i=1

Q2
i

2σi
√
π

(3)

and

γij =
√
σ2
i + σ2

j . (4)

As only linear and quadratic terms in Qi appear in Eelec and EQeq, they can be expressed using matrix notation

[E]ij =


1

σi
√
π
, if i = j

erf

(
rij√
2γij

)
rij

, otherwise

(5)

Eelec =
1

2
Q>EQ (6)

and

EQeq =
1

2
Q>AQ + Q>χ , (7)
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with Q being a column vector containing the atomic charges Qi, χ being a column vector of the electronegativities
and A being the matrix

[A]ij =


Ji + 1

σi
√
π
, if i = j

erf

(
rij√
2γij

)
rij

, otherwise

. (8)

It has to be noted that because the total energy of a continuous charge distribution is always positive, the matrix
A is positive definite, if the Ji > 0.
The Qi are now chosen, so that they minimize the energy EQeq under the additional constraint of total charge
conservation

Nat∑
i=1

Qi = Qtot . (9)

To solve this minimization problem, we set the derivatives with respect to the charges to zero,

dEQeq

dQi
= 0 . (10)

Including the constraint of total charge conservation using a Lagrange multiplier λ we end up with the system of
linear equations  A

1
...
1

1 . . . 1 0




Q1

...
QNat

λ

 =


−χ1

...
−χNat

Qtot

 , (11)

which we can rewrite for simplicity as
A′Q′ = b , (12)

where A′ and Q′ represent the (Nat + 1 × Nat + 1) matrix and column vector in the left hand side respectively,
while b is the column vector on the right hand side. The electronegativities χi are predicted by neural networks,
for each atom individually, depending on the local chemical environments. The hardness values of Ji are constant
for a given element, and they are also optimized during the training of the neural networks.

Derivatives used for the calculation of the forces and for the neural network training

In this section we provide further details about some of the derivatives which are required for the calculation of the
atomic forces as well as for the gradient-based optimization of the neural network parameters. The atomic force
component Frα is given as the negative derivative of the energy with respect to the atomic coordinate rα,

Frα = −dEtotal(R,Q(R))

drα
=
∂Etotal

∂rα
−
∑
i

∂Etotal

∂Qi

∂Qi
∂rα

. (13)

In this equation the partial derivatives of the atomic charges with respect to the atomic positions appear. As we
will show in section An efficient method for the force computation, the calculation of these terms can be avoided for
the determination of the forces. During the training phase, however, these derivatives as well as the derivatives of
the charges w.r.t. the electronegativity and hardness are needed.
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Calculation of dQi
drα

To calculate the ∂Qi
∂rα

we take the derivative with respect to the spatial coordinate rα of the Qeq Eq. 12. Reordering
the terms yields

A
∂Q

∂rα
=
−∂χ
∂rα

− ∂A

∂rα
Q (14)

as well as a Lagrange multiplier that ensures
∑
i
∂Qi
∂rα

= 0. To obtain all the 3Nat required derivatives we will have
to solve 3 Nat linear equation systems of size Nat+1. However, this can be avoided as explained in section An
efficient method for the force computation, which allows the calculation of the total force by only solving one linear
equation system.

Calculation of dQi
dχi

and dQi
dJi

With an similar procedure we can calculate the equation systems for the derivatives w.r.t. the electronegativity
and hardness

A
dQ

dχi
= −δi (15)

and

A
dQ

dJi
= −Q . (16)

δi is a vector filled with zeros except entry i, which is one. As before, a Lagrange multiplier will be necessary, to
ensure that the sum of the derivatives adds up to zero.

An efficient method for the force computation

In the last section we showed how the forces can be calculated using the partial derivatives of the charges w.r.t.
the atomic coordinates. This calculation is computationally expensive, since 3 Nat linear equation systems need to
be solved. This can be avoided by exploiting a method [2] that allows the calculation of the forces by solving only
one linear equation system instead.

The total energy of the 4G-HDNNP is a function of the atomic coordinates (R) and the charges (Q), which also
depend on the atomic coordinates,

Etotal = Etotal(R,Q(R)) . (17)

We now define an auxiliary function L with

L = Etotal +

Nat+1∑
i=1

λi

Nat+1∑
j=1

A′ijQ
′
j − bi

 . (18)

Here
∑Nat+1
j=1 A′ijQ

′
j − bi are the differences of the left hand side minus the right hand sides of Eq. 12, which were

solved to determine the charges Qi. These terms are therefore always zero, making L equal to Etotal. We now
choose λ such that the partial derivatives ∂L

∂Q′
i

are zero,

∂L

∂Q′i
=
∂Etotal

∂Q′i
+

Nat+1∑
j=1

A′ijλj = 0 . (19)
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For this we solve the linear equation system

Nat+1∑
j=1

A′ijλj =
−∂Etotal

∂Q′i
. (20)

Note that A′ is a symmetric matrix. We now turn to the derivative dL
drα

, which is equal to dEtotal

drα
.

dEtotal

drα
=

dL

drα
=
∂Etotal

∂rα
+

Nat+1∑
i=1

∂Etotal

∂Q′i

∂Q′i
∂rα

+

Nat+1∑
i=1

λi

Nat+1∑
j=1

∂A′ij
∂rα

Q′j +

Nat+1∑
j=1

A′ij
∂Q′j
∂rα

− ∂bi
∂rα

 (21)

Rearranging the equation yields

dEtotal

drα
=

dL

drα
=
∂Etotal

∂rα
+

Nat+1∑
i=1

∂Etotal

∂Q′i
+

Nat+1∑
j=1

A′ijλj

 ∂Q′i
∂rα

+

Nat+1∑
i=1

λi

Nat+1∑
j=1

∂A′ij
∂rα

Q′j −
∂bi
∂rα

 . (22)

The term ∂Etotal

∂Q′
i

+
∑
j A
′
ijλj is zero by definition of λ and can therefore be omitted, which leads to the expression

dEtotal

drα
=
∂Etotal

∂rα
+

Nat+1∑
i=1

λi

Nat+1∑
j=1

∂A′ij
∂rα

Q′j −
∂bi
∂rα

 . (23)

Charge equilibration for periodic systems

The Qeq equations for periodic boundary conditions are essentially identical to the corresponding equations for free
boundary conditions, and the main difference is the calculation of the matrix A. Because of the periodic boundary
conditions we have to resort to an Ewald summation [3] to calculate the electrostatic interaction energy.

The basic idea of Ewald summation is, that by placing Gaussian charges of the opposite sign on each of the
point charges, the remaining electrostatic interaction becomes short-ranged. This short-ranged energy can then be
calculated in real space (Ereal). We then subtract the interaction energy of the auxiliary Gaussian charges again
to obtain the desired total energy of the point charges. This interaction energy of the Gaussians can be efficiently
calculated in reciprocal space, resulting in the energies Erecip and Eself . The electrostatic energy of Nat point
charges can be hence calculated as

Eelec = Ereal + Erecip + Eself . (24)

The real space part is given by

Epc
real =

1

2

Nat∑
i=1

Nneig∑
j 6=i

QiQj
erfc

(
rij√
2η

)
rij

(25)

Here, Nneig indicates, that the sum goes over all neighbouring atoms withing the real space cutoff radius rcut. rij
is the distance between atoms i and j. The reciprocal space part is

Epc
recip =

2π

V

∑
k6=0

exp
(
−η2|k|2

2

)
|k|2

|S(k)|2 (26)
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with

S(k) =

Nat∑
i=1

Qi exp(ik · ri) (27)

V being the volume of the unit cell and the sum going over all reciprocal lattice points inside reciprocal space cutoff
radius rrecipcut . Finally, the self-interaction correction is

Epc
self = −

Nat∑
i=1

Q2
i√

2πη
(28)

In these equations η is the standard deviation of the Gaussian charges, which are placed on the point charges to
remove the long-range interactions.

Since we use Gaussian charge distributions for the charge equilibration process, the following terms have to be
added that account for the different interaction in the short-range part as well as for the self interaction of the
Gaussian charges [4, 5, 6].

EGauss
elec = Epc

elec −
1

2

Nat∑
i=1

Nneig∑
j 6=i

QiQj
erfc

(
rij√
2γ

)
rij

+

Nat∑
i=1

Q2
i

2
√
πσi

(29)

Here Epc
elec is the electrostatic energy of the point charges as given above.

The important observation is that the total energy expression of the Ewald summation contains only terms of
the form 1

2eijQiQj . By calculating the individual coefficients eij we can therefore construct the matrix E, so that

Eelec =
1

2
Q>EQ . (30)

Including the terms for the hardness and adding the electronegativity results in a formalism equivalent to that of
the Qeq method for free boundary condition.

Calculation of
dAij
drα

The differentiation of the above equation allows us to calculate the derivatives
dAij
drα

. Explicit calculation of these

derivatives however can be computationally expensive, as they are quite numerous (3N3
at). Most of these coeffi-

cients however are zero, and the matrix is very sparse. As only the product
∑
j=1

dAij
drα

Qj is ever needed in our
computations, explicit calculation can be avoided and only the non zero terms have to be considered.

As
∑
j=1

dAij
drα

Qj has to be calculated anyways for the efficient compuations of the forces, we can also use it to
calculate the electrostatic forces.

∂Eelec

∂rα
=

1

2

∑
i

Qi

∑
j

dAij
drα

Qj

 (31)

Calculation of the electrostatic energies and forces boils down to the following.

1. Calculate symmetry functions

2. Calculate environment depend electronegativities using a first set of neural networks

3. Construct the matrix A
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4. Calculate partial charges Qi by solving the system of Nat+1 linear equations (Eq. 11)

5. Feed the atomic charges into the atomic NNs to calculate the short range energy and forces

6. Use the efficient method (section An efficient method for the force computation) to calculate the total force
by solving one more Nat + 1 dimensional linear equation system.

The only difference for the periodic case is in the step 3 and 6, where Ewald summation has to be used.

Short-range part

In the short range neural network, we also include the atomic charge via an additional input neuron, such that the
atomic energy contribution also depends on global charge distributions. The expression of atomic energies is very
similar to the 2G-HDNNP and it can be expressed as a function of symmetry functions and atomic charges. The
atomic forces can be calculated by taking the derivatives of the energy with respect to the atomic positions

Fα = −
Nat∑
i=1

dEi
drα

= −(

Nneig,i∑
j=1

NSF,j∑
k=1

∂Ej
∂Gj,k

· ∂Gj,k
∂rα

+

Nat∑
j=1

Nat∑
k=1

∂Ej
∂Qk

· ∂Qk
∂rα

) (32)

where Fα and Gj,k represent the force component α and the kth symmetry function of atom j respectively. In
addition, NSF,i, Nneig,i equal to number of symmetry functions and neighbors of atom i and Nat the total number
of atom. Note that Nneig,i includes the atom i itself. If the method described in section An efficient method for
the force computation is used, the last term, which includes the partial derivatives of the atomic charges w.r.t. the
atomic coordinates, can be avoided.
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Supplementary Tables

C10H2/C10H
+
3

Supplementary Table 1: Root mean square errors (RMSE) of charges (me), energies (meV/atom) and forces
(meV/Å) for the three different HDNNP generations for the C10H2/C10H+

3 data set with 9035 and 984 structures
for training and testing points respectively.

charges energy forces

2G
train — 1.583 130.7
test — 1.619 129.5

3G (unscaled)
train 27.36 3.192 652.5
test 27.35 3.197 658.3

3G (scaled)
train 19.98 2.017 229.9
test 20.08 2.045 231.0

4G
train 5.783 1.148 77.65
test 6.577 1.194 78.00

Supplementary Table 2: Symmetry functions for C10H2/C10H+
3

no. type atom i atom j atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 2 H H 0.0 8.0 0.0
2 2 H H 0.006 8.0 0.0
3 2 H H 0.011 8.0 0.0
4 2 H H 0.018 8.0 0.0
5 2 H H 0.026 8.0 0.0
6 2 H H 0.035 8.0 0.0
7 2 C H 0.0 8.0 0.0
8 2 C H 0.013 8.0 0.0
9 2 C H 0.029 8.0 0.0
10 2 C H 0.054 8.0 0.0
11 2 C H 0.093 8.0 0.0
12 2 C H 0.161 8.0 0.0
13 2 H C 0.0 8.0 0.0
14 2 H C 0.013 8.0 0.0
15 2 H C 0.029 8.0 0.0
16 2 H C 0.054 8.0 0.0
17 2 H C 0.093 8.0 0.0
18 2 H C 0.161 8.0 0.0
19 2 C C 0.0 8.0 0.0
20 2 C C 0.01 8.0 0.0
21 2 C C 0.023 8.0 0.0
22 2 C C 0.041 8.0 0.0
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no. type atom i atom j atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

23 2 C C 0.065 8.0 0.0
24 2 C C 0.103 8.0 0.0
25 3 C C C 0.0 1.0 1.0 8.0
26 3 C C C 0.0 1.0 2.0 8.0
27 3 C C C 0.0 1.0 4.0 8.0
28 3 C C C 0.0 1.0 8.0 8.0
29 3 C C C 0.0 -1.0 1.0 8.0
30 3 C C C 0.0 -1.0 2.0 8.0
31 3 C C C 0.0 -1.0 4.0 8.0
32 3 C C C 0.0 -1.0 8.0 8.0
33 3 C H H 0.0 1.0 1.0 8.0
34 3 C H H 0.0 1.0 2.0 8.0
35 3 C H H 0.0 1.0 4.0 8.0
36 3 C H H 0.0 1.0 8.0 8.0
37 3 C H H 0.0 -1.0 1.0 8.0
38 3 C H H 0.0 -1.0 2.0 8.0
39 3 C H H 0.0 -1.0 4.0 8.0
40 3 C H H 0.0 -1.0 8.0 8.0
41 3 C C H 0.0 1.0 1.0 8.0
42 3 C C H 0.0 1.0 2.0 8.0
43 3 C C H 0.0 1.0 4.0 8.0
44 3 C C H 0.0 1.0 8.0 8.0
45 3 C C H 0.0 -1.0 1.0 8.0
46 3 C C H 0.0 -1.0 2.0 8.0
47 3 C C H 0.0 -1.0 4.0 8.0
48 3 C C H 0.0 -1.0 8.0 8.0
49 3 H C C 0.0 1.0 1.0 8.0
50 3 H C C 0.0 1.0 2.0 8.0
51 3 H C C 0.0 1.0 4.0 8.0
52 3 H C C 0.0 1.0 8.0 8.0
53 3 H C C 0.0 -1.0 1.0 8.0
54 3 H C C 0.0 -1.0 2.0 8.0
55 3 H H C 0.0 1.0 1.0 8.0
56 3 H H C 0.0 1.0 2.0 8.0
57 3 H H C 0.0 1.0 4.0 8.0
58 3 H H C 0.0 1.0 8.0 8.0
59 3 H H C 0.0 -1.0 1.0 8.0
60 3 H H C 0.0 -1.0 2.0 8.0
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Supplementary Table 3: DFT-optimized structure of C10H2 in XYZ format (distance unit in Å)

12 atoms

C 0.621 587 11 0.000 000 00 0.000 000 00
C −0.621 587 10 0.000 000 00 0.000 000 00
C 1.952 478 40 0.000 000 00 0.000 000 00
C −1.952 478 47 0.000 000 00 0.000 000 00
C 3.192 145 71 0.000 000 00 0.000 000 00
C −3.192 145 71 0.000 000 00 0.000 000 00
C 4.535 930 62 0.000 000 00 0.000 000 00
C −4.535 930 61 0.000 000 00 0.000 000 00
C 5.761 179 51 0.000 000 00 0.000 000 00
C −5.761 179 49 0.000 000 00 0.000 000 00
H 6.831 800 63 0.000 000 00 0.000 000 00
H −6.831 800 59 0.000 000 00 0.000 000 00

Supplementary Table 4: DFT-optimized structure of C10H+
3 in XYZ format (distance unit in Å)

13 atoms

C 0.629 569 25 0.000 007 77 0.000 008 66
C −0.630 171 87 0.000 006 61 0.000 007 49
C 1.927 800 72 0.000 005 14 0.000 005 65
C −1.939 451 25 0.000 003 66 0.000 004 44
C 3.196 698 75 −0.000 004 40 −0.000 004 75
C −3.188 248 16 0.000 001 20 0.000 001 93
C 4.485 686 49 −0.000 026 21 −0.000 028 65
C −4.518 203 60 −0.000 000 93 −0.000 000 22
C 5.792 415 11 −0.000 049 55 −0.000 059 76
C −5.745 974 58 −0.000 002 54 −0.000 001 78
H 6.356 582 33 0.664 760 64 −0.662 349 90
H −6.821 318 48 −0.000 003 46 −0.000 002 64
H 6.356 596 39 −0.664 669 86 0.662 408 63
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Ag
+/−
3 clusters

Supplementary Table 5: Root mean square errors (RMSE) of charges (me), energies (meV/atom) and forces

(meV/Å) for the three different HDNNP generations for the Ag
+/−
3 data set with 9930 and 1083 structures for

training and testing points respectively.

charges energy forces

2G
train — 355.0 1812
test — 352.0 1803

3G (unscaled)
train 75.50 345.0 1909
test 77.55 340.0 1963

3G (scaled)
train 26.24 321.1 1912
test 26.48 320.2 1913

4G
train 10.61 1.293 32.12
test 9.976 1.323 31.69

Supplementary Table 6: Symmetry functions for Ag+/− clusters

no. type atom i atom j atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 2 Ag Ag 0.0 10.0 0.0
2 2 Ag Ag 0.007 10.0 0.0
3 2 Ag Ag 0.014 10.0 0.0
4 2 Ag Ag 0.025 10.0 0.0
5 2 Ag Ag 0.04 10.0 0.0
6 2 Ag Ag 0.062 10.0 0.0
7 3 Ag Ag Ag 0.0 1.0 1.0 10.0
8 3 Ag Ag Ag 0.0 1.0 2.0 10.0
9 3 Ag Ag Ag 0.0 1.0 4.0 10.0
10 3 Ag Ag Ag 0.0 1.0 8.0 10.0
11 3 Ag Ag Ag 0.0 -1.0 1.0 10.0
12 3 Ag Ag Ag 0.0 -1.0 2.0 10.0
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Supplementary Table 7: DFT-optimized structure of Ag+3 in XYZ format (distance unit in Å)

3 atoms

Ag 0.000 000 00 0.000 644 41 1.556 755 15
Ag 0.000 000 00 1.347 626 41 −0.779 404 15
Ag 0.000 000 00 −1.348 270 81 −0.777 351 99

Supplementary Table 8: DFT-optimized structure of Ag−3 in XYZ format (distance unit in Å)

3 atoms

Ag 0.000 000 00 −1.326 870 06 2.317 857 81
Ag 0.000 000 00 1.340 265 98 −2.309 774 04
Ag 0.000 000 00 −0.013 395 92 −0.008 084 77

12



Na8/9Cl+8 clusters

Supplementary Table 9: Root mean square errors (RMSE) of charges (me), energies (meV/atom) and forces
(meV/Å) for the three different HDNNP generations for the Na8/9Cl+8 data set with 4493 and 507 structures
for training and testing points respectively.

charges energy forces

2G
train — 1.690 57.54
test — 1.692 57.39

3G (unscaled)
train 28.28 1.426 57.69
test 28.52 1.470 59.49

3G (scaled)
train 20.75 2.058 73.47
test 20.80 2.042 76.67

4G
train 15.87 0.474 32.45
test 15.83 0.481 32.78

Supplementary Table 10: Symmetry functions for Na8/9Cl+8 clusters

no. type atom i atom j atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 2 Na Na 0.0 10.0 0.0
2 2 Na Na 0.001 10.0 0.0
3 2 Na Na 0.002 10.0 0.0
4 2 Na Na 0.003 10.0 0.0
5 2 Na Na 0.004 10.0 0.0
6 2 Na Na 0.005 10.0 0.0
7 2 Na Cl 0.0 10.0 0.0
8 2 Na Cl 0.003 10.0 0.0
9 2 Na Cl 0.005 10.0 0.0
10 2 Na Cl 0.007 10.0 0.0
11 2 Na Cl 0.01 10.0 0.0
12 2 Na Cl 0.013 10.0 0.0
13 2 Cl Na 0.0 10.0 0.0
14 2 Cl Na 0.003 10.0 0.0
15 2 Cl Na 0.005 10.0 0.0
16 2 Cl Na 0.007 10.0 0.0
17 2 Cl Na 0.01 10.0 0.0
18 2 Cl Na 0.013 10.0 0.0
19 2 Cl Cl 0.0 10.0 0.0
20 2 Cl Cl 0.001 10.0 0.0
21 2 Cl Cl 0.002 10.0 0.0
22 2 Cl Cl 0.003 10.0 0.0
23 2 Cl Cl 0.004 10.0 0.0
24 2 Cl Cl 0.005 10.0 0.0
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no. type atom i atom j atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

25 3 Na Na Cl 0.0 1.0 1.0 10.0
26 3 Na Na Cl 0.0 1.0 2.0 10.0
27 3 Na Na Cl 0.0 1.0 4.0 10.0
28 3 Na Na Cl 0.0 1.0 8.0 10.0
29 3 Na Na Cl 0.0 -1.0 1.0 10.0
30 3 Na Na Cl 0.0 -1.0 2.0 10.0
31 3 Na Cl Cl 0.0 1.0 1.0 10.0
32 3 Na Cl Cl 0.0 1.0 2.0 10.0
33 3 Na Cl Cl 0.0 -1.0 1.0 10.0
34 3 Na Cl Cl 0.0 -1.0 2.0 10.0
35 3 Na Cl Cl 0.0 -1.0 4.0 10.0
36 3 Cl Cl Na 0.0 1.0 1.0 10.0
37 3 Cl Cl Na 0.0 1.0 2.0 10.0
38 3 Cl Cl Na 0.0 1.0 4.0 10.0
39 3 Cl Cl Na 0.0 1.0 8.0 10.0
40 3 Cl Cl Na 0.0 -1.0 1.0 10.0
41 3 Cl Na Na 0.0 1.0 1.0 10.0
42 3 Cl Na Na 0.0 1.0 2.0 10.0
43 3 Cl Na Na 0.0 1.0 4.0 10.0
44 3 Cl Na Na 0.0 -1.0 1.0 10.0
45 3 Cl Na Na 0.0 -1.0 2.0 10.0
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Supplementary Table 11: DFT-optimized structure of Na9Cl+8 in XYZ format (distance unit in Å)

17 atoms

Na −4.672 483 91 1.744 323 61 0.066 917 32
Cl −4.674 131 38 −0.763 117 13 −0.005 394 92
Cl −2.156 850 54 2.353 451 40 0.126 851 59
Na −2.120 583 99 −0.453 759 70 0.037 785 66
Na 0.430 089 05 2.067 507 92 0.061 237 48
Cl 0.514 739 28 −0.620 487 80 0.003 580 16
Cl 3.054 771 88 2.435 379 02 0.005 454 56
Na 3.081 187 44 −0.275 178 18 −0.020 881 71
Na 5.635 084 96 2.195 983 30 −0.008 956 06
Cl 5.728 609 48 −0.495 161 62 −0.005 581 27
Cl 8.304 179 09 2.518 938 87 0.008 721 19
Na 15.163 008 08 4.522 166 97 −0.019 004 50
Na 10.847 244 50 2.274 841 80 −0.037 879 82
Cl 10.992 739 88 −0.383 182 02 −0.002 413 13
Cl 13.644 077 08 2.525 223 09 0.039 396 59
Na 13.502 039 57 −0.152 682 89 0.114 915 06
Na 8.284 823 01 −0.197 007 56 0.036 113 70
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Au2−MgO

Supplementary Table 12: Root mean square errors (RMSE) of charges (me), energies (meV/atom) and forces
(meV/Å) for the Au2-MgO data set with 4468 and 532 structures for training and testing points respectively.

charges energy forces

2G
train — 2.299 155.4
test — 2.287 153.1

4G
train 5.663 0.209 81.05
test 5.698 0.219 66.00

Supplementary Table 13: Symmetry functions for Au2-MgO slabs

no. type atom i atom
j

atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 2 Mg Mg 0.0 8.0 0.0
2 2 Mg Mg 0.001 8.0 0.0
3 2 Mg Mg 0.002 8.0 0.0
4 2 Mg Mg 0.003 8.0 0.0
5 2 Mg Mg 0.004 8.0 0.0
6 2 Mg Mg 0.005 8.0 0.0
7 2 O Mg 0.0 8.0 0.0
8 2 O Mg 0.004 8.0 0.0
9 2 O Mg 0.007 8.0 0.0
10 2 O Mg 0.01 8.0 0.0
11 2 O Mg 0.014 8.0 0.0
12 2 O Mg 0.018 8.0 0.0
13 2 Mg O 0.0 8.0 0.0
14 2 Mg O 0.004 8.0 0.0
15 2 Mg O 0.007 8.0 0.0
16 2 Mg O 0.01 8.0 0.0
17 2 Mg O 0.014 8.0 0.0
18 2 Mg O 0.018 8.0 0.0
19 2 O O 0.0 8.0 0.0
20 2 O O 0.001 8.0 0.0
21 2 O O 0.002 8.0 0.0
22 2 O O 0.003 8.0 0.0
23 2 O O 0.004 8.0 0.0
24 2 O O 0.005 8.0 0.0
25 2 Mg Au 0.0 8.0 0.0
26 2 Mg Au 0.001 8.0 0.0
27 2 Mg Au 0.002 8.0 0.0
28 2 Mg Au 0.003 8.0 0.0
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no. type atom i atom
j

atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

29 2 Mg Au 0.004 8.0 0.0
30 2 Mg Au 0.005 8.0 0.0
31 2 Au Mg 0.0 8.0 0.0
32 2 Au Mg 0.001 8.0 0.0
33 2 Au Mg 0.002 8.0 0.0
34 2 Au Mg 0.003 8.0 0.0
35 2 Au Mg 0.004 8.0 0.0
36 2 Au Mg 0.005 8.0 0.0
37 2 Au O 0.0 8.0 0.0
38 2 Au O 0.004 8.0 0.0
39 2 Au O 0.008 8.0 0.0
40 2 Au O 0.013 8.0 0.0
41 2 Au O 0.018 8.0 0.0
42 2 Au O 0.024 8.0 0.0
43 2 O Au 0.0 8.0 0.0
44 2 O Au 0.004 8.0 0.0
45 2 O Au 0.008 8.0 0.0
46 2 O Au 0.013 8.0 0.0
47 2 O Au 0.018 8.0 0.0
48 2 O Au 0.024 8.0 0.0
49 2 Au Au 0.0 8.0 0.0
50 2 Au Au 0.004 8.0 0.0
51 2 Au Au 0.008 8.0 0.0
52 2 Au Au 0.012 8.0 0.0
53 2 Au Au 0.017 8.0 0.0
54 2 Au Au 0.022 8.0 0.0
55 2 O Al 0.0 8.0 0.0
56 2 O Al 0.003 8.0 0.0
57 2 O Al 0.005 8.0 0.0
58 2 O Al 0.008 8.0 0.0
59 2 O Al 0.011 8.0 0.0
60 2 O Al 0.014 8.0 0.0
61 2 Al O 0.0 8.0 0.0
62 2 Al O 0.003 8.0 0.0
63 2 Al O 0.005 8.0 0.0
64 2 Al O 0.008 8.0 0.0
65 2 Al O 0.011 8.0 0.0
66 2 Al O 0.014 8.0 0.0
67 2 Al Mg 0.0 8.0 0.0
68 2 Al Mg 0.001 8.0 0.0
69 2 Al Mg 0.002 8.0 0.0
70 2 Al Mg 0.003 8.0 0.0
71 2 Al Mg 0.004 8.0 0.0
72 2 Al Mg 0.005 8.0 0.0
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no. type atom i atom
j

atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

73 2 Mg Al 0.0 8.0 0.0
74 2 Mg Al 0.001 8.0 0.0
75 2 Mg Al 0.002 8.0 0.0
76 2 Mg Al 0.003 8.0 0.0
77 2 Mg Al 0.004 8.0 0.0
78 2 Mg Al 0.005 8.0 0.0
79 3 Mg Mg Mg 0.0 1.0 1.0 8.0
80 3 Mg Mg Mg 0.0 1.0 2.0 8.0
81 3 Mg Mg Mg 0.0 1.0 4.0 8.0
82 3 Mg Mg Mg 0.0 -1.0 1.0 8.0
83 3 Mg Mg O 0.0 1.0 1.0 8.0
84 3 Mg Mg O 0.0 1.0 2.0 8.0
85 3 Mg Mg O 0.0 1.0 4.0 8.0
86 3 Mg Mg O 0.0 1.0 8.0 8.0
87 3 Mg Mg O 0.0 -1.0 1.0 8.0
88 3 Mg Mg O 0.0 -1.0 2.0 8.0
89 3 Mg O O 0.0 1.0 1.0 8.0
90 3 Mg O O 0.0 1.0 2.0 8.0
91 3 Mg O O 0.0 1.0 4.0 8.0
92 3 Mg O O 0.0 -1.0 1.0 8.0
93 3 Mg O O 0.0 -1.0 2.0 8.0
94 3 Mg O O 0.0 -1.0 4.0 8.0
95 3 Mg O Al 0.0 1.0 1.0 8.0
96 3 Mg O Al 0.0 1.0 2.0 8.0
97 3 Mg O Al 0.0 1.0 4.0 8.0
98 3 Mg O Al 0.0 1.0 8.0 8.0
99 3 Mg O Al 0.0 -1.0 1.0 8.0
100 3 Mg O Au 0.0 1.0 1.0 8.0
101 3 Mg O Au 0.0 1.0 2.0 8.0
102 3 Mg O Au 0.0 1.0 4.0 8.0
103 3 Mg O Au 0.0 1.0 8.0 8.0
104 3 Mg O Au 0.0 -1.0 1.0 8.0
105 3 Mg O Au 0.0 -1.0 2.0 8.0
106 3 O Mg Mg 0.0 1.0 1.0 8.0
107 3 O Mg Mg 0.0 1.0 2.0 8.0
108 3 O Mg Mg 0.0 1.0 4.0 8.0
109 3 O Mg Mg 0.0 -1.0 1.0 8.0
110 3 O Mg Mg 0.0 -1.0 2.0 8.0
111 3 O Mg Mg 0.0 -1.0 4.0 8.0
112 3 O Mg O 0.0 1.0 1.0 8.0
113 3 O Mg O 0.0 1.0 2.0 8.0
114 3 O Mg O 0.0 1.0 4.0 8.0
115 3 O Mg O 0.0 1.0 8.0 8.0
116 3 O Mg O 0.0 -1.0 1.0 8.0
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no. type atom i atom
j

atom k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

117 3 O Mg O 0.0 -1.0 2.0 8.0
118 3 O Mg Al 0.0 1.0 1.0 8.0
119 3 O Mg Al 0.0 1.0 2.0 8.0
120 3 O Mg Al 0.0 1.0 4.0 8.0
121 3 O Mg Al 0.0 -1.0 1.0 8.0
122 3 O Mg Al 0.0 -1.0 2.0 8.0
123 3 O Mg Al 0.0 -1.0 4.0 8.0
124 3 O Mg Au 0.0 1.0 1.0 8.0
125 3 O Mg Au 0.0 1.0 2.0 8.0
126 3 O Mg Au 0.0 -1.0 1.0 8.0
127 3 O Mg Au 0.0 -1.0 2.0 8.0
128 3 O O O 0.0 1.0 1.0 8.0
129 3 O O O 0.0 1.0 2.0 8.0
130 3 O O O 0.0 -1.0 1.0 8.0
131 3 O O Al 0.0 1.0 1.0 8.0
132 3 O O Al 0.0 1.0 2.0 8.0
133 3 O O Al 0.0 -1.0 1.0 8.0
134 3 O O Al 0.0 -1.0 2.0 8.0
135 3 Al Mg Mg 0.0 1.0 1.0 8.0
136 3 Al Mg O 0.0 1.0 1.0 8.0
137 3 Al Mg O 0.0 1.0 2.0 8.0
138 3 Al Mg O 0.0 -1.0 1.0 8.0
139 3 Al O O 0.0 1.0 1.0 8.0
140 3 Al O O 0.0 1.0 2.0 8.0
141 3 Al O O 0.0 -1.0 1.0 8.0
142 3 Al O O 0.0 -1.0 2.0 8.0
143 3 Au Mg Mg 0.0 1.0 1.0 8.0
144 3 Au Mg Mg 0.0 1.0 2.0 8.0
145 3 Au Mg O 0.0 1.0 1.0 8.0
146 3 Au Mg O 0.0 1.0 2.0 8.0
147 3 Au Mg O 0.0 -1.0 1.0 8.0
148 3 Au Mg O 0.0 -1.0 2.0 8.0
149 3 Au O O 0.0 1.0 1.0 8.0
150 3 Au O Au 0.0 1.0 -1.0 8.0
151 3 Au O Au 0.0 1.0 -2.0 8.0

Supplementary Figures
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a b

c d
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Supplementary Figure 1: Correlation plots of energies obtained from a 2G-HDNNP a and a 4G-HDNNP b, forces
from a 2G-HDNNP c and a 4G-HDNNP d and charges from a scaled 3G-HDNNP e and a 4G-HDNNP f for
C10H2/C10H+
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Supplementary Figure 2: Correlation plots of energies obtained from a 2G-HDNNP a and a 4G-HDNNP b, forces

from a 2G-HDNNP c and a 4G-HDNNP d and charges from a scaled 3G-HDNNP e and a 4G-HDNNP f for Ag
+/−
3
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Supplementary Figure 3: Correlation plots of energies obtained from a 2G-HDNNP a and a 4G-HDNNP b, forces
from a 2G-HDNNP c and a 4G-HDNNP d and charges from an unscaled 3G-HDNNP e and a 4G-HDNNP f for
Na8/9Cl+8
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Supplementary Figure 4: Correlation plots of energies obtained from a 2G-HDNNP a and a 4G-HDNNP b, forces
from a 2G-HDNNP c and a 4G-HDNNP d and charges from a scaled 3G-HDNNP e and a 4G-HDNNP f for
Au2-MgO
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