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1 Stochastic simulation algorithm

We simulate the first three models as bio-chemical reaction networks with an event-driven

stochastic simulation algorithm (SSA), developed by Gillespie [1]. Each model comprises Q

reactions, with propensities and stoichiometries denoted

{(ak(Xt;θ),νk)}Qk=1, (1)

respectively. We simulate from the initial condition X0 at t = 0 to the final state Xtf at t = tf .

While simulating from the SSA, Xt ∈ ZN . We summarise the SSA in algorithm 1 and provide

our implementation in Module/Models/SimulateSSA.jl.

Algorithm 1 Stochastic simulation algorithm

1: Initialise by setting t = 0 and Xt = X0.

2: Compute total event rate, a(Xt) =
∑Q

k=1 ak(Xt;θ).

3: Sample time-step ∆t ∼ Exp(a(Xt)). If t+ ∆t > tf stop the algorithm. Else, set t← t+ ∆t.

4: Sample event, k, such that P(k) = ak(Xt;θ)/a(Xt).

5: Update state, Xt ← Xt + νk.

6: Repeat steps 2 – 6.

2 Euler-Maruyama algorithm

We simulate Itô SDEs using the Euler-Maruyama algorithm [2] with reflecting boundaries at

Xi,t = 0 to ensure positivity [3]. Each SDE is defined by

dXt = α(Xt, t;θ) dt+ σ(Xt, t;θ) dWt. (2)

Here Xt is an N -dimensional vector; α(·) maps to an N -dimensional vector; σ(·) maps to an

N × Q matrix; and Wt is an Q-dimensional Wiener process with independent components.

We simulate from the initial condition Xt0 at t = t0 to the final state Xtf at t = tf . We

summarise the Euler-Maruyama algorithm in algorithm 2 and provide our implementation in

Module/Models/EulerMaruyama.jl.

Algorithm 2 Euler-Maruyama algorithm

1: Initialise by setting t = t0 and Xt = Xt0 . Choose time-step, ∆t.

2: Sample Wiener increment ∆W = (∆W1,∆W2, . . . ,∆WQ)T where ∆Wk ∼ N (0,∆t).

3: Update state Xt ← Xt + α(Xt, t;θ)∆t+ σ(Xt, t;θ)∆W.

4: Set Xi,t = |Xi,t| where Xt = (X1,t, X2,t, . . . , XN,t)
T .

5: Update time, t← t+ ∆t.

6: Repeat steps 2 – 5 until t ≥ tf .
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3 MCMC algorithms

3.1 Metropolis-Hastings algorithm

We simulate from the posterior distribution

p(θ|D) ∝ L(D|θ)p(θ), (3)

using the Metropolis-Hastings algorithm [4, 5] and Markov-chain Monte-Carlo (MCMC). In this

work, we employ a multivariate normal proposal kernel with covariance Σ such that

q(θ|θs−1) = MVN(θs−1,Σ). (4)

We summarise our implementation of the Metropolis-Hastings MCMC algorithm in algorithm 3

and provide our implementation in Module/Inference/MetropolisHastings.jl.

Algorithm 3 Metropolis-Hastings algorithm with a symmetric proposal kernel.

1: Sample θ0 ∼ p(θ) to initialise chain at s = 0. Choose desired number of iterations, S.

2: Update iteration s← s+ 1.

3: Propose transition θ∗ ∼ q(θ|θs−1), where q(θ|θs−1) is a multivariate Gaussian.

4: Calculate acceptance probability

αMH(θ∗|θs−1) = min

(
1,

p(θ∗)L(D|θ∗)

p(θs−1)L(D|θs−1)

)
.

5: Accept proposal, θs ← θ∗ with probability αMH(θ∗|θs−1); else, reject and set θs ← θs−1.

6: Repeat steps 2 – 5 until s = S.

3.2 Particle MCMC algorithm

For most SDE models, the likelihood function, L(D|θ), is intractable. We approximate the

likelihood using a bootstrap particle filter in a particle MCMC algorithm [6], replacing L ← L̂
in algorithm 3.

The data are defined by D =
{{
tn,i,Y

n,i
obs

}NE

n=1

}E
i=1

, where

Yn,i
obs ∼ g(Y|Xi

tn , tn;θ). (5)

Here,
{
Xi
tn

}NE

n=1
are observations from experiment i = 1, 2, . . . , NE , modelled by a single trace

of the SDE (equation (2)) initiated at X0 = hi(θ). The vector-valued function hi(θ) captures

the fact that the initial condition may depend on unknown parameters, θ. This occurs in the

epidemic model where only partial observations of the state are made so that the full initial

condition is unknown.

We summarise our implementation of bootstrap particle filter algorithm in algorithm 4 and

provide our implementation in Module/Inference/PMLogLikeParticleFilter.jl.
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Algorithm 4 Bootstrap particle filter

1: Initialise likelihood estimate, L̂ = 1, and experiment index i = 0.

2: Update experiment index i← i+1 and initialise R particles for the ith experiment, {Xr
t0}

R
r=1,

where Xr
0 = hi(θ) and t0 = 0. Set observation index, n = 0.

3: Update observation index, n← n+ 1, and simulate all particles forward from t = tn−1 to tn

using the Euler-Maruyama algorithm (algorithm 2) to obtain {Xr
tn}

R
r=1.

4: Compute weight of each particle, {W r
n}, such that W r

n = g(Yn,i
obs|X

r
tn).

5: Update likelihood estimate,

L̂ ← L̂ × 1

R

R∑
r=1

W r
n .

6: Resample R particles from {Xr
tn}

R
r=1 with replacement according to weights {W r

n}.
7: Repeat steps 3 – 6 until n = NE .

8: Repeat steps 2 – 7 until i = E.

3.3 Likelihood for ODE models

When describing data using an ODE model, we make the typical assumption that residuals are

independent. The likelihood function is then tractable and given by

L =
E∑
i=1

NE∑
n=1

g
(
Yn,i

obs|X
i
tn , tn;θ

)
. (6)

Here, {Xi
tn}

NE
n=1 are observations from experiment i (i = 1, 2, . . . , NE), modelled by the ODE

model initiated at X0 = hi(θ).
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4 Moment equations

In the main text, we define the raw moments,

mi1i2...iN (t) =

〈
N∏
j=1

X
ij
j,t

〉
, (7)

of the random variable Xt, which is itself described by the Itô SDE (equation (2)). Here, we

derive the equation describing the time-evolution of the moments.

First, we define φi(Xt, t) =
∏N
j=1X

ij
j,t, where i = (i1, i2, . . . , iN ). By Itô’s lemma,

dφi(X, t) = fφ(Xt, t;θ)dt+
N∑
i=1

gφ(Xt, t;θ)dWt, (8)

where

fφ(Xt, t;θ) = α(Xt, t;θ) ·∇

 N∏
j=1

X
ij
j,t

+
1

2
Tr

σT (Xt, t;θ)H

 N∏
j=1

X
ij
j

σ(Xt, t;θ)

 , (9)

gφ(Xt, t;θ) = ∇

 N∏
j=1

X
ij
j,t

T

σ(Xt, t;θ). (10)

Our aim is to find an ODE describing the time evolution of 〈φi(X)〉, where 〈·〉 is the

expectation taken with respect to the probability measure of the random variable Xt. Full

details are available in [7].

Consider the expectation of equation (8) in integral form:

〈φi(X, t)〉 = 〈φi(X, 0)〉+

〈∫ t

0
fφ(Xu, u;θ)du

〉
︸ ︷︷ ︸

(∗)

+
N∑
n=1

〈∫ t

0
g
(n)
φ (Xu, u;θ)dWn,u

〉
︸ ︷︷ ︸

(∗∗)

. (11)

Here, we denote W = (W1,t,W2,t . . . ,WN,t)
T and gφ(·) =

(
g
(1)
φ (·), g(2)φ (·), . . . , g(N)

φ (·)
)T

. Under

certain conditions, which are satisfied when all elements of gφ are polynomial, the stochastic

integrals in equation (11)(∗∗) will vanish [8] due to the Itô formulation. This is the case for the

SDEs we consider, which are derived through the chemical Langevin equation with polynomial

propensity functions, so that all components of gφ are also polynomials. Therefore, after

interchanging the order of time-integration to that of the expectation in (∗), we obtain

〈φi(X, t)〉 = 〈φi(X, 0)〉+

∫ t

0
〈fφ(Xu, u;θ)〉 du. (12)

We note that, by definition, mi1i2...iN (t) = 〈φi(X, t)〉, and so

mi1i2...iN (t) = mi1i2...iN (0) +

∫ t

0
〈fφ(Xu, u;θ)〉 du, (13)
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which corresponds to the ODE

dmi1i2...iN

dt
= 〈fφ(Xu, u;θ)〉 . (14)

We provide Mathematica scripts used to derive the moment equations for each model in the

Mathematica folder on Github.

4.1 Epidemic model

The CLE for the epidemic model is

dXt =


−θ1X1,tX3,t

θ1X1,tX3,t − θ2X2,t

θ2X2,t − θ3X3,t

θ3X3,t

 dt+


−
√
θ1X1,tX3,t 0 0√
θ1X1,tX3,t −

√
θ2X2,t 0

0
√
θ2X2,t −

√
θ3X3,t

0 0
√
θ3X3,t

dWt. (15)

We denote

mi1i2i3i4(t) =
〈
Xi1

1,tX
i2
2,tX

i3
3,tX

i4
4,t

〉
. (16)

To second order, the unclosed moment equations are

dm1000

dt
= −θ1m1010,

dm0100

dt
= θ1m1010 − θ2m0100,

dm0010

dt
= θ2m0100 − θ3m0010,

dm0001

dt
= θ3m0010,

dm2000

dt
= −2θ1m2010 + θ1m1010,

dm0200

dt
= 2θ1m1110 + θ1m1010 + θ2m0100 − 2θ2m0200,

dm0020

dt
= θ2m0100 + 2θ2m0110 + θ3m0010 − 2θ3m0020,

dm0002

dt
= θ3m0010 + 2θ3m0011,

dm1100

dt
= −θ1m1110 + θ1m2010 − θ1m1010 − θ2m1100,

dm1010

dt
= −θ1m1020 + θ2m1100 − θ3m1010,

dm1001

dt
= −θ1m1011 + θ3m1010,

dm0110

dt
= θ1m1020 − θ2m0100 − θ2m0110 + θ2m0200 − θ3m0110,

dm0101

dt
= θ1m1011 − θ2m0101 + θ3m0110,

dm0011

dt
= θ2m0101 − θ3m0010 − θ3m0011 + θ3m0020.



(17)

Here, we have indicated moments of order three and above in red font. To close the system, we
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approximate the higher order moments using the following closures.

Mean-field. The mean-field closure approximates third order moments with the appropriate

product of first order moments. This results in the following approximations for each of the

third-order raw moments in equation (17):

m2010 ≈ m2
1000m0010, (18a)

m1110 ≈ m1000m0100m0010, (18b)

m1020 ≈ m1000m
2
0020, (18c)

m1011 ≈ m1000m0010m0001. (18d)

Pair-wise. The pair-wise closure approximates third order moments with a product and quotient

of first and second order moments. This results in the following approximations for each of the

third-order raw moments in equation (17):

m2010 ≈
m2000m1010

m1000
, (19a)

m1110 ≈
m1100m0110

m0100
, (19b)

m1020 ≈
m1010m0020

m0010
, (19c)

m1011 ≈
m1010m0011

m0010
. (19d)

Gaussian. The Gaussian closure sets the third order central moments to zero. That is,

0 = m̂i1i2i3i4(t) =

〈
4∏
j=1

(
Xi,t − 〈Xi,t〉

)ij〉
.

This results in the following approximations for each of the third-order raw moments in equa-

tion (17):

m2010 ≈ −2m0010m
2
1000 + 2m1000m1010 +m0010m2000, (20a)

m1110 ≈ −2m0010m0100m1000 +m0110m1000 +m0100m1010 +m0010m1100, (20b)

m1020 ≈ −2m0010m
2
1000 + 2m0010m1010 +m0020m1000, (20c)

m1011 ≈ −2m0001m0010m1000 +m0011m1000 +m0010m1001 +m0001m1010. (20d)

4.1.1 Comparison of closures

In figure S1 we compare the ODE model to the mean-field closure, pair-wise closure and Gaussian

closure for the epidemic model. The mean-field model was solved using the positivity-preserving

Patankar-type method [9] (of order one) with time-step ∆t = 0.001, the other closures and the

ODE model using the Tsit5 routine (a 4th and 5th order Runge-Kutte regime) in Julia [10].
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Figure S1. Comparison of closure methods for the epidemic model.
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