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1 Supplementary figures

Figure 1: Moments of extinction time in a death-birth process model. Variance, skewness and
kurtosis of extinction time are plotted as a function of initial number of infected population for
different choices of birth rate b, d = 1.
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Figure 2: Probability distribution of extinction time for the full gHAT model for two health zones,
(A,C) Mosango and (B,D) Kwamouth. First and second lines respectively correspond to 40% and
50% active screening. Gray bars represent the solutions of one million stochastic simulations (light
gray specifies 95% PI). The purple line shows the F distribution estimated from the first four moments
of birth-death process. Corresponding mean values and 95% prediction intervals are plotted for each
data set.
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Figure 3: Solutions of the deterministic model for gHAT dynamics. Annual number of new transmis-
sions and the people infected are plotted over time for two health zones. Different colours represent
three levels of active screening used in the model.
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Table 1: Estimated birth-death model parameters of the gHAT model for two health zones Mosango
and Kwamouth and with different screening levels.

Active screening Mosango Kwamouth

30%
b = 0.42
d = 0.67
Iext = 1.50

b = 0.48
d = 0.64
Iext = 2.60

40%
b = 0.43,
d = 0.71
Iext = 1.45

b = 0.50
d = 0.66
Iext = 2.24

50%
b = 0.45
d = 0.75
Iext = 1.41

b = 0.51
d = 0.69
Iext = 2.23

4



2 Estimating the distribution of extinction time

The probability distribution function of a random variable can be identified in a unique way with the
full set of cumulative moments [1]. For practical reasons, numerical methods can be used to estimate
the distribution function with the help of the first few moments. In our analysis of the birth-death
process, MATLAB fitting functions suggest the modified F probability distribution can capture the
distribution of extinction time calculated in our model. Generalized F distribution is a shifted scaled
version of F distribution defined as

PDF (t) = F (
t+ C

M
; ν1, ν2),

which has four free parameters. Therefore, we use the first four moments calculated in section
2.2 in the main text to estimate the four parameters of the F distribution. Mean τn, variance
S2
n − τ2

n, skewness S3
n − 3τnS

2
n + 2τ3

n, and kurosis S4
n − 4τnS

3
n + 6τ2

nS
2
n − 3τ4

n are matched to the
corresponding values of the probability distribution function to estimate the four parameters of C,
M , ν1, and ν2. The mean and 95% prediction intervals are then calculated from the cumulative
distribution straightaway.

3 Description of the gHAT model

Our model to describe gHAT dynamics is based on the ODE model presented in [2, 3] and the
extended stochastic version in [4, 5]. Figure 4 shows a schematic description of gHAT dynamics in
this model that takes into account different compartments of humans and tsetse. Humans can be
exposed and subsequently infected by a bite of an infectious tsetse. They progress through stage 1
and stage 2 of the infection with specific rates. On the other side, tsetse vectors can become exposed
and subsequently infectious if they bite an infectious human. Infected people may be detected by
passive and active screening (see below for more details), followed by hospitalisation and recovery.
Here, we consider a version of the model where humans are partitioned into two sub-groups of (i)
low-risk and participating in the active screening, and (ii) high-risk and non-participating in active
screening. We assume there are no animal reservoirs although animals receive some proportion of
tsetse bites. For simplicity, we assume the total population of humans to be constant.

This model accounts for the possibility of detecting of infected humans through passive surveillance
and active screening. In this work, we assume a constant ratio (between 30-50%) of active screening
from 1998 on, although in the original model the screening level is fixed by the available data.

Passive surveillance describes potential visits of people to fixed medical centers for testing. This is
considered in the model with the rates proportional to ηH(Y ) and γH(Y ) corresponding to the first
and second stages of the disease. Before 1998 (pre-active screening) it was assumed that passive
detection was less effective than after activities began, and only so identified stage 2 individuals
at a rate γpre

H , which is smaller than the stage 2 passive detection rate in 1998, γpost
H . Following

previous modelling work using gHAT data from former Bandundu province, there is a strong signal
from epidemiological staging data that passive screening has improved during the time period from
2000–2012 [2, 6]. To capture the improvement of stage 1 to stage 2 passive detection, the model
utilises the following formula:

ηH(Y ) = ηpost
H

1 + ηHamp

1 + exp
(
−dsteep(Y − dchange)

)
 ,

γH(Y ) = γpost
H

1 + γHamp

1 + exp
(
−dsteep(Y − dchange)

)
 ,
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Figure 4: Schematic of the model to describe gHAT infection dynamics. This multi-host
model of HAT takes into account high- and low-risk groups of humans and their interactions with
tsetse vectors. Each group consists of different compartments: Susceptible humans SHi can become
exposed on a bite of an infectious tsetse. Exposed people EHi progress to become the stage 1
infected people and eventually stage 2 (if not detected in screening), and once treated they recover
by hospitalization RHi. Active screening can accelerate treatment rate of infected people. Here
we assume high-risk group does not participate in active screening. By biting an infectious person,
tsetse can become exposed and subsequently infectious, EV and IV . GV represents the tsetse
population not exposed to Trypanosoma brucei gambiense in the first blood-meal and are therefore
less susceptible in the following meals. Rates are shown by Greek letters associated with arrows.
Animal reservoir is not considered. This figure is taken from [2] and adapted from the original model
schematic [3].
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where Y is the year and ηH(Y ) is the annual stage 1 passive detection rate. Parameters dictating
the amplitude, steepness and switching year can be found in Tables 2 and 3. The free parameters
have been estimated through fitting to the health zone level data for Mosango and Kwamouth.

3.1 Deterministic model

In the original deterministic framework, infection dynamics is described by a set of ODEs. Dynamics
of human compartments are given by

dSHi

dt
= µHNHi − µHSHi + ωHRHi + ωIAI1Ai − αmefff(i)

SHi

NHi
IV

dEHi

dt
= αmefff(i)

SHi

NHi
IV − (σH + µH)EHi,

dI1Hi

dt
= σHEHi − (ϕH + µH + ηH(Y ))I1Hi,

dI2Hi

dt
= ϕHI1Hi − (γH(Y ) + µH)I2Hi,

dRHi

dt
= ηH(Y )I1Hi + γH(Y )I2Hi − (ωH + µH)RHi, (3.1)

where i refers to high or low risk population. The set of equations for tsetse is given by Equations 3.2.

dSV
dt

= µVNH − αSV − µV SV
dE1V

dt
= αpV (fH1

I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2
)(SV + εGV )− (3σV + µV )E1V

dE2V

dt
= 3σVE1V − (3σV + µV )E2V

dE3V

dt
= 3σVE2V − (3σV + µV )E3V

dIV
dt

= 3σVE3V − µV IV
dGV

dt
= α

(
1− pV

(
fH1

I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2

))
SV

− αpv

(
fH1

I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2

)
εGV − µVGV . (3.2)

These deterministic equations are numerically solved with the help of Runge-Kutta methods to find
the disease dynamics including the number of humans infected and new transmission each year
(Figure3). We use these results to impute appropriate values of d and b that approximate the
linear birth-death process. Infected population or number of new transmission would decrease since
Reff < 1 with an effective rate given by d − b in time in the logarithmic scale. We approximate d
as the number of new transmission per infected population of humans.

3.2 Estimating model parameters

As in previous versions of the deterministic model [2, 3], some parameters with estimates available
in the literature were assigned fixed values. Fixed values are given in Table 2. The other parameter
values were taken from posterior distributions by fitting the model to data. In this approach, the
deterministic model was fitted to health-zone-level data for different health zones using an adaptive
Metropolis-Hastings MCMC algorithm [2]. In the present analysis, we choose the most likely param-
eter sets from the posterior distributions for two different health zones of Mosango and Kwamouth.
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Table 2: Model parameterisation (fixed parameters). Notation, a brief description, and the used
values of fixed parameters in model W.

Notation Description Value

NH Total human population size (in 2015) M:121,433 K1:127,205 [7]

BH Total human birth rate = µHNH

µH Natural human mortality rate 5.4795×10−5 days−1 [8]

σH Human incubation rate 0.0833 days−1 [9]

ϕH Stage 1 to 2 progression rate 0.0019 days−1 [10, 11]

ωH Recovery rate/waning-immunity rate 0.006 days−1 [12]

Sens Active screening diagnostic sensitivity 0.91 [13]

BV Tsetse birth rate 0.0505∗ days−1 [14]

ξV Pupal death rate 0.037 days −1

K Pupal carrying capacity = 111.09N †H [14]

P(pupating) Probability of pupating 0.75

µV Tsetse mortality rate 0.03 days−1 [9]

σV Tsetse incubation rate 0.034 days−1 [15, 16]

α Tsetse bite rate 0.333 days−1 [17]

pV Probability of tsetse infection per single
infective bite

0.065 [9]

ε Reduced non-teneral susceptibility factor 0.05 [3]

fH Proportion of blood-meals on humans 0.09 [18]

3.3 Stochastic model

We also use the stochastic version of the described gHAT model to study the extinction time [4, 5].
In this stochastic picture, individual humans are assigned to different compartments associated with
infection/disease status and can transfer between them. We describe system dynamics by random
events captured by a tau-leap approximation. Table 4 explains different events and the corresponding
rates that lead to one person transitioning from one compartment to another one. Within this
framework, the number of events happening in a time interval τ is chosen randomly from a Poisson
distribution with the mean equal to the event rate multiplied by τ . The same procedure is used to
identify the number of people participating in passive or active screenings. We use time interval of
a day in the tau-leaping algorithm that is shown to be a sensible choice for gHAT dynamics [4].

For simplicity reasons, we keep vector dynamics the same as the original model, described by a set
of ODEs. This is a legitimate assumption due to the high population of vectors and their short life
cycle compared to humans.

For each, we perform 1 million realisations to achieve reasonable statistics of the extinction time.
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