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Supplemental Material
S1. Positional Accuracy

A validation experiment was performed to examine the accuracy of the IPM robot
positioning. As shown in S1, a single IPM robot was placed on a custom 3D-printed mount with a
camera mounted parallel to the end-effector to track motion in the XY plane. The end-effector was
directed to the following points (in cm), returning to the origin between each point: (0.52,0,0), (-
0.52,0,0), (0,0.52,0), (0,-0.52,0). The camera was then shifted perpendicular to the end-effector to
track motion in the Z-direction and the end-effector was directed to the following points (in cm),
returning to the origin in between: (0,0,0.52), (0,0,-0.52). The images were processed in Fiji to
determine the discrepancy between the real location and the target location. The IPM robot was
found to have 97% accuracy in the X-direction, 96% accuracy in the Y-direction, and >98%

accuracy in the Z-direction.



Figure S1. Simple positional accuracy determination experiment. (A) IPM robot on a custom
mount with target positions shown in the XY plane as T;, T>, T3, Ty4. Note that the camera was
positioned above the end-effector and parallel to the platform for image tracking, the platform
remained level. (B) Target positions shown in the Z-direction as Ts, Ts. Note that the camera was

positioned perpendicular to the end-effector for image tracking; the platform remained level.

S2. Mathematical Singularity Analysis

In controlling the IPM robot, we must take into account both its position and orientation.
This phase space of positions is six-dimensional, as there are three translational and three
rotational degrees of freedom. Thus, our control system uses six actuators, giving it six degrees of
freedom. Under “generic” conditions, matching the number of degrees of freedom to the phase

space dimension ensures that a full-dimensional region in phase space is feasible. However, this



genericity does not rule out singular cases in which the dimensionality of the feasible region
collapses. The following theorem shows that when the base and end-effector are similar and highly

symmetric, such a singularity does occur.

Theorem 1:let Py, ..., Pg and By, ..., B4 be similar semiregular hexagons (defined below and
in Fig. S2). Then letting L; = |P] — lewe have the equation

ASoS =12 —I12+12—[2+12—I2 =0
Hence under the above conditions, the feasible region of phase space is at most five-
dimensional. Here, ASoS stands for Alternating Sum of Squares and is defined by the

expression above.

In typical Stewart platform implementations, linear actuators are used for control, which
amounts to specifying the values, L, Moreover, the base and end-effector are often both
equiangular hexagons with 3-fold rotational symmetry. This condition on the hexagon is
equivalent to having alternating side lengths (s, t, s, t, s, t, denoted on Fig. S2A) and all angles
120°. We call such hexagons semiregular. Theorem 1 thus implies that with linear actuators, we
cannot use an end-effector and base that are semiregular hexagons with the same relative
proportions. Indeed, almost all actuator settings would disobey the condition, ASoS = 0, because
the set of actuator settings obeying this equation is only five-dimensional; this means a generic
actuator setting is physically impossible. Likewise, the rare settings with 4ASoS = 0 would

correspond to infinitely many platform configurations.
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Figure S2. Impact of the IPM robotic system geometry. (A) Theorem [ considers semiregular
hexagons, or equiangular hexagons with 3-fold rotational symmetry. As depicted here, such
hexagons are exactly those with all angles 120° and two distinct, alternating side lengths denoted
here by s and t. We use Pi, ...,Ps to refer to the vertices of the end-effector, and By, ...,Bs for the
base. (B) A histogram of alternating sum of squares (ASoS) values for 1 million random end-
effector positions. If the base and end-effector had the same proportions, then AsoS = 0 always,

implying the control system is singular.

Fig. S2B shows a histogram for the value of AsoS for 100,000 randomly chosen orientation-
preserving isometries (combinations of rotation and translation) applied to the IPM robot, using
the parameters in our system and with the end-effector on average 7.4 cm above the base. The
translation vectors were three-dimensional standard Gaussians centered at (0, 0, 7.4), while the
rotations were taken Haar-uniformly from the group SO (3) using a Gram-Schmidt generation
procedure. In the singular case, all the resulting values would be 0, but instead we get a non-
degenerate spread. This shows that our system is far from the singular case.

The proof of Theorem 1 is below. We then discuss related aspects and computational

verification of non-degeneracy.



Proof of Theorem 1:
We parametrize the circle through Py, ..., P by a function F of an angle 0, so the angle 6
corresponds to the position

F(0) =a; + b;sinb + ¢, cos O
Similarly, we parametrize the circle through By, ..., Bg by a function G of the same angle 6 so that
P; and B;j have equal angles. The angle 0 corresponds to position

G(6) =a, + b, sinB + ¢, cos O

From the above equations once can see that the squared distance between corresponding points is
of the form (for some real numbers: as, bz, c3, dz, e3):

|F(8) — G(8)|?> = az + b3 sin® + ¢3 cos O + d5 sin? B + e5 cos? O.
When we sum this expression over any three values (9, 0+ 2?”, 0+ 4?”), we obtain the value 3a;

regardless of the value 0. Such triples of angles are precisely those which form equilateral triangles.
Since (P3, P3, P5) and (P2, P4, Ps) each form equilateral triangles, the claimed equality follows. We
note that the step of summing over equilateral triangles to cancel all non-constant terms is most
naturally viewed at discrete Fourier analysis over the cyclic group of over 3.

Finally, we remark that the phenomenon of degeneracy appeared in a more abstract form

in prior work, where the following theorem was proved.

Theorem 2: Let the platform vertices be P, ..., P and the base vertices By, ..., Bg Then the
platform is uncontrollable when all of the following conditions are met:

1. Linear actuators are used.



2. The platform and base each lie on a conic curve (circle, ellipse, or hyperbola) and are

similar to each other.

This singularity has been previously described [38]. In their more general setting, there will always
exist an equation of the same form as ASoS = 0, but with arbitrary, real coefficients. More precisely
the extra equation will always take the form
a; L3 + a,L3 + azl3 + a, L + agli + agli =0

for some real coefficients (ay, ..., as). Theorem 1 may be viewed as a specialization stating that
in cases with 3-fold rotational symmetry, this extra equation takes the simple, explicit form ASoS
= 0. We emphasize that Theorem 1 gives a natural class of singularities which are described by
the same equation ASoS = 0, which justified our tracking the values of ASoS. By contrast, in the
generality of Theorem 2 the coefficients (ajy, ..., as) may be complicated and depend on the exact

shape of the hexagons, so it would be more difficult to test non-degeneracy.



