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Figure S1. Structures of monosaccharides (A) that have been used in two-step one-pot multienzyme 

(OPME) donor substrate specific studies for the 2–6-sialyltransferase activity of NmSiaDW and the 

structures of the corresponding CMP-sialic acids (B). Galactosyldisaccharide G2 was used as the 

acceptor substrate. 
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Figure S2. HSQC spectra comparison of the H’’’-7 and C’’’-7 in sialyltrisaccharides 7N3-S3 

(green/purple) and S3 (red/blue). 

 
Figure S3. HSQC spectra comparison of the H’’’-9 and C’’’-9 in sialyltrisaccharides 9N3-S3 

(green/purple) and S3 (red/blue).  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Neu5Ac7N32–6Gal1–4Neu5AcProNHCbz (7N3-S3)  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Neu5Ac7NAc2–6Gal1–4Neu5AcProNHCbz (7NAc-S3)  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Neu5Ac9N32–6Gal1–4Neu5AcProNHCbz (9N3-S3)  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Neu5Ac9NAc2–6Gal1–4Neu5AcProNHCbz (9NAc-S3)  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Gal1–4Neu5Ac7N32–6Gal1–4Neu5AcProNHCbz (7N3-G4)  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Gal1–4Neu5Ac7NAc2–6Gal1–4Neu5AcProNHCbz (7NAc-G4)  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Gal1–4Neu5Ac9N32–6Gal1–4Neu5AcProNHCbz (9N3-G4)  
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1H (800 MHz), 13C (200 MHz), HSQC (800 MHz), and HSQC-TOCSY (90 ms and 10 ms, 800 MHz) 

NMR spectra (D2O) of Gal1–4Neu5Ac9NAc2–6Gal1–4Neu5AcProNHCbz (9NAc-G4)  
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