

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Long-term trends of hypertension incidence in China: Regional variations

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042053
Article Type:	Original research
Date Submitted by the Author:	29-Jun-2020
Complete List of Authors:	Luo, Yunmei; Sichuan University West China Hospital Xia, Fan; Sichuan University West China Hospital Yu, Xuexin; Sichuan University West China Hospital Li, Peiyi; Sichuan University West China Hospital Huang, Wenzhi; Sichuan University West China Hospital, Department of Infection Control zhang, wei; Sichuan University,
Keywords:	Hypertension < CARDIOLOGY, EPIDEMIOLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title Page

Title : Long-term trends of hypertension incidence in China: Regional variations

Yun-Mei Luo,^{1,2} Fan Xia,³ Xue-Xin Yu,⁴ Pei-Yi Li,¹ Wen-Zhi Huang,⁵ Wei Zhang⁴

¹Institute of Hospital Management, West China Hospital, Sichuan University, Chengdu, China
²West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
³Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
⁴West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
⁵Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China

Correspondence to

Wei Zhang; weizhanghx@163.com

* Yun-Mei Luo, Fan Xia, and Xue-Xin Yu contributed equally to the article.

ABSTRACT

Objective The aim is to explore the trends of hypertension incidence and regional variations in China from

elien

1991 to 2015.

Design A dynamic prospective cohort study.

Setting Population based study.

Participants 12 952 Chinese adults from the China Health and Nutrition Survey (CHNS).

Primary outcome measures Long-term trend of hypertension incidence in Chinese adults and risk factors for occurrence of hypertension.

Results Age-standardized hypertension incidence increased from 40.8 per 1 000 person-years (95% CI, 38.3 to 43.4) between 1993 and 1997 to 48.6 (95% CI, 46.1 to 51.0) between 2011 and 2015. The increasing trends were further supported by results from subsequent extended Cox proportional hazard model. In addition, results from the modelling analysis showed that individuals in Eastern, Central, and Northeastern China had greater risks of hypertension occurrence in comparison with their counterparts in Western China. **Conclusion** Hypertension incidence increased during the study period. The growth called for more attention on the health education and health promotion of individuals with great risks.

Strengths and limitations of this study

(1) The dynamic cohort study-design employed individuals from diverse social and geographic contexts, which enabled us to depict the long-term trends of hypertension incidence and regional disparities in the context of China's rapid social development and population aging.

② We adopted both self-reported health outcomes and objective outcomes from physical tests, which avoided the recall bias and underestimation in underserved areas.

③We did not employ a national-representative sample and did not include individuals from other provinces in China, which undermined the representation of our findings. As a community-based survey, CHNS excluded institutionalized individuals, which further diminished the representation of our findings among Chinese.

 (In addition, we did not distinguish hypertension, and future research is necessary.

to peet terien only

INTRODUCTION

Along with aging population, non-communicable chronic diseases, particularly stroke and ischemic heart disease, have led to great burden of disease, deaths, and years of life lost (YLLs) in both developed and developing countries.¹ ² Connected closely with various cardiovascular diseases,³ ⁴ high systolic blood pressure was ranked as the leading risk factor of risk-attributable disability-adjusted life-years (DALYs) among selected 195 countries and territories.⁵ For instance, high systolic blood pressure accounted for 2.54 million deaths and more than 5% of DALYs in China in 2017.⁶

Existing evidence has confirmed a worldwide high prevalence of hypertension.⁴⁻⁶ Countries, such as Singapore⁶ and Korea⁷, had a significant proportion of individuals with hypertension. Likewise, with the extended life expectancy,⁸ changes in lifestyle behaviors,⁹ and rapid urbanization,¹⁰ developing countries, such as China, experienced a substantial increase in the prevalence of hypertension, ranging from 13.6% in 1991 to 27.9% in 2015.¹¹

Although the increasing prevalence of hypertension provided critical information for public health practice and disease control programs, it could not accurately depict the epidemiologic transition as the incidence measure.¹² Prior studies have indicated that the increasing prevalence could coexist with the decreasing incidence in the context of healthy aging.¹³ For evidence-based health-promoting initiatives, empirical research on hypertension incidence is warranted.

However, research on the long-term trends of the incidence of hypertension from China is scare and relatively outdated.^{14 15} This is an important knowledge gap because developing countries are experiencing unprecedented social development. Up-to-date information among developing countries could greatly

contribute to depict global epidemiologic transitions. Moreover, regional disparities are a major health concern in China as a result of inequitable socio-economic development and health care resource distribution,¹⁶⁻¹⁸ while the existing research provides insufficient information regarding the regional disparities in the hypertension incidence.¹⁹⁻²¹

Hence, this study aims to explore the long-term trends of hypertension incidence among Chinese from diverse social and geographic contexts. In addition, we are particularly interested in regional variations while taking the individual-level risk factors into account.

METHODS

Data source

The present study derived data from the China Health and Nutrition Survey (CHNS). CHNS has been collaboratively conducted by Carolina Population Center at the University of North Carolina at Chapel Hill and the National Institute for Nutrition and Health (NINH, former National Institute of Nutrition and Food Safety) at the Chinese Center for Disease Control and Prevention. Initiated in 1989, CHNS consisted of ten-wave data in 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011, and 2015, respectively. Overall, CHNS employed a multistage random cluster method to draw the study sample, which included over 30 000 individuals from three provincial-level cities and twelve provinces. Individuals in the survey came from diverse social, geographic, and cultural contexts. CHNS employed face-to-face questionnaire interviews to collect data, and the physical health examinations were conducted by well-trained investigators. Information regarding survey design, data collection, and quality control could be retrieved from the cohort profile.²²

Study design and exclusion criteria

BMJ Open

The present study employed a dynamic cohort study-design as not all individuals entered the cohort at the same time. To evaluate the long-term trends of hypertension incidence, we excluded individuals (a) without individual ID and community ID; (b) aged under 18 because of the low incidence of hypertension among children and teenagers; (c) with hypertension in his/her first investigation; (d) with only one observation or only one record of hypertension status; and (e) were pregnant during the study period to exclude gestational hypertension. Furthermore, we excluded observations after the diagnosis of hypertension (figure 1).

Figure 1 Flowchart showing the selection of the subjects who were included in the final analysis of

hypertension incidence in China

Exposure

The primary exposure variable of this study were time entering the cohort and geographic regions. For modeling analyses, it was not feasible to treat the waves as continuous variables, and therefore we respectively grouped the individuals entering the cohort from (a) 1991, 1993, and 1997; (b) 2000, 2004, 2006, and 2009; and (c) 2011 and 2015. In this case, two dummies were introduced in the model with individuals from 1991 to 1997 as the reference group. Geographic regions were defined according to the bulletin of the National Bureau of Statistics of China. Specifically, we grouped individuals from (a) Beijing, Shanghai, Jiangsu Province, Zhejiang Province, and Shandong Province as Eastern China; (b) Henan Province, Hubei Province, and Hunan Province as Central China; (c) Liaoning Province and Heilongjiang Province, Chongqing, and Shanxi Province as Western China.

Outcomes

We included incidence of hypertension as the primary outcome. First, we adopted self-reported hypertension, which was derived from the answer to the question, "Has a doctor ever told you that you suffer from high blood pressure?". If individuals self-reported no hypertension history, the outcomes would be further supplemented by the blood pressure tests to avoid the recall bias and underestimation from self-reported measures. According to the criteria of the 2018 Clinical Guideline in China and the 2018 ESC/ESH HTN Guideline,²³ hypertension was confirmed with the systolic blood pressure (SBP) \geq 140 mmHg or with the diastolic blood pressure (DBP) \geq 90 mmHg. To guarantee the accuracy of the tests, the blood pressure was

detected in triplicate by professional health workers on the same day.

Covariates

To adjust for variations in baseline characteristics, we introduced several confounding factors that may influence the occurrence of hypertension. These factors included urban *vs*. rural settings, sociodemographic characteristics (age, sex, race, marital status, educational attainment, and employment status), and lifestyle attributes (BMI, smoking behaviors, alcohol consumption, and physical activity).^{15 24}

Statistical analysis

First, we performed chi-square tests and Kruskal-Wallis rank-sum tests to evaluate variations in baseline characteristics over time. Second, we calculated the crude incidence of hypertension as below:²⁵

Incidence = $\frac{\text{number of new hypertension cases}}{\text{total person - years at risk}}$

The 'person-years at risk' is the period from the first hypertension-free year to the year when the subsequent hypertension is confirmed. In addition, we calculated the age-standardized incidence of hypertension by employing the sample from wave 2011 and wave 2015 as the standard population. Subgroup analyses were conducted by gender. To further evaluate the long-term trends of hypertension incidence, we performed an extended Cox proportional hazard model while considering geographic variations. Because the effect of age didn't conform to the proportional hazard assumption, we performed a time-dependent Cox regression model with age as a time-dependent variable. At the same time, we introduced all covariates in the model to control for the baseline variations.

Data analyses were performed with Stata 15.0 (StataCorp, TX, USA). A two-tailed P value of less than 0.05

was considered statistical significance.

Patient and public involvement

Neither patients nor members of the public were involved in this study.

RESULTS

Study population

Although CHNS consisted of data of 38 558 individuals with 143 586 observations from 1989 and 2015, the present study only included 12 952 individuals from 1991 to 2015 after sample selection (figure 1). Table 1 presents the distribution of observations from included individuals during the study period. For example, 5938 individuals entered the cohort in 1991, with only 912 followed-up in 2015 (table 1). Among the 12 952 participants, 5 119 suffered from hypertension during the follow-up period.

wave	1991	1993	1997	2000	2004	2006	2009	2011	2015
1989									
1991	5938								
1993	5166	677							
1997	3313	485	1691						
2000	2658	335	1451	1009					
2004	2050	234	1037	813	837				
2006	1722	188	865	642	684	376			
2009	1378	142	385	398	413	302	692		
2011	1200	114	329	335	359	216	630	1732	
2015	912	86	250	236	231	152	353	1732	0

Table 1	Observation distribution of study sa	mple from 19	91	to	2015

BMJ Open

Table 2 presents the baseline characteristics of the study sample. Overall, variations existed in all baseline characteristics. For example, newly recruited individuals were older (P < 0.001), more educated (P < 0.001), and with a higher BMI (P < 0.001).

Chanastaristia	Time entering the cohort				
Characteristic	1991-1997	2000-2009	2011-2015	<i>F</i> value	
Region					
Western	2256 (27.16)	611 (20.97)	523 (30.20)		
Central	2817 (33.92)	800 (27.45)	85 (4.91)	<0.001	
Northeastern	1288 (15.51)	794 (27.25)	83 (4.79)	<0.001	
Eastern	1945 (23.42)	709 (24.33)	1041 (60.10)		
Urban-rural					
Rural	5616 (67.61)	1717 (58.92)	777 (44.86)	<0.001	
Urban	2690 (32.39)	1197 (41.08)	955 (55.14)	<0.001	
Age (years)					
18-29	2374 (28.58)	695 (23.85)	221 (12.76)		
30-39	2382 (28.68)	854 (29.31)	345 (19.92)		
40-49	1752 (21.09)	621 (21.31)	424 (24.48)	< 0.001	
50-59	1004 (12.09)	405 (13.90)	456 (26.33)		
≥60	794 (9.56)	339 (11.63)	286 (16.51)		
Sex					
Male	3986 (47.99)	1168 (40.08)	736 (42.49)	<0.001	
Female	4320 (52.01)	1746 (59.92)	996 (57.51)	<0.001	
BMI (kg/m ²)					
<18.5	763 (9.27)	191 (6.60)	60 (3.46)		
18.5-23.9	6012 (73.07)	1776 (61.35)	955 (55.14)	< 0.001	
24.0-27.9	1238 (15.05)	760 (26.25)	545 (31.47)		

Table 2Baseline characteristics of study individuals, $n(\%)^*$

BMJ Open

Page 12 of 24

≥28	215 (2.61)	168 (5.80)	172 (9.93)	
Race				
Other	1038 (12.59)	340 (11.69)	72 (4.17)	<0.001
Han	7204 (87.41)	2568 (88.31)	1656 (95.83)	<0.001
Marital status				
Other	1183 (14.29)	341 (11.82)	192 (11.14)	<0.001
Married	7098 (85.71)	2545 (88.18)	1531 (88.86)	<0.001
Education attainment				
Primary school and below	4416 (53.81)	741 (26.43)	410 (23.73)	
Middle school	2377 (28.97)	1103 (39.34)	457 (26.45)	<0.001
High school or equivalent	1240 (15.11)	742 (26.46)	472 (27.31)	<0.001
College and above	173 (2.11)	218 (7.77)	389 (22.51)	
Employed				
No	1145 (13.85)	1044 (35.95)	716 (41.34)	<0.001
Yes	7121 (86.15)	1860 (64.05)	1016 (58.66)	~0.001
Smoking				
Never or smoking cessation	5300 (64.72)	2163 (74.97)	1326 (77.18)	
Current smoker cigarettes < 20/d	1481 (18.09)	370 (12.82)	205 (11.93)	< 0.001
Current smoker, cigarettes $\geq 20/d$	1408 (17.19)	352 (12.20)	187 (10.88)	
Alcohol consumption				
Never	5042 (61.82)	2037 (70.93)	1116 (65.03)	
Not more than once per month	469 (5.75)	102 (3.55)	144 (8.39)	
1–3 times per month	661 (8.10)	173 (6.02)	127 (7.40)	<0.001
1–2 times per week	781 (9.58)	227 (7.90)	127 (7.40)	<0.001
3–4 times per week	450 (5.52)	126 (4.39)	64 (3.73)	
On a daily basis	753 (9.23)	207 (7.21)	138 (8.04)	
Physical activity				
Very light	997 (12.56)	780 (27.73)	823 (49.46)	<0.001
Light	1307 (16.46)	799 (28.40)	453 (27.22)	~0.001

Moderate	1291 (16.26)	461 (16.39)	209 (12.56)
Heavy or very heavy	4344 (54.71)	773 (27.48)	179 (10.76)

*Overall, we included 11 685 individuals in the modelling analyses after excluding 97 individuals without BMI, 74 without race, 62 without marital status, 214 without education attainment, 50 without employment status, 160 without smoking history, 208 without alcohol consumption, and 449 without physical activity.

(Missing rate 9.78 %)

Crude and age-standardized incidence

Table 3 presents the crude and age-standardized hypertension incidence during the study period. For the calculation of hypertension incidence, we employed a full sample of 12 952 individuals with 60 335 observations. The age-standardized incidence of hypertension witnessed a significant increase, ranging from 40.8 per 1 000 person-years (95% CI: 38.3 to 43.4) between 1993 and 1997 to 48.6 per 1 000 person-years (95% CI: 46.1 to 51.0) between 2011 and 2015. The increasing pattern was also exhibited among men (1993-1997: 46.2, 95% CI: 42.1 to 50.4; 2011-2015: 55.7, 95% CI: 51.7 to 59.7) and women (1993-1997: 36.5, 95% CI: 33.2 to 39.7; 2011-2015: 43.3, 95% CI: 40.2 to 46.3).

Incidence	1991	1993-1997	2000-2009	2011-2015
Total				
Case (person-year)	-	1114 (35486)	2571 (70575)	1434 (29492)
Crude incidence (95% CI)	-	31.3 (29.6-33.2)	36.4 (35.0-37.8)	48.6 (46.1-51.2)
Age-standardized incidence (95% CI)	-	40.8 (38.3-43.4)	41.5 (39.9-43.2)	48.6 (46.1-51.0)
Male				
Case (person-year)	-	594 (17530)	1292 (32524)	699 (12532)
Crude incidence (95% CI)	-	33.8 (31.2-36.7)	39.7 (37.6-41.9)	55.7 (51.7-60.0)
Age-standardized incidence (95% CI)	-	46.2 (42.1-50.4)	45.7 (43.0-48.3)	55.7 (51.7-59.7)
Female				
Case (person-year)		520 (17956)	1279 (38051)	735 (16960)
Crude incidence (95% CI)	1	28.9 (26.5-31.5)	33.6 (31.8-35.5)	43.3 (40.3-46.5)
Age-standardized incidence (95% CI)	-	36.5 (33.2-39.7)	38.0 (35.9-40.1)	43.3 (40.2-46.3)
		\sim		
Extended Cox proportional hazard and	alysis			

Table 3 Crude and age-standardized incidence over time (per 1000 person-years)

Extended Cox proportional hazard analysis

For the modeling analysis, we included 11 685 individuals without missing data (missing rate, 9.78%). The duration from free of hypertension to hypertension diagnosed ranged from 2 to 24 years, with a median of 9 years (table 4). The duration was most commonly seen in 2 (14.32%), 4 (11.19%), 6 (11.45%), and 9 years (13.13%).

Time (year)	n	Proportion (%)
2	733	14.32
3	227	4.43
4	573	11.19
5	94	1.84
6	586	11.45
7	253	4.94
9	672	13.13
11	121	2.36
12	82	1.60
13	383	7.48
14	55	1.07
15	357	6.97
16	45	0.88
18	425	8.30
20	187	3.65
22	43	0.84
24	283	5.35
Total	5119	100.0

Table 5 presents results from extended Cox proportional hazard analysis while taking variations in baseline characteristics into account. First, the increasing trends of hypertension incidence were robust, as suggested by the modeling results. Specifically, individuals entered the cohort from 2000 to 2009 (aHR = 1.10, 95% CI: 1.01 to 1.21) and those from 2011 to 2015 (aHR = 1.19, 95% CI: 1.04 to 1.37) had a higher risk of hypertension in comparison with individuals entering the cohort from 1991 to 1997. With reference to

regional variations, individuals in Central (aHR = 1.26, 95% CI: 1.16 to 1.37), Northeastern (aHR = 1.56, 95% CI: 1.41 to 1.72), and Eastern China (aHR = 1.48, 95% CI: 1.36 to 1.63) respectively had a higher risk of hypertension occurrence relative to their counterparts in Western China.

Characteristic aHR (95% CI) P value Time to enter the cohort 1991-1997 Ref. 2000-2009 1.10 (1.01-1.21) 0.025 2011-2015 1.19 (1.04-1.37) 0.010 Geographic region Ref. Western Central 1.26 (1.16-1.37) < 0.001 Northeastern 1.56 (1.41-1.72) < 0.001 Eastern 1.48 (1.36-1.63) < 0.001 Urban (vs. rural) 0.94 (0.88-1.01) 0.109 Age* Ref. 18-29 < 0.001 1.93 (1.41-2.65) 30-39 40-49 3.99 (2.93-5.43) < 0.001 50-59 < 0.001 5.16 (3.74-7.12) ≥ 60 9.11 (6.50-12.77) < 0.001 Female (vs. male) 0.81 (0.74-0.88) < 0.001BMI (kg/m²) <18.5 Ref. 18.5-23.9 1.31 (1.16-1.48) < 0.001 24.0-27.9 2.07 (1.81-2.36) < 0.001 ≥28 2.82 (2.37-3.34) < 0.001

 Table 5
 Extended Cox proportional hazard analysis of hypertension incidence

1	1
	h
1	v

Married (vs. others)		
	0.92 (0.83-1.02)	0.149
Education attainment		
Primary school and below	Ref.	
Middle school	0.91 (0.84-0.99)	0.020
High school or equivalent	0.86 (0.77-0.95)	0.002
College and above	0.82 (0.68-0.98)	0.033
Employed (yes vs. no)	0.90 (0.82-0.99)	0.036
Smoking		
Never or smoking cessation	Ref.	
Current smoker, cigarettes < 20/d	0.98 (0.89-1.07)	0.752
Current smoker, cigarettes $\geq 20/d$	1.05 (0.96-1.16)	0.237
Alcohol consumption		
never	Ref.	
Not more than once per month	0.89 (0.78-1.03)	0.125
1–3 times per month	1.17 (1.04-1.32)	0.006
1–2 times per week	1.00 (0.89-1.12)	0.963
3–4 times per week	1.05 (0.92-1.21)	0.412
On a daily basis	1.18 (1.06-1.31)	0.002
Physical activity		
very light	Ref.	
light	0.92 (0.83-1.02)	0.154
moderate	0.99 (0.88-1.11)	0.930
heavy and very	0.91 (0.82-1.02)	0.118
1–2 times per week 3–4 times per week On a daily basis Physical activity very light light moderate heavy and very Estimated time effect of age, P<0.00	1.00 (0.89-1.12) 1.05 (0.92-1.21) 1.18 (1.06-1.31) Ref. 0.92 (0.83-1.02) 0.99 (0.88-1.11) 0.91 (0.82-1.02) 1	0.963 0.412 0.002 0.154 0.930 0.118

In addition, there existed no urban-rural differences in developing hypertension (table 5). Risks of incident hypertension increased with age, BMI, and alcohol consumption, while it was negatively associated with educational attainment. Women had a lower risk of incident hypertension compared with men (aHR = 0.81, 95% CI: 0.74 to 0.88). Relative to those without a job, employees had a lower risk of developing hypertension (aHR = 0.90, 95% CI: 0.82 to 0.99). Han individuals were significantly associated with a higher risk (aHR = 1.11, 95% CI: 1.01 to 1.23) relative to the minority.

DISCUSSION

By employing a study sample of 12 925 individuals from diverse social and geographic contexts, we found the age-standardized incidence of hypertension increased during the study period. The increasing pattern remained even after controlling for variations in baseline characteristics. Furthermore, we found that individuals in economically developed Eastern, Central, and Northeastern China had greater risks of incident hypertension in comparison with those in Western China.

Instead of focusing on the incidence measure, the vast majority of prior studies focused on the prevalence measure. For example, one of the previous studies in China indicated that the prevalence of hypertension rose substantially from 13.6% in 1991 to 27.9% in 2015.¹¹ The findings were further supplemented by results from Lu *et al.* (2017), which suggested a higher prevalence of hypertension among those aged between 35 and 75 years old (44.7%).²⁶

However, our focus on the incidence measure provided a more accurate reflection of the epidemiologic transition of hypertension in China. In addition, our findings updated the trends of hypertension incidence in comparison with that from Liang *et al.* (2014).¹⁵ Even though hypertension incidence appeared to vary

across countries,²⁷⁻²⁹ the comparison is untenable because we adopted different standard populations. Further empirical research across countries is warranted.

With the rapid economic development, people often change their dietary patterns from light diet to high salt and fat diet along with a secondary lifestyle.³⁰ These changes would significantly impact the prevalence and control of hypertension in China.³⁰ In addition, due to data limitation, we didn't introduce several potential risks factors, such as sodium intake or dietary pattern, parental history, psychological status, ambient air pollutants, working hours, and household income.³¹⁻³⁴ These factors may explain the residual time-effects in the model as well.

Although existing evidence on the regional disparities of hypertension incidence is scant, prior research indicates that Central, Northeastern, and Eastern China had a higher prevalence of hypertension compared with Western China,³⁵ which is in line with our findings. In sharp contrast, prior investigators have noted that Northeastern and Central China had lower all-cause mortality rates relative to Western China.³⁶ These findings appear to suggest that individuals in China's economically developed regions are experiencing extended life expectancy with relatively unhealthy aging.¹² However, one should be aware of the possibility that although individuals in Western China had lower risks of hypertension compared with the other three regions, local public awareness and timely treatment could be a challenging issue.

Differed from previous studies,^{15 37} no urban-rural disparities were observed in the present study. This may be a result of the narrow gap of lifestyle between rural and urban residents. With the rapid economic development and urbanization in the past few decades, the lifestyle and dietary pattern of rural residents are approaching to those of their counterparts in urban China.^{9 10} This possibility has been further supported by the fact that the prevalence of hypertension in rural China exceeded that of urban China in 2015.²⁶ Taking into account the lower treatment rate and insufficient awareness among rural residents,³⁸ one should direct more attention to rural China.

Moreover, we found that smoking history was not associated with incident hypertension. The effect of smoking on the development of the chronic disease is unclear and appears to differ across life courses.³⁹⁻⁴¹ In addition, prior research based on Korean has found a J-shaped association between physical activity and incident hypertension,⁴² while the present study on Chinese did not observe a similar association, which is in line with findings based on Japanese.⁴³ The effect of physical activity on the development of hypertension seems to be controversial and varies across countries. Further analyses are warranted.

Consistent with the previous studies,⁴⁴⁻⁴⁷ several risk factors, including age, gender, educational attainment, race, alcohol consumption, and BMI, were confirmed by our analyses. The growing incidence of hypertension emphasizes the early prevention, education, detection, and management for hypertension.⁴⁸ Mentoring aforementioned lifestyle behaviors, such as alcohol consumption, may be helpful to constrain the hypertension incidence.⁴⁹ Public health and lifestyle interventions targeting high-risk individuals, such as the elderly, men, and obese population, hold promise.

Conclusion

Hypertension incidence increased during the study period. Individuals in Eastern, Central, and Northeastern China had greater risks of hypertension occurrence in comparison with their counterparts in Western China. In addition, risks of incident hypertension increased with age, BMI, and alcohol consumption, while it was negatively associated with educational attainment. The growth of hypertension incidence called for more

attention on the health education and health promotion of individuals with great risks.

Strengths and limitations of this study

The present study has two major strengths. First, the dynamic cohort study-design employed individuals from diverse social and geographic contexts, which enabled us to depict the long-term trends of hypertension incidence and regional disparities in the context of China's rapid social development and population aging. In addition, we adopted both self-reported health outcomes and objective outcomes from physical tests, which avoided the recall bias and underestimation in underserved areas.

Nevertheless, this study is subject to several limitations. First, we did not employ a national-representative sample and did not include individuals from other provinces in China, which undermined the representation of our findings. As a community-based survey, CHNS excluded institutionalized individuals, which further diminished the representation of our findings among Chinese. In addition, we did not distinguish hypertension, and future research is necessary.

Acknowledgments We thank the National Institute for Nutrition and Health, China Center for Disease Control and Prevention, Carolina Population Center at(P2C HD050924, T32 HD007168), the University of North Carolina at Chapel Hill, the NIH (R01-HD30880, DK056350, R24 HD050924, and R01-HD38700) and the NIH Fogarty International Center (D43 TW009077, D43 TW007709) for financial support for the CHNS data collection and analysis files from 1989 to 2015 and future surveys, and the China-Japan Friendship Hospital, Ministry of Health for support for CHNS 2009, Chinese National Human Genome Center at Shanghai since 2009, and Beijing Municipal Center for Disease Prevention and Control since 2011.

Contributors WZ designed this study and revised the manuscript. Y-ML, FX, and X-XY performed data clean, statistical

analysis, and wrote the first draft of the manuscript, which P-YL and W-ZH subsequently revised. All authors read the article and approve it for publication.

Funding This study was supported by China's National Development and Reform Commission Grant (No. 2018GFGW001)

to Wei Zhang.

 Competing interests None declared.

Patient consent for publication Not required.

Ethics approval China Health and Nutrition Survey (CHNS) was approved by the ethics committee of Carolina Population Center at the University of North Carolina at Chapel Hill and the NINH at the CCDC. Informed consent was obtained from all subjects before the investigation. The present study derived data from the public domain, and therefore ethics statement and informed consents were not applicable.

Data availability statement Data are available from China Health and Nutrition Survey

(https://www.cpc.unc.edu/projects/china/data/).

ORCID iD

Wei Zhang http://orcid.org/0000-0003-3113-9577

REFERENCES

1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 2018; 392: 1736-88.

2. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 2018; 392: 1923-94.

3. Lloyd-Jones DM, Larson MG, Leip EP, *et al.* Lifetime risk for developing congestive heart failure: the Framingham Heart Study. *Circulation* 2002; 106: 3068-72.

4. Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a metaanalysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903-13. 5. GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1859-922. 6. Liew SJ, Lee JT, Tan CS, et al. Sociodemographic factors in relation to hypertension prevalence, awareness, treatment and control in a multi-ethnic Asian population a cross sectional study. BMJ Open 2019; 9: e025869. 7. Cho SMJ, Lee H, Kim HC. Differences in prevalence of hypertension subtypes according to the 2018 Korean Society. Clin Hypertens 2019; 25: 26. 8. GBD 2017 Mortality Collaborators. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1684-735. 9. Gong P, Liang S, Carlton EJ, et al. Urbanisation and health in China. Lancet 2012; 379: 843-52. 10. LeBlanc AG, Chaput JP. Urbanisation and fitness: worrying trends from China. Lancet Child Adolesc Health 2019; 3: 837-9. 11. Wang Z, Chen Z, Zhang L, et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012-2015. Circulation 2018; 137: 2344-56. 12. Omran AR. The epidemiologic transition: a theory of the epidemiology of population change. 1971. Milbank Q 2005; 83(4): 731-57. 13. Geiss LS, Wang J, Cheng YJ, et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. JAMA 2014; 312: 1218-26. 14. Chen Z, Li SN, Wang X, et al. The incidence of hypertension, overweight, and obesity and relationship with cardiovascular events among middle-aged Chinese 6 years follow-up results. Zhonghua Xin Xue Guan Bing Za Zhi, 2020; 48:

15. Liang Y, Liu R, Du S, *et al.* Trends in incidence of hypertension in Chinese adults, 1991-2009: the China Health and Nutrition Survey. *Int J Cardiol* 2014; 175: 96-101.

16. Sun S, Chen J, Johannesson M, *et al.* Regional differences in health status in China: population health-related quality of life results from the National Health Services Survey 2008. *Health Place* 2011; 17: 671-80.

17. Zhou M, Wang H, Zeng X, *et al.* Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 2019; 394: 1145-58.

18. Pan J, Shallcross D. Geographic distribution of hospital beds throughout China: a county-level econometric analysis. *Int J Equity Health* 2016; 15: 179.

19. Chen Y, Liang X, Zheng S, *et al.* Association of body fat mass and fat distribution with the incidence of hypertension in a population-based chinese cohort: a 22-year follow-up. *J Am Heart Assoc* 2018; 7: e007153.

20. Sun Z, Zheng L, Zhang X, et al. Ethnic differences in the incidence of hypertension among rural Chinese adults: results

47-53.

from Liaoning Province. PLoS One 2014; 9: e86867.

 21. Chen X, Liu Y, Sun X, *et al.* Comparison of body mass index, waist circumference, conicity index, and waist-to-height ratio for predicting incidence of hypertension: the rural Chinese cohort study. *J Hum Hypertens* 2018; 32: 228-35.

22. Popkin BM, Du S, Zhai F, *et al.* Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989-2011. *Int J Epidemiol* 2010; 39: 1435-40.

23. Williams B, Mancia G. Ten Commandments of the 2018 ESC/ESH HTN Guidelines on Hypertension in Adults. *Eur Heart J* 2018; 39: 3007-8.

24 Qi SF, Zhang B, Wang HJ, *et al.* Joint effects of age and body mass index on the incidence of hypertension subtypes in the China Health and Nutrition Survey: a cohort study over 22years. *Prev Med* 2016; 89: 23-30.

25 Gao M, Kuang W, Qiu P, *et al.* The time trends of cognitive impairment incidence among older Chinese people in the community: based on the CLHLS cohorts from 1998 to 2014. *Age Ageing* 2017; 46: 787-93.

Lu J, Lu Y, Wang X, *et al.* Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project). *Lancet* 2017; 390: 2549-58.

27 Mendonça RD, Lopes AC, Pimenta AM, *et al*. Ultra-processed food consumption and the incidence of hypertension in a mediterranean cohort: The Seguimiento Universidad de Navarra Project. *Am J Hypertens* 2017; 30: 358-66.

Li M, McDermott R. Obesity, albuminuria, and gamma-glutamyl transferase predict incidence of hypertension in indigenous Australians in rural and remote communities in northern Australia. *J Hypertens* 2015; 33: 704-9; discussion 709-710.

29 Bernabe-Ortiz A, Sanchez JF, Carrillo-Larco RM, *et al.* Rural-to-urban migration and risk of hypertension: longitudinal results of the PERU MIGRANT study. *J Hum Hypertens* 2017; 31: 22-8.

30 Fan WG, Xie F, Wan YR, *et al.* The impact of changes in population blood pressure on hypertension prevalence and control in China. *J Clin Hypertens (Greenwich)* 2020; 22: 150-6.

31 He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. *BMJ* 2013; 346: f1325.

32 Gando Y, Sawada SS, Kawakami R, *et al.* Combined association of cardiorespiratory fitness and family history of hypertension on the incidence of hypertension: a long-term cohort study of Japanese males. *Hypertens Res* 2018; 41: 1063-9.

33 Bo Y, Guo C, Lin C, *et al.* Dynamic changes in long-term exposure to ambient particulate matter and incidence of hypertension in adults. *Hypertension* 2019; 74: 669-77.

34 Trudel X, Brisson C, Gilbert-Ouimet M, *et al.* Long working hours and the prevalence of masked and sustained hypertension. *Hypertension* 2020; 75: 532-8.

35 Li J, Shi L, Li S, *et al.* Urban-rural disparities in hypertension prevalence, detection, and medication use among Chinese Adults from 1993 to 2011. *Int J Equity Health* 2017, 16: 50.

36 Yu X, Zhang W. All-cause mortality rate in China: do residents in economically developed regions have better health? *Int J Equity Health* 2020, 19: 12.

Arici M, Turgan C, Altun B, *et al.* Hypertension incidence in Turkey (HinT): a population-based study. *J Hypertens* 2010;
28: 240-4.

38 Feng XL, Pang M, Beard J. Health system strengthening and hypertension awareness, treatment and control: data from the China Health and Retirement Longitudinal Study. *Bull World Health Organ* 2014; 92: 29-41.

39 Kim BJ, Seo DC, Kim BS, *et al.* Relationship between cotinine-verified smoking status and incidence of hypertension in 74,743 Korean adults. *Circ J* 2018; 82: 1659-65.

40 Gao K, Shi X, Wang W. The life-course impact of smoking on hypertension, myocardial infarction and respiratory diseases. *Sci Rep* 2017, 7: 4330.

41 Li G, Wang H, Wang K, *et al.* The association between smoking and blood pressure in men: a cross-sectional study. *BMC Public Health* 2017, 17: 797.

42 Kim Y, Sharp S, Hwang S, *et al.* Exercise and incidence of myocardial infarction, stroke, hypertension, type 2 diabetes and site-specific cancers: prospective cohort study of 257 854 adults in South Korea. *BMJ Open* 2019; 9: e025590.

43 Lu Y, Lu M, Dai H, *et al.* Lifestyle and risk of hypertension: follow-up of a young pre-hypertensive cohort. *Int J Med Sci* 2015, 12: 605-12.

44 Jayawardana NWIA, Jayalath WATA, Madhujith WMT, *et al.* Aging and obesity are associated with undiagnosed hypertension in a cohort of males in the Central Province of Sri Lanka: a cross-sectional descriptive study. *BMC Cardiovasc Disord* 2017; 17: 165.

45 Sinnott SJ, Smeeth L, Williamson E, *et al.* Trends for prevalence and incidence of resistant hypertension: population based cohort study in the UK 1995-2015. *BMJ* 2017; 358: j3984.

46 Zhou W, Shi Y, Li YQ, *et al.* Body mass index, abdominal fatness, and hypertension incidence: a dose-response metaanalysis of prospective studies. *J Hum Hypertens* 2018; 32: 321-33.

47 Roerecke M, Kaczorowski J, Tobe SW, *et al.* The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. *Lancet Public Health* 2017; 2: e108-20.

48 Whelton PK, Carey RM, Aronow WS, *et al.* 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *Circulation* 2018; 138: e426-83.

49 Holmes MV, Dale CE, Zuccolo L, *et al.* Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. *BMJ* 2014; 349: g4164.

BMJ Open

BMJ Open

Long-term trends and regional variations of hypertension incidence in China: a dynamic prospective cohort study

Journal:	BMJ Open		
Manuscript ID	bmjopen-2020-042053.R1		
Article Type:	Original research		
Date Submitted by the Author:	19-Oct-2020		
Complete List of Authors:	Luo, Yunmei; Sichuan University West China Hospital Xia, Fan; Sichuan University West China Hospital Yu, Xuexin; Sichuan University West China Hospital Li, Peiyi; Sichuan University West China Hospital Huang, Wenzhi; Sichuan University West China Hospital, Department of Infection Control Zhang, Wei; Sichuan University,		
Primary Subject Heading :	Public health		
Secondary Subject Heading:	Cardiovascular medicine, Epidemiology		
Keywords:	Hypertension < CARDIOLOGY, EPIDEMIOLOGY, PUBLIC HEALTH		

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Title	Page
---	-------	------

2	Title : Long-term trends and regional variations of hypertension incidence in China: a		
3	dynamic prospective cohort study		
4	Yun-Mei Luo, ^{1,2} Fan Xia, ³ Xue-Xin Yu, ⁴ Pei-Yi Li, ¹ Wen-Zhi Huang, ⁵ Wei Zhang ⁴		
5			
6	¹ Institute of Hospital Management, West China Hospital, Sichuan University, Chengdu, China		
7	² West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China		
8	³ Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China		
9	⁴ West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China		
10	⁵ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China		
11 12			
13	Correspondence to		
14 15	Wei Zhang; weizhanghx@163.com		
16	ABSTRACT		
17	Objective The aim is to explore the trends of hypertension incidence and regional variations in China from		
18	1991 to 2015.		
19	Design A dynamic prospective cohort study.		
20	Setting China Health and Nutrition Survey (CHNS) 1991-2015.		

Participants 12 952 Chinese adults aged 18+.

Primary outcome measures Incident hypertension from 1993 to 2015.

Results Age-standardized hypertension incidence increased from 40.8 per 1 000 person-years (95% CI, 38.3 to 43.4) between 1993 and 1997 to 48.6 (95% CI, 46.1 to 51.0) between 2011 and 2015. The increasing trends were further supported by results from subsequent extended Cox proportional hazard model. In addition, results from the modelling analysis showed that individuals in Eastern, Central, and Northeastern China had greater risks of hypertension occurrence in comparison with their counterparts in Western China. Hypertension incidence increased during the study period. The growth called for more Conclusion attention on the health education and health promotion of individuals with great risks.

31 Strengths and limitations of this study

The dynamic cohort study-design employed individuals from diverse social and geographic contexts,
which enabled us to depict the long-term trends of hypertension incidence and regional disparities in the
context of China's rapid social development and population aging.

35 ② According to the design of CHNS and the underestimation of self-reported data, we adopted both self-36 reported health outcomes and objective outcomes from physical tests, which to some extent avoided the 37 recall bias and underestimation in underserved areas.

38 ③We did not employ a national-representative sample and did not include individuals from all provinces in

- 39 China, which undermined the representation of our findings. As a community-based survey, CHNS excluded
- 40 institutionalized individuals, which further diminished the representation of our findings among Chinese.

3 4		
5 6 7	41	④Guidelines recommend to identify hypertension cases by using blood pressure values that are measured
, 8 9	42	in different days, while individuals' blood pressure data in the CHNS were collected on the same day in the
10 11 12	43	CHNS, leading to unavoidable bias.
13 14 15	44	⑤In addition, we did not distinguish the grade of hypertension, and future research is necessary.
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	45	

46 INTRODUCTION

Along with aging population, non-communicable chronic diseases, particularly stroke and ischemic heart disease, have led to great burden of disease, deaths, and years of life lost (YLLs) in both developed and developing countries.^{1 2} Connected closely with various cardiovascular diseases.^{3 4} high systolic blood pressure was ranked as the leading risk factor of risk-attributable disability-adjusted life-years (DALYs) among selected 195 countries and territories.⁵ For instance, high systolic blood pressure accounted for 2.54 million deaths and more than 5% of DALYs in China in 2017.6 Existing evidence has confirmed a worldwide high prevalence of hypertension.⁴⁻⁶ Countries, such as Singapore⁶ and Korea⁷, had a significant proportion of individuals with hypertension. Likewise, with the

extended life expectancy,⁸ changes in lifestyle behaviors,⁹ and rapid urbanization,¹⁰ developing countries, such as China, experienced a substantial increase in the prevalence of hypertension, ranging from 13.6% in 1991 to 27.9% in 2015.¹¹

Although the increasing prevalence of hypertension provided critical information for public health practice and disease control programs, it could not accurately depict the epidemiologic transition as the incidence measure.¹² Prior studies have indicated that the increasing prevalence could coexist with the decreasing incidence in the context of healthy aging.¹³ For evidence-based health-promoting initiatives, empirical research on hypertension incidence is warranted.

However, research on the long-term trends of the incidence of hypertension from China is scare and
 relatively outdated.^{14 15} This is an important knowledge gap because developing countries are experiencing
 unprecedented social development. Up-to-date information among developing countries could greatly

66 contribute to depict global epidemiologic transitions. Moreover, regional disparities are a major health 67 concern in China as a result of inequitable socio-economic development and health care resource 68 distribution,¹⁶⁻¹⁸ while the existing research provides insufficient information regarding the regional 69 disparities in the hypertension incidence.¹⁹⁻²¹

Hence, this study aims to explore the long-term trends of hypertension incidence among Chinese from diverse social and geographic contexts. In addition, we are particularly interested in regional variations while taking the individual-level risk factors into account.

73 METHODS

74 Data source

The present study derived data from the China Health and Nutrition Survey (CHNS). CHNS has been collaboratively conducted by Carolina Population Center at the University of North Carolina at Chapel Hill and the National Institute for Nutrition and Health (NINH, former National Institute of Nutrition and Food Safety) at the Chinese Center for Disease Control and Prevention. Initiated in 1989, CHNS consisted of tenwave data in 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011, and 2015, respectively. Overall, CHNS employed a multistage random cluster method to draw the study sample, which included over 30 000 individuals from three provincial-level cities and twelve provinces. Individuals in the survey came from diverse social, geographic, and cultural contexts. CHNS employed face-to-face questionnaire interviews to collect data, and the physical health examinations were conducted by well-trained investigators. Information regarding survey design, data collection, and quality control could be retrieved from the cohort profile.²²

85 Study design and exclusion criteria

The present study employed a dynamic cohort study-design as not all individuals entered the cohort at the same time. To evaluate the long-term trends of hypertension incidence, we excluded individuals (a) without individual ID and community ID; (b) aged under 18 because of the low incidence of hypertension among children and teenagers; (c) with hypertension in his/her first investigation; (d) with only one observation or only one record of hypertension status; and (e) were pregnant during the study period to exclude gestational hypertension. Furthermore, we excluded observations after the diagnosis of hypertension (figure 1). **Exposures** The primary exposure variable of this study were the timing of entering the cohort and geographic regions. For modeling analyses, it was not feasible to treat the waves as continuous variables, and therefore we respectively grouped the individuals entering the cohort from (a) 1991, 1993, and 1997; (b) 2000, 2004, 2006, and 2009; and (c) 2011 and 2015. In this case, two dummies were introduced in the model with individuals from 1991 to 1997 as the reference group. Geographic regions were defined according to the bulletin of the National Bureau of Statistics of China. Specifically, we grouped individuals from (a) Beijing, Shanghai, Jiangsu Province, Zhejiang Province, and Shandong Province as Eastern China; (b) Henan Province, Hubei Province, and Hunan Province as Central China; (c) Liaoning Province and Heilongjiang Province as Northeastern China; and (d) Yunnan Province, Guangxi Zhuang Autonomous Region, Guizhou Province, Chongqing, and Shanxi Province as Western China. Outcomes We included incidence of hypertension as the primary outcome. First, we adopted self-reported hypertension,

2	
ر ۸	
4 7	
د د	
0	
7	
8	
9	
10	
11	
12	
13	
11	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>10</u>	
50	
JU 71	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

106 which was derived from the answer to the question, "Has a doctor ever told you that you had high blood 107 pressure?". If individuals self-reported no hypertension history, the outcomes would be further supplemented 108 by the blood pressure tests to avoid the recall bias and underestimation from self-reported measures. According to the criteria of the 2018 Clinical Guideline in China and the 2018 ESC/ESH HTN Guideline,²³ 109 hypertension was confirmed with the systolic blood pressure (SBP)≥140 mmHg or with the diastolic blood 110 111 pressure (DBP)≥90 mmHg. To guarantee the accuracy of the tests, the blood pressure was detected in 112 triplicate by professional health workers on the same day. 113 **Covariates**

To adjust for variations in baseline characteristics, we introduced several confounding factors that may influence the occurrence of hypertension. These factors included urban *vs.* rural settings, sociodemographic characteristics (age, sex, race, marital status, educational attainment, and employment status), and lifestyle attributes (BMI, smoking behaviors, alcohol consumption, and physical activity).^{15,24}

118 Statistical analysis

First, we performed chi-square tests and Kruskal-Wallis rank-sum tests to evaluate variations in baseline
characteristics over time. Second, we calculated the crude incidence of hypertension as below:²⁵

121 Incidence =
$$\frac{\text{number of new hypertension cases}}{\text{total person - years at risk}}$$

122 The 'person-years at risk' is the period from the first hypertension-free year to the year when the subsequent 123 hypertension is confirmed. In addition, we conducted direct standardization to calculate the age-standardized 124 incidence of hypertension by using the study sample from wave 2011 and wave 2015 as the standard
1 2 2		8
5 4 5 6 7	125	population. Subgroup analyses were conducted by sex.
7 8 9	126	To further evaluate the long-term trends and geographic variations of incident hypertension, we performed
10 11 12	127	an extended Cox proportional hazard model while including all covariates to control for baseline variations.
13 14 15	128	Because the effect of age didn't conform to the proportional hazard assumption, we performed a time-
16 17	129	dependent Cox regression model with age as a time-dependent variable. As for sensitivity analyses, we
18 19 20	130	construct the multi-level Poisson regression indicating similar findings.
21 22 23	131	Data analyses were performed with Stata 15.0 (StataCorp, TX, USA). A two-tailed P value of less than 0.05
24 25 26	132	was considered statistical significance.
27 28 29	133	Patient and public involvement
30 31 32 33	134	Not applicable. Data are derived from public domain.
34 35 36	135	RESULTS
37 38 39	136	Study population
40 41 42	137	The CHNS consisted of data of 38 558 individuals with 143 586 observations from 1989 and 2015, and the
43 44 45	138	present study only included 12 952 individuals from 1991 to 2015 after sample selection (figure 1). Table 1
46 47	139	presents the distribution of observations from included individuals during the study period. For example, 5
48 49 50	140	938 individuals entered the cohort in 1991, with only 912 followed-up in 2015 (table 1). Among the 12 952
51 52	141	participants, 5 119 of them developed hypertension during the follow-up period.
53 54 55 56	142	
57 58		
60		

1989 1991 5938 1993 5166 677 1997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 attacteristics of the study sample. Overall, variations existed aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P < 0.001$) and well-educated ($P < 0.001$), and male ($P < 0.001$), and they were be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	Wave	1991	1993	1997	2000	2004	2006	2009	2011	2015
991 5938 993 5166 677 997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 Expresents the baseline characteristics of the study sample. Overall, variations existed arracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P < 0.001$) and well-educated ($P < 0.001$), and male ($P < 0.001$), and they were smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	989									
1993 5166 677 1997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0	1991	5938								
1997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 Able 2 presents the baseline characteristics of the study sample. Overall, variations existed that the study recruited individuals were older ($P < 0.001$) and well-educated ($P < 0.001$) and well-educated ($P < 0.001$), that ($P < 0.001$), and male ($P < 0.001$), and they were be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	1993	5166	677							
2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 able 2 presents the baseline characteristics of the study sample. Overall, variations existed waracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P < 0.001$) and well-educated ($P < 0.001$), than ($P < 0.001$), and male ($P < 0.001$), and they were be smokers ($P < 0.001$), employed ($P < 0.001$), than ($P < 0.001$), and male ($P < 0.001$), and they were be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	1997	3313	485	1691						
2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 able 2 presents the baseline characteristics of the study sample. Overall, variations existed maracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P < 0.001$), and male ($P < 0.001$), and they were more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they were be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2000	2658	335	1451	1009					
2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 able 2 presents the baseline characteristics of the study sample. Overall, variations existed naracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P < 0.001$) and well-educated ($P < 0.001$), ere more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they we be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2004	2050	234	1037	813	837				
2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 able 2 presents the baseline characteristics of the study sample. Overall, variations existed aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P < 0.001$) and well-educated ($P < 0.001$), than ($P < 0.001$), and male ($P < 0.001$), and they were be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2006	1722	188	865	642	684	376			
2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 able 2 presents the baseline characteristics of the study sample. Overall, variations existed haracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P <$ ere more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they we be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2009	1378	142	385	398	413	302	692		
2015 912 86 250 236 231 152 353 1732 0 able 2 presents the baseline characteristics of the study sample. Overall, variations existed naracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P <$ ere more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they we be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2011	1200	114	329	335	359	216	630	1732	
able 2 presents the baseline characteristics of the study sample. Overall, variations existed naracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated ($P <$ ere more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they we be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2015	912	86	250	236	231	152	353	1732	0
be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	naracter	istics. Ne	ewly recr	uited ind	lividuals	were olde	er ($P < 0$.001) and	l well-ed	ucated (A
	aracter	istics. Ne	ewly recr	uited ind se $(P < 0$	lividuals v .001), Ha	were olden $(P < 0.0$	er $(P < 0$ 001), and	.001) and male (<i>P</i>	l well-ed	ucated (\hat{I} , and the
	naracter ere moi be smo	istics. No re likely t bkers (<i>P</i> <	ewly recr to be obe: < 0.001),	uited ind se ($P < 0$ employed	lividuals v .001), Ha d (<i>P</i> < 0.0	were olde n (<i>P</i> < 0.0 001), and	er (<i>P</i> < 0 001), and physicall	.001) and male (<i>P</i> y active (1 well-ed < 0.001) (P < 0.00	ucated (<i>i</i> , and the 1).
	naracter vere mor o be smo	istics. No re likely t bkers (P <	ewly recr to be obe: < 0.001),	uited ind se $(P < 0$ employed	lividuals v .001), Ha d (<i>P</i> < 0.0	were olde n (<i>P</i> < 0.0 001), and	er (<i>P</i> < 0 001), and physicall	.001) and male (<i>P</i> y active (1 well-ed < 0.001) (P < 0.00	ucated (<i>i</i> , and the <u>r</u> 1).
	aracter ere moi be smo	istics. No re likely t okers (<i>P</i> <	ewly recr to be obe: < 0.001),	uited ind se ($P < 0$ employed	lividuals v .001), Ha d (<i>P</i> < 0.0	were olde n (<i>P</i> < 0.0	er (<i>P</i> < 0 001), and physicall	.001) and male (<i>P</i> y active (1 well-ed < 0.001) (P < 0.00	ucated (<i>i</i> , and the
	aracter ere moi be smo	istics. No re likely t okers (<i>P</i> <	ewly recr to be obe: < 0.001),	uited ind se (<i>P</i> < 0 employed	lividuals v .001), Ha d (<i>P</i> < 0.0	were olde n (<i>P</i> < 0.0	er (<i>P</i> < 0 001), and physicall	.001) and male (<i>P</i> y active (1 well-ed < 0.001) (P < 0.00	ucated (<i>i</i> , and the <u>r</u> 1).
	haracter ere mon be smo	istics. No re likely t okers (<i>P</i> <	ewly recr to be obe: < 0.001),	uited ind se (<i>P</i> < 0 employed	lividuals v .001), Ha d (<i>P</i> < 0.0	were olde n (<i>P</i> < 0.0 001), and	er (<i>P</i> < 0 001), and physicall	.001) and male (<i>P</i> y active (1 well-ed < 0.001) (P < 0.00	ucated (<i>i</i> , and the <u>r</u> 1).
	haracter vere mor	istics. No re likely t okers (<i>P</i> <	ewly recr to be obe: < 0.001),	uited ind se (<i>P</i> < 0 employed	lividuals v .001), Ha d (<i>P</i> < 0.0	were olde n (<i>P</i> < 0.0	er (<i>P</i> < 0 001), and physicall	.001) and male (<i>P</i> y active (1 well-ed < 0.001) (P < 0.00	ucated (<i>i</i> , and the

[°] haracteristic	Time	Time entering the cohort			
	1991-1997	2000-2009	2011-2015		
Region					
Western	2256 (27.16)	611 (20.97)	523 (30.20)		
Central	2817 (33.92)	800 (27.45)	85 (4.91)	<0.001	
Northeastern	1288 (15.51)	794 (27.25)	83 (4.79)	<0.001	
Eastern	1945 (23.42)	709 (24.33)	1041 (60.10)		
Urban-rural					
Rural	5616 (67.61)	1717 (58.92)	777 (44.86)	<0.001	
Urban	2690 (32.39)	1197 (41.08)	955 (55.14)	<0.001	
Age (years)					
18-29	2374 (28.58)	695 (23.85)	221 (12.76)		
30-39	2382 (28.68)	854 (29.31)	345 (19.92)		
40-49	1752 (21.09)	621 (21.31)	424 (24.48)	< 0.001	
50-59	1004 (12.09)	405 (13.90)	456 (26.33)		
≥60	794 (9.56)	339 (11.63)	286 (16.51)		
Sex					
Male	3986 (47.99)	1168 (40.08)	736 (42.49)	<0.001	
Female	4320 (52.01)	1746 (59.92)	996 (57.51)	<0.001	
BMI (kg/m ²)					
<18.5	763 (9.27)	191 (6.60)	60 (3.46)		
18.5-23.9	6012 (73.07)	1776 (61.35)	955 (55.14)	<0.001	
24.0-27.9	1238 (15.05)	760 (26.25)	545 (31.47)	<0.001	
≥28	215 (2.61)	168 (5.80)	172 (9.93)		
Race					
Other	1038 (12.59)	340 (11.69)	72 (4.17)	-0.001	
Han	7204 (87.41)	2568 (88.31)	1656 (95.83)	<0.001	

BMJ Open

Other	1183 (14.29)	341 (11.82)	192 (11.14)	
Married	7098 (85.71)	2545 (88.18)	1531 (88.86)	< 0.001
Education attainment				
Primary school and below	4416 (53.81)	741 (26.43)	410 (23.73)	
Middle school	2377 (28.97)	1103 (39.34)	457 (26.45)	<0.001
High school or equivalent	1240 (15.11)	742 (26.46)	472 (27.31)	<0.001
College and above	173 (2.11)	218 (7.77)	389 (22.51)	
Employed				
No	1145 (13.85)	1044 (35.95)	716 (41.34)	<0.001
Yes	7121 (86.15)	1860 (64.05)	1016 (58.66)	<0.001
Smoking history				
Never or smoking cessation	5300 (64.72)	2163 (74.97)	1326 (77.18)	
Current smoker_cigarettes < 20/d	1481 (18.09)	370 (12.82)	205 (11.93)	< 0.001
Current smoker, eigarettes $\geq 20/d$	1408 (17.19)	352 (12.20)	187 (10.88)	
Alcohol consumption				
Never	5042 (61.82)	2037 (70.93)	1116 (65.03)	
Not more than once per month	469 (5.75)	102 (3.55)	144 (8.39)	
1-3 times per month	661 (8.10)	173 (6.02)	127 (7.40)	<0.001
1-2 times per week	781 (9.58)	227 (7.90)	127 (7.40)	<0.001
3-4 times per week	450 (5.52)	126 (4.39)	64 (3.73)	
On a daily basis	753 (9.23)	207 (7.21)	138 (8.04)	
Physical activity				
Very light	997 (12.56)	780 (27.73)	823 (49.46)	
Light	1307 (16.46)	799 (28.40)	453 (27.22)	<0.001
Moderate	1291 (16.26)	461 (16.39)	209 (12.56)	<0.001
Heavy or very heavy	4344 (54.71)	773 (27.48)	179 (10.76)	

*Overall, we included 11 685 individuals in the modelling analyses after excluding 97 individuals without
BMI, 74 without race, 62 without marital status, 214 without educational attainment, 50 without employment

2 3		
4 5 6 7	153	status, 160 without smoking history, 208 without alcohol consumption, and 449 without physical activity.
7 8 9	154	(Missing rate 9.78 %)
10 11 12	155	
13 14 15 16	156	Crude and age-standardized incidence
17 18 19	157	Table 3 presents the crude and age-standardized hypertension incidence during the study period. For the
20 21	158	calculation of hypertension incidence, we employed the full sample of 12 952 individuals with 53 703
22 23 24	159	observations. The age-standardized incidence of hypertension witnessed a significant increase, ranging from
25 26 27	160	40.8 per 1 000 person-years (95% CI: 38.3 to 43.4) between 1993 and 1997 to 48.6 per 1 000 person-years
28 29	161	(95% CI: 46.1 to 51.0) between 2011 and 2015. The increasing pattern was also exhibited among men (1993-
30 31 32	162	1997: 46.2, 95% CI: 42.1 to 50.4; 2011-2015: 55.7, 95% CI: 51.7 to 59.7) and women (1993-1997: 36.5,
33 34 35	163	95% CI: 33.2 to 39.7; 2011-2015: 43.3, 95% CI: 40.2 to 46.3).
36 37 38 39	164	
40 41 42		
42 43 44		
45		
40 47		
48		
49 50		
51		
52		
53 54		
55		
56		
57 58		
59		
60		

Incidence	1991	1993-1997	2000-2009	2011-2015
Total				
Case (person-year)	-	1114 (35486)	2571 (70575)	1434 (29492)
Crude incidence (95% CI)	-	31.3 (29.6-33.2)	36.4 (35.0-37.8)	48.6 (46.1-51.2)
Age-standardized incidence (95% CI)*	-	40.8 (38.3-43.4)	41.5 (39.9-43.2)	48.6 (46.1-51.0)
Male				
Case (person-year)	-	594 (17530)	1292 (32524)	699 (12532)
Crude incidence (95% CI)	-	33.8 (31.2-36.7)	39.7 (37.6-41.9)	55.7 (51.7-60.0)
Age-standardized incidence (95% CI)*	-	46.2 (42.1-50.4)	45.7 (43.0-48.3)	55.7 (51.7-59.7)
Female				
Case (person-year)		520 (17956)	1279 (38051)	735 (16960)
Crude incidence (95% CI)		28.9 (26.5-31.5)	33.6 (31.8-35.5)	43.3 (40.3-46.5)
Age-standardized incidence (95% CI)*	-	36.5 (33.2-39.7)	38.0 (35.9-40.1)	43.3 (40.2-46.3)
*Age-standardized incidence was calculated	using th	ne study sample in 2	2011-2015 as the sta	ndard population.
Extended Cox proportional hazard ana	lysis			
For the modeling analysis, we included	11 685	individuals without	ut missing data (m	issing rate, 9.78%
Among the identified cases, the duration f	rom fre	e of hypertension	to incident hyperte	nsion ranged from
to 24 years, with a median of 9 years.				
Table 4 presents results from extended Co	x propo	rtional hazard anal	ysis while taking v	ariations in baseling
ľ	1 1			
characteristics into account. First, the incre	easing ti	rends of hypertensi	ion incidence were	robust, as suggest
by the modeling results. Specifically, indi-	viduals	entering the cohor	t from 2000 to 200	9 (aHR = 1.10, 95

2 3		
4 5 6	176	hypertension in comparison with individuals entering the cohort from 1991 to 1997. With reference to
7 8 9	177	regional variations, individuals in Central (aHR = 1.26, 95% CI: 1.16 to 1.37), Northeastern (aHR = 1.56,
10 11	178	95% CI: 1.41 to 1.72), and Eastern China (aHR = 1.48, 95% CI: 1.36 to 1.63) respectively had a higher risk
12 13 14	179	of hypertension occurrence relative to their counterparts in Western China.
15 16 17 18 9 21 22 23 24 25 27 28 9 31 23 34 35 37 38 9 41 42 34 45 47 48 9 0 1 22 34 55 67 89 60 51 52 354 556 78 9 60	180	

Ref. 1.10 (1.01-1.21) 1.19 (1.04-1.37) Ref. 1.26 (1.16-1.37) 1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	0.025 0.010 <0.001 <0.001 <0.001 0.109
Ref. 1.10 (1.01-1.21) 1.19 (1.04-1.37) Ref. 1.26 (1.16-1.37) 1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	0.025 0.010 <0.001 <0.001 0.109
1.10 (1.01-1.21) 1.19 (1.04-1.37) Ref. 1.26 (1.16-1.37) 1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	0.025 0.010 <0.001 <0.001 0.109
1.19 (1.04-1.37) Ref. 1.26 (1.16-1.37) 1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	0.010 <0.001 <0.001 <0.001 0.109
Ref. 1.26 (1.16-1.37) 1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	<0.001 <0.001 <0.001 0.109
Ref. 1.26 (1.16-1.37) 1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	<0.001 <0.001 <0.001 0.109
1.26 (1.16-1.37) 1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	<0.001 <0.001 <0.001 0.109
1.56 (1.41-1.72) 1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	<0.001 <0.001 0.109
1.48 (1.36-1.63) 0.94 (0.88-1.01) Ref.	<0.001 0.109
0.94 (0.88-1.01) Ref.	0.109
Ref.	
Ref.	
1.93 (1.41-2.65)	< 0.001
3.99 (2.93-5.43)	< 0.001
5.16 (3.74-7.12)	< 0.001
9.11 (6.50-12.77)	<0.001
0.81 (0.74-0.88)	< 0.001
Ref.	
1.31 (1.16-1.48)	< 0.001
2.07 (1.81-2.36)	< 0.001
2.82 (2.37-3.34)	< 0.001
1.11 (1.01-1.23)	0.032
0.92 (0.83-1.02)	0.149
Ref.	
	Ref. 1.93 (1.41-2.65) 3.99 (2.93-5.43) 5.16 (3.74-7.12) 9.11 (6.50-12.77) 0.81 (0.74-0.88) Ref. 1.31 (1.16-1.48) 2.07 (1.81-2.36) 2.82 (2.37-3.34) 1.11 (1.01-1.23) 0.92 (0.83-1.02) Ref. 0.91 (0.84-0.99)

Table 4 Ext	tended Cox proportional	hazard analysis o	of hypertension	incidence
-------------	-------------------------	-------------------	-----------------	-----------

	High school or equivalent	0.86 (0.77-0.95)	0.002
	College and above	0.82 (0.68-0.98)	0.033
	Employed (yes vs. no)	0.90 (0.82-0.99)	0.036
	Smoking		
	Never or smoking cessation	Ref.	
	Current smoker, cigarettes < 20/d	0.98 (0.89-1.07)	0.752
	Current smoker, cigarettes $\geq 20/d$	1.05 (0.96-1.16)	0.237
	Alcohol consumption		
	never	Ref.	
	Not more than once per month	0.89 (0.78-1.03)	0.125
	1–3 times per month	1.17 (1.04-1.32)	0.006
	1–2 times per week	1.00 (0.89-1.12)	0.963
	3–4 times per week	1.05 (0.92-1.21)	0.412
	On a daily basis	1.18 (1.06-1.31)	0.002
	Physical activity		
	very light	Ref.	
	light	0.92 (0.83-1.02)	0.154
	moderate	0.99 (0.88-1.11)	0.930
	heavy and very	0.91 (0.82-1.02)	0.118
182	*Estimated time effect of age, $P < 0.00$)1	
107			
103			
184	In addition, there existed no urban-rura	l differences in dev	veloping hypertension (Table 4). Risks
185	hypertension increased with age, BMI	, and alcohol const	umption, while it was negatively asso
186	educational attainment. Women had a l	ower risk of incide	nt hypertension compared with men (a

95% CI: 0.74 to 0.88). Relative to those without a job, employees had a lower risk of developing hypertension

(aHR = 0.90, 95% CI: 0.82 to 0.99). Han individuals were significantly associated with a higher risk (aHR =

189 1.11, 95% CI: 1.01 to 1.23) relative to the minority.

DISCUSSION

By employing a study sample of 12 925 individuals from diverse social and geographic contexts, we found the age-standardized incidence of hypertension increased during the study period. The increasing pattern remained even after controlling for variations in baseline characteristics. Furthermore, we found that individuals in economically developed Eastern, Central, and Northeastern China had greater risks of incident hypertension in comparison with those in Western China.

Instead of focusing on the incidence measure, the vast majority of prior studies focused on the prevalence measure. For example, one of the previous studies in China indicated that the prevalence of hypertension rose substantially from 13.6% in 1991 to 27.9% in 2015.¹¹ The findings were further supplemented by results from Lu et al. (2017), which suggested a higher prevalence of hypertension among those aged between 35 and 75 years old (44.7%).²⁶ Compared with these earlier studies, our focus on the incidence measure provided a more accurate reflection of the epidemiologic transition of hypertension in China.¹² Our findings updated the trends of hypertension incidence in comparison with that from Liang et al. (2014), which indicated a similar pattern from 1991 to 2009.¹⁵ Even though hypertension incidence appeared to vary across countries.²⁷⁻²⁹ the comparison is untenable because we adopted different standard populations. Further empirical research across countries is warranted.

With the rapid economic development, people often change their dietary patterns from light diet to high salt and fat diet along with a secondary lifestyle.³⁰ These changes would significantly impact the prevalence and control of hypertension in China.³⁰ In addition, due to data limitation, we were unable to introduce several

BMJ Open

2		
4		
5 6 7	209	potential risks factors, such as sodium intake or dietary pattern, parental history, psychological status,
7 8 9	210	ambient air pollutants, working hours, and household income. ³¹⁻³⁴ These factors may explain the residual
10 11 12	211	time-effects in the model.
13 14 15	212	Although existing evidence on the regional disparities of hypertension incidence is scant, prior research
16 17	213	indicates that Central, Northeastern, and Eastern China had a higher prevalence of hypertension compared
18 19 20	214	with Western China, ³⁵ which is in line with our findings. In sharp contrast, prior investigators have noted
21 22 23	215	that Northeastern and Central China had lower all-cause mortality rates relative to Western China. ³⁶ These
24 25	216	findings appear to suggest that individuals in China's economically developed regions are experiencing
26 27 28	217	extended life expectancy with relatively unhealthy aging. ¹² However, one should be aware of the possibility
29 30 31	218	that although individuals in Western China had lower risks of hypertension compared with the other three
32 33 34	219	regions, local public awareness and timely treatment could be a challenging issue.
35 36	220	Differed from previous studies, ^{15 37} no urban-rural disparities were observed in the present study. This may
37 38 39	221	be a result of the narrowing gap of lifestyle between rural and urban residents. With the rapid economic
40 41 42	222	development and urbanization in the past few decades, the lifestyle and dietary pattern of rural residents are
43 44	223	approaching to those of their counterparts in urban China. ^{9 10} This possibility has been further supported by
45 46 47	224	the fact that the prevalence of hypertension in rural China exceeded that of urban China in 2015. ²⁶ Taking
48 49 50	225	into account the lower treatment rate and insufficient awareness among rural residents, ³⁸ one should direct
50 51 52	226	more attention to rural China.
53 54 55	227	Moreover, we found that smoking history was not associated with incident hypertension. The effect of
56 57	228	smoking on the development of the chronic disease is unclear and appears to differ across life courses. ³⁹⁻⁴¹

BMJ Open

Prior research based on Korean has found a J-shaped association between physical activity and incident hypertension,⁴² while the present study on Chinese did not observe a similar association, which is in line with findings based on Japanese.⁴³ The effect of physical activity on the development of hypertension seems to be controversial and varies across countries. Further analyses are warranted.

Consistent with the previous studies,⁴⁴⁻⁴⁷ several risk factors, including age, gender, educational attainment, race, alcohol consumption, and BMI, were confirmed by our analyses. The growing incidence of hypertension emphasizes the early prevention, education, detection, and management for hypertension.⁴⁸ Mentoring aforementioned lifestyle behaviors, such as alcohol consumption, may be helpful to constrain the hypertension incidence.⁴⁹ Public health and lifestyle interventions targeting high-risk individuals, such as older adults, men, and obese population, hold promise.

Conclusion

Hypertension incidence increased during the study period. Individuals in Eastern, Central, and Northeastern China had greater risks of hypertension in comparison with their counterparts in Western China. Risks of incident hypertension increased with age, BMI, and alcohol consumption, but negatively associated with educational attainment. The growth of hypertension incidence calls for more attention on the health education and health promotion of individuals with great risks.

Strengths and limitations of this study

The present study has two major strengths. First, the dynamic cohort study-design employed individuals from diverse social and geographic contexts, which enabled us to depict the long-term trends of hypertension incidence and regional disparities in the context of China's rapid social development and population aging.

3		
4		
5 6 7	249	In addition, we adopted both self-reported health outcomes and objective outcomes from physical tests,
8 9	250	which avoided the recall bias and underestimation in underserved areas.
10 11 12	251	Nevertheless, this study is subject to several limitations. First, we did not employ a national-representative
13 14 15	252	sample and did not include individuals from all provinces in China, which undermined the representation of
16 17 18	253	our findings. As a community-based survey, the CHNS excluded institutionalized individuals, which further
19 20	254	diminished the representation of our findings among Chinese. Third, 2018 Clinical Guideline in China
21 22 23	255	recommend to identify hypertension cases by using blood pressure values that are measured in different
24 25 26	256	days ²³ , while individuals' blood pressure data in the CHNS were collected on the same day in the CHNS,
27 28	257	leading to unavoidable bias. Last, we did not distinguish the grade of hypertension, and future research is
29 30 31	258	necessary.
32 33 34	259	
35 36 37	260	Acknowledgments We thank the National Institute for Nutrition and Health, China Center for Disease Control and
38 39 40	261	Prevention, Carolina Population Center at(P2C HD050924, T32 HD007168), the University of North Carolina at Chapel Hill,
41 42	262	the NIH (R01-HD30880, DK056350, R24 HD050924, and R01-HD38700) and the NIH Fogarty International Center (D43
43 44 45	263	TW009077, D43 TW007709) for financial support for the CHNS data collection and analysis files from 1989 to 2015 and
46 47 48	264	future surveys, and the China-Japan Friendship Hospital, Ministry of Health for support for CHNS 2009, Chinese National
49 50 51	265	Human Genome Center at Shanghai since 2009, and Beijing Municipal Center for Disease Prevention and Control since 2011.
52 53	266	Contributors WZ designed this study and revised the manuscript. Y-ML, FX, and X-XY performed data clean, statistical
54 55 56	267	analysis, and wrote the first draft of the manuscript, which P-YL and W-ZH subsequently revised. All authors read the article
57 58 59	268	and approve it for publication.

3 ⊿		
- 5 6 7	269	Funding This study was supported by China's National Development and Reform Commission Grant (No. 2018GFGW001)
7 8 9	270	to Wei Zhang.
10 11 12	271	Competing interests None declared.
13 14 15	272	Patient consent for publication Not required.
16 17 18	273	Ethics approval China Health and Nutrition Survey (CHNS) was approved by the ethics committee of Carolina Population
19 20	274	Center at the University of North Carolina at Chapel Hill and the NINH at the CCDC. Informed consent was obtained from
21 22 23	275	all subjects before the investigation. The present study derived data from the public domain, and therefore ethics statement
24 25 26	276	and informed consents were not applicable.
27 28 29	277	Data availability statement Data are available from China Health and Nutrition Survey
30 31	278	(https://www.cpc.unc.edu/projects/china/data/).
32 33	279	ORCID iD
34 35 36	280	Wei Zhang http://orcid.org/0000-0003-3113-9577
37	281	
38 39 40	282	REFERENCES
40 41	283	1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of
42	284	death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet
43 44	285	2018; 392: 1736-88.
45	286	2. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural,
46	287	environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a
47	288	systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923-94.
49 50	289	3. Llovd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart
51	290	Study. <i>Circulation</i> 2002; 106: 3068-72.
52 53	291	4. Lewington S, Clarke R, Oizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-
54 55	292	analysis of individual data for one million adults in 61 prospective studies. <i>Lancet</i> 2002; 360: 1903-13.
56	293	5. GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for
57 58 59 60	294	359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic

2 3		
4 5	295	analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1859-922.
6 7 8	296 297	6. Liew SJ, Lee JT, Tan CS, <i>et al.</i> Sociodemographic factors in relation to hypertension prevalence, awareness, treatment and control in a multi-ethnic Asian population_ a cross sectional study. <i>BMJ Open</i> 2019; 9: e025869.
9 10 11 12	298 299	7. Cho SMJ, Lee H, Kim HC. Differences in prevalence of hypertension subtypes according to the 2018 Korean Society. <i>Clin Hypertens</i> 2019; 25: 26.
13 14	300	8. GBD 2017 Mortality Collaborators. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-
15 16	301	2017: a systematic analysis for the Global Burden of Disease Study 2017. <i>Lancet</i> 2018; 392: 1684-735.
17	302	9. Gong P, Liang S, Carlton EJ, et al. Urbanisation and health in China. Lancet 2012; 379: 843-52.
18 19	303	10. LeBlanc AG, Chaput JP. Urbanisation and fitness: worrying trends from China. Lancet Child Adolesc Health 2019; 3:
20	304	837-9.
21 22 23	305 306	11. Wang Z, Chen Z, Zhang L, <i>et al.</i> Status of Hypertension in China: Results From the China Hypertension Survey, 2012-2015. <i>Circulation</i> 2018; 137: 2344-56.
24 25	307	12. Omran AR. The epidemiologic transition: a theory of the epidemiology of population change. 1971. Milbank Q 2005;
26 27	308	83(4): 731-57.
28	309	13. Geiss LS, Wang J, Cheng YJ, et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79
29 30	310	years, United States, 1980-2012. JAMA 2014; 312: 1218-26.
31 32	311	14. Chen Z, Li SN, Wang X, et al. The incidence of hypertension, overweight, and obesity and relationship with
33	312	cardiovascular events among middle-aged Chinese 6 years follow-up results. Zhonghua Xin Xue Guan Bing Za Zhi, 2020; 48:
34 35	313	47-53.
36 27	314	15. Liang Y, Liu R, Du S, et al. Trends in incidence of hypertension in Chinese adults, 1991-2009: the China Health and
37 38	315	Nutrition Survey. Int J Cardiol 2014; 175: 96-101.
39 40	316	16. Sun S, Chen J, Johannesson M, et al. Regional differences in health status in China: population health-related quality of
41	317	life results from the National Health Services Survey 2008. Health Place 2011; 17: 671-80.
42 43	318	17. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a
44	319	systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 394: 1145-58.
45 46	320	18. Pan J, Shallcross D. Geographic distribution of hospital beds throughout China: a county-level econometric analysis. Int
47 48	321	<i>J Equity Health</i> 2016; 15: 179.
49 50	322	19. Chen Y, Liang X, Zheng S, et al. Association of body fat mass and fat distribution with the incidence of hypertension in
51	323	a population-based chinese cohort: a 22-year follow-up. J Am Heart Assoc 2018; 7: e007153.
52 53	324	20. Sun Z, Zheng L, Zhang X, et al. Ethnic differences in the incidence of hypertension among rural Chinese adults: results
54	325	from Liaoning Province. PLoS One 2014; 9: e86867.
55 56	326	21. Chen X, Liu Y, Sun X, et al. Comparison of body mass index, waist circumference, conicity index, and waist-to-height
57 58 59 60	327	ratio for predicting incidence of hypertension: the rural Chinese cohort study. J Hum Hypertens 2018; 32: 228-35.

BMJ Open

2 3						
4 5	328	22 Popkin BM Du S Zhai F <i>et al</i> Cohort Profile: The China Health and Nutrition Surveymonitoring and understanding				
5 6 7	329	socio-economic and health change in China, 1989-2011. <i>Int J Epidemiol</i> 2010; 39: 1435-40.				
8	330	23. Williams B, Mancia G. Ten Commandments of the 2018 ESC/ESH HTN Guidelines on Hypertension in Adul				
9 10	331	<i>Heart J</i> 2018; 39: 3007-8.				
11 12	332	24 Qi SF, Zhang B, Wang HJ, <i>et al.</i> Joint effects of age and body mass index on the incidence of hypertension subtypes in				
13 14	333	the China Health and Nutrition Survey: a cohort study over 22years. Prev Med 2016; 89: 23-30.				
14	334	25 Gao M, Kuang W, Qiu P, et al. The time trends of cognitive impairment incidence among older Chinese people in the				
16	335	community: based on the CLHLS cohorts from 1998 to 2014. Age Ageing 2017; 46: 787-93.				
17 18	336	26 Lu J, Lu Y, Wang X, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million				
19	337	adults in a population-based screening study (China PEACE Million Persons Project). Lancet 2017; 390: 2549-58.				
20 21	338	27 Mendance PD Lones AC Pimente AM at al Ultra processed food consumption and the incidence of hypertension in a				
22 23	338 339	mediterranean cohort: The Seguimiento Universidad de Navarra Project. <i>Am J Hypertens</i> 2017; 30: 358-66.				
24 25	340	28 Li M, McDermott R. Obesity, albuminuria, and gamma-glutamyl transferase predict incidence of hypertension in				
25 26	341	indigenous Australians in rural and remote communities in northern Australia. J Hypertens 2015; 33: 704-9; discussion 709-				
27 28	342	710.				
29	343	29 Bernabe-Ortiz A, Sanchez JF, Carrillo-Larco RM, et al. Rural-to-urban migration and risk of hypertension: longitudinal				
30 31	344	results of the PERU MIGRANT study. J Hum Hypertens 2017; 31: 22-8.				
32	345	30 Fan WG, Xie F, Wan YR, et al. The impact of changes in population blood pressure on hypertension prevalence and				
33 34	346	control in China. J Clin Hypertens (Greenwich) 2020; 22: 150-6.				
35 36	347	31 He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review				
30 37	348	and meta-analysis of randomised trials. BMJ 2013; 346: f1325.				
38 30	349	32 Gando Y. Sawada SS. Kawakami R. <i>et al.</i> Combined association of cardiorespiratory fitness and family history of				
40 41	350	hypertension on the incidence of hypertension: a long-term cohort study of Japanese males. <i>Hypertens Res</i> 2018; 41: 1063-9.				
42	351	33 Bo Y, Guo C, Lin C, et al. Dynamic changes in leong-term exposure to ambient particulate matter and incidence of				
43 44	352	hypertension in adults. <i>Hypertension</i> 2019; 74: 669-77.				
45 46	353	34 Trudel X, Brisson C, Gilbert-Ouimet M, et al. Long working hours and the prevalence of masked and sustained				
47	354	hypertension. Hypertension 2020; 75: 532-8.				
48 49	355	35 Li J, Shi L, Li S, et al. Urban-rural disparities in hypertension prevalence, detection, and medication use among Chinese				
50 51	356	Adults from 1993 to 2011. Int J Equity Health 2017, 16: 50.				
52	357	36 Yu X, Zhang W. All-cause mortality rate in China: do residents in economically developed regions have better health?				
53 54	358	Int J Equity Health 2020, 19: 12.				
55	359	37 Arici M, Turgan C, Altun B, et al. Hypertension incidence in Turkey (HinT): a population-based study. J Hypertens 2010;				
56 57	360	28: 240-4.				
58 59 60	361	38 Feng XL, Pang M, Beard J. Health system strengthening and hypertension awareness, treatment and control: data from				

2 3								
4 5	362	the China Health and Retirement Longitudinal Study. Bull World Health Organ 2014; 92: 29-41.						
6 7	363	39 Kim BJ, Seo DC, Kim BS, et al. Relationship between cotinine-verified smoking status and incidence of hyperten						
8	364	74,743 Korean adults. <i>Circ J</i> 2018; 82: 1659-65.						
9 10	365	40 Gao K Shi X Wang W The life-course impact of smoking on hypertension myocardial infarction and respiratory						
11 12	366	diseases. <i>Sci Rep</i> 2017, 7: 4330.						
13	367	41 Li G, Wang H, Wang K, et al. The association between smoking and blood pressure in men: a cross-sectional study. BMC						
14 15	368	Public Health 2017, 17: 797.						
16 17	369	42 Kim Y, Sharp S, Hwang S, et al. Exercise and incidence of myocardial infarction, stroke, hypertension, type 2 diabetes						
17	370	and site-specific cancers: prospective cohort study of 257 854 adults in South Korea. BMJ Open 2019; 9: e025590.						
19 20	371	43 Lu Y, Lu M, Dai H, et al. Lifestyle and risk of hypertension: follow-up of a young pre-hypertensive cohort. Int J Med Sci						
21 22	372	2015, 12: 605-12.						
23	373	44 Jayawardana NWIA, Jayalath WATA, Madhujith WMT, et al. Aging and obesity are associated with undiagnosed						
24 25	374	hypertension in a cohort of males in the Central Province of Sri Lanka: a cross-sectional descriptive study. BMC Cardiovasc						
25 26	375	Disord 2017; 17: 165.						
27 28	376	45 Sinnott SJ, Smeeth L, Williamson E, et al. Trends for prevalence and incidence of resistant hypertension: population						
29 30	377	based cohort study in the UK 1995-2015. BMJ 2017; 358: j3984.						
31	378	46 Zhou W, Shi Y, Li YQ, et al. Body mass index, abdominal fatness, and hypertension incidence: a dose-response meta-						
32 33	379	analysis of prospective studies. J Hum Hypertens 2018; 32: 321-33.						
34	380	47 Roerecke M, Kaczorowski J, Tobe SW, et al. The effect of a reduction in alcohol consumption on blood pressure: a						
35 36	381	systematic review and meta-analysis. Lancet Public Health 2017; 2: e108-20.						
37 38	382	48 Whelton PK, Carey RM, Aronow WS, et al. 2017						
39	383	ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation,						
40	384	and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of						
41 42	385	Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018; 138: e426-83.						
43	386	49 Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian						
44 45	387	randomisation analysis based on individual participant data. BMJ 2014; 349: g4164.						
46 47	388							
48 40	389	Figure 1 Flowchart showing the selection of the subjects who were included in the final analysis of						
49 50	390	hypertension incidence in China with covariate information missing rate of 9 78%						
51	570	is percension incluence in clinic, with covariate information information information of years						
52	391							
53 54	571							
55								
56								
57								
58								
59 60								

143 586 observations	
	22 records without individual ID or
	community ID
38 536 individuals, 143 564 observations	
	Excluded 25 584 individuals, 79 249 observations: • 12 387 individuals < 18 years old in
	the first investigation
0	• 12 861 individuals with ≤ 1 time of
	hypertension observation or had
	hypertension in the first investigation
	 336 individuals were pregnant
	during the follow up duration
12 952 individuals, 64 315 observations	
	10 612 observations after developing
	hypertension
12 952 individuals, 53 703 observations	

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	t page 1
		(b) Provide in the abstract an informative and balanced summary of what was done	
		and what was found	page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	page 4
Objectives	3	State specific objectives including any prespecified hypotheses	page 5
Mathada		Sate speente objectives, metalang any prespective hypotheses	1.9.1
Study design	1	Present key elements of study design early in the paper	page 6
Sotting	5	Describe the setting locations, and relevant dates including periods of recruitment	1.0.1
Setting	0	exposure follow-up and data collection	page 6-7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
1 articipants	0	selection of participants. Describe methods of follow-up	(Cohort
		<i>Case-control study</i> —Give the eligibility criteria and the sources and methods of	study)
		case ascertainment and control selection. Give the rationale for the choice of cases	puge o /
		and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria and the sources and methods of	,
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	(Coho
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of	f study)
		controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect	t c
		modifiers. Give diagnostic criteria, if applicable	page 6-
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	
measurement		assessment (measurement). Describe comparability of assessment methods if there	page 5-
		is more than one group	
Bias	9	Describe any efforts to address potential sources of bias page	e^2 and 7
Study size	10	Explain how the study size was arrived at	page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	n age 6
		describe which groupings were chosen and why	page 0
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	page 7-8
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		Cross-sectional study—If applicable, describe analytical methods taking account of	f
		sampling strategy	
		(e) Describe any sensitivity analyses	
Continued on next page			

1
4
5
6
7
,
8
9
10
11
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
32
22
33
34
35
36
27
37
38
39
40
л <u>л</u>
41
42
43
44
45
40
40
47
48
49
50
50
51
52
53
51
54
55
56
57
58
50
59
60

Results				
Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible examined for eligibility, confirmed eligible, included in the study, completing follow-up, analysed		e, , and	page 8, figure 1, and table	
(b) Give reasons for non-p		(b) Give reasons for non-participation at each stage		9
		(c) Consider use of a flow diagram		
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and inform	nation	page
data		on exposures and potential confounders		9-11
		(b) Indicate number of participants with missing data for each variable of interest		page 11-12
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)		page 13
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time		<u>C</u> ohort
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure	of	study: page 13
		Cross-sectional study—Report numbers of outcome events or summary measures		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their		page 13-16
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	r and	1 0
		why they were included		
		(b) Report category boundaries when continuous variables were categorized	1	bage 15
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a mear	ingful	
		time period	not a	pplicable
Other analyses 17 Report other analyses done—eg analyses of subgroups and inte		Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	not a	oplicable
		analyses		
Discussion				
Key results	18	18 Summarise key results with reference to study objectives page		17-19
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecis	sion.	
		Discuss both direction and magnitude of any potential bias	page	19-20
Interpretation	terpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity		plicity	
		of analyses, results from similar studies, and other relevant evidence	page 1	19
Generalisability	21	Discuss the generalisability (external validity) of the study results page 17-19		7-19
Other information	on			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applic	able,	page 20
		for the original study on which the present article is based		

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Long-term trends and regional variations of hypertension incidence in China: a prospective cohort study from the China Health and Nutrition Survey, 1991-2015

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042053.R2
Article Type:	Original research
Date Submitted by the Author:	23-Nov-2020
Complete List of Authors:	Luo, Yunmei; Sichuan University West China Hospital Xia, Fan; Sichuan University West China Hospital Yu, Xuexin; Sichuan University West China Hospital Li, Peiyi; Sichuan University West China Hospital Huang, Wenzhi; Sichuan University West China Hospital, Department of Infection Control Zhang, Wei; Sichuan University,
Primary Subject Heading :	Public health
Secondary Subject Heading:	Cardiovascular medicine, Epidemiology
Keywords:	Hypertension < CARDIOLOGY, EPIDEMIOLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	I
1	Title Page
2	Title : Long-term trends and regional variations of hypertension incidence in China: a
3	prospective cohort study from the China Health and Nutrition Survey, 1991-2015
4	Yun-Mei Luo, ^{1,2} Fan Xia, ³ Xue-Xin Yu, ⁴ Pei-Yi Li, ¹ Wen-Zhi Huang, ⁵ Wei Zhang ⁴
5	
6	¹ Institute of Hospital Management, West China Hospital, Sichuan University, Chengdu, China
7	² West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
8	³ Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
9	⁴ West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
10 ⁵ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, Chin	
11	
12	2
13	Correspondence to
14	Wei Zhang, weizhanghx@163.com
	Wei Zhung, Weizhungin @105.00m
15	
16	ABSTRACT
17	Objective The aim is to explore the trends of hypertension incidence and regional variations in China from
18	1991 to 2015.
19	Design A dynamic prospective cohort study.
20	Setting China Health and Nutrition Survey (CHNS) 1991-2015.

60

3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
17	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30	
3/ 20	
20	
<u>79</u>	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
00	

21	Participants	12 952 Chinese adults aged 18+
----	--------------	--------------------------------

22 **Primary outcome measures** Incident hypertension from 1993 to 2015.

23 **Results** Age-standardized hypertension incidence increased from 40.8 per 1 000 person-years (95% CI, 24 38.3 to 43.4) between 1993 and 1997 to 48.6 (95% CI, 46.1 to 51.0) between 2011 and 2015. The increasing 25 trends were further supported by results from subsequent extended Cox proportional hazard model. In 26 addition, results from the modelling analysis showed that individuals in Eastern, Central, and Northeastern 27 China had greater risks of hypertension occurrence in comparison with their counterparts in Western China. 28 Hypertension incidence increased during the study period. The growth called for more Conclusion 29

attention on the health education and health promotion of individualss with great risks.

```
30
```

32

33

34

35

36

37

38

39

40

41

31 Strengths and limitations of this study

► The dynamic cohort study-design employed individuals from diverse social and geographic contexts, which enabled us to depict the long-term trends of hypertension incidence and regional disparities in

the context of China's rapid social development and population aging.

► We adopted both self-reported health outcomes and objective outcomes from physical tests, which to some extent minimized the recall bias and underestimation in underserved areas.

► We did not employ a national-representative sample and did not include individuals from all provinces in China, which undermined the representation of our findings.

• Guidelines recommend to identify hypertension cases by using blood pressure values that are measured in different days, while individuals' blood pressure data in the CHNS were collected on the same day, which may lead to unavoidable bias.

BMJ Open

► We did not distinguish the grade of hypertension, and future research is necessary.

I.

44 INTRODUCTION

Along with aging population, non-communicable chronic diseases, particularly stroke and ischemic heart disease, have led to great burden of disease, deaths, and years of life lost (YLLs) in both developed and developing countries.¹ ² Connected closely with various cardiovascular diseases,³ ⁴ high systolic blood pressure was ranked as the leading risk factor of risk-attributable disability-adjusted life-years (DALYs) among selected 195 countries and territories.⁵ For instance, high systolic blood pressure accounted for 2.54 million deaths and more than 5% of DALYs in China in 2017.⁶

Existing evidence has confirmed a worldwide high prevalence of hypertension.⁴⁻⁶ Countries, such as Singapore⁶ and Korea⁷, had a significant proportion of individuals with hypertension. Likewise, with the extended life expectancy,⁸ changes in lifestyle behaviors,⁹ and rapid urbanization,¹⁰ developing countries, such as China, experienced a substantial increase in the prevalence of hypertension, ranging from 13.6% in 1991 to 27.9% in 2015.¹¹

Although the increasing prevalence of hypertension provided critical information for public health practice and disease control programs, it could not accurately depict the epidemiologic transition as the incidence measure.¹² Prior studies have indicated that the increasing prevalence could coexist with the decreasing incidence in the context of healthy aging.¹³ For evidence-based health-promoting initiatives, empirical research on hypertension incidence is warranted.

However, research on the long-term trends of the incidence of hypertension from China is scare and relatively outdated.^{14 15} This is an important knowledge gap because developing countries are experiencing unprecedented social development. Up-to-date information among developing countries could greatly 64 contribute to depict global epidemiologic transitions. Moreover, regional disparities are a major health 65 concern in China as a result of inequitable socio-economic development and health care resource 66 distribution,¹⁶⁻¹⁸ while the existing research provides insufficient information regarding the regional 67 disparities in the hypertension incidence.¹⁹⁻²¹

68 Hence, this study aims to explore the long-term trends of hypertension incidence among Chinese from 69 diverse social and geographic contexts. In addition, we are particularly interested in regional variations while 70 taking the individual-level risk factors into account.

71 METHODS

72 Data source

The present study derived data from the China Health and Nutrition Survey (CHNS). CHNS has been collaboratively conducted by Carolina Population Center at the University of North Carolina at Chapel Hill and the National Institute for Nutrition and Health (NINH, former National Institute of Nutrition and Food Safety) at the Chinese Center for Disease Control and Prevention. Initiated in 1989, CHNS consisted of ten-wave data in 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011, and 2015, respectively. Overall, CHNS employed a multistage random cluster method to draw the study sample, which included over 30 000 individuals from three provincial-level cities and twelve provinces. Individuals in the survey came from diverse social, geographic, and cultural contexts. CHNS employed face-to-face questionnaire interviews to collect data, and the physical health examinations were conducted by well-trained investigators. Information regarding survey design, data collection, and quality control could be retrieved from the cohort profile.²²

83 Study design and exclusion criteria

The present study employed a dynamic cohort study-design as not all individuals entered the cohort at the same time. To evaluate the long-term trends of hypertension incidence, we excluded individuals (a) without individual ID and community ID; (b) aged under 18 because of the low incidence of hypertension among children and teenagers; (c) with hypertension in his/her first investigation; (d) with only one observation or only one record of hypertension status; and (e) were pregnant during the study period to exclude gestational hypertension. Furthermore, we excluded observations after the diagnosis of hypertension (figure 1). As death data were not available in CHNS, censoring could be for death or lost to follow up.

91 Exposures

The primary exposure variable of this study were the timing of entering the cohort and geographic regions. For modeling analyses, it was not feasible to treat the waves as continuous variables, and therefore we respectively grouped the individuals entering the cohort from (a) 1991, 1993, and 1997; (b) 2000, 2004, 2006, and 2009; and (c) 2011 and 2015. In this case, two dummies were introduced in the model with individuals from 1991 to 1997 as the reference group.

Geographic regions were defined according to the bulletin of the National Bureau of Statistics of China.
Specifically, we grouped individuals from (a) Beijing, Shanghai, Jiangsu Province, Zhejiang Province, and
Shandong Province as Eastern China; (b) Henan Province, Hubei Province, and Hunan Province as Central
China; (c) Liaoning Province and Heilongjiang Province as Northeastern China; and (d) Yunnan Province,
Guangxi Zhuang Autonomous Region, Guizhou Province, Chongqing, and Shanxi Province as Western
China.

103 Outcomes

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
1/
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
22
27
34
35
36
37
38
39
40
41
40 40
42
43
44
45
46
47
48
49
50
51
51 52
52
53
54
55
56
57
58
59
60
00

> 104 We included incidence of hypertension as the primary outcome. First, we adopted self-reported hypertension, 105 which was derived from the answer to the question, "Has a doctor ever told you that you had high blood 106 pressure?". If individuals self-reported no hypertension history, the outcomes would be further supplemented 107 by the blood pressure tests to avoid the recall bias and underestimation from self-reported measures. 108 According to the criteria of the 2018 Clinical Guideline in China and the 2018 ESC/ESH HTN Guideline,²³ 109 hypertension was confirmed with the systolic blood pressure (SBP)≥140 mmHg or with the diastolic blood 110 pressure $(DBP) \ge 90$ mmHg. To guarantee the accuracy of the tests, the blood pressure was detected in 111 triplicate by professional health workers on the same day. 112 **Covariates** To adjust for variations in baseline characteristics, we introduced several confounding factors that may 113 influence the occurrence of hypertension. These factors included urban vs. rural settings, sociodemographic 114 115 characteristics (age, sex, race, marital status, educational attainment, and employment status), and lifestyle attributes (BMI, smoking behaviors, alcohol consumption, and physical activity).^{15 24} 116 117 **Statistical analysis** First, we performed chi-square tests and Kruskal-Wallis rank-sum tests to evaluate variations in baseline 118 119 characteristics over time. Second, we calculated the crude incidence of hypertension as below:²⁵ Incidence = $\frac{\text{number of new hypertension cases}}{\text{total person - years at risk}}$ 120 The 'person-years at risk' is the period from the first hypertension-free year to the year when the subsequent 121 hypertension is confirmed. In addition, we conducted direct standardization to calculate the age-standardized 122

2		
4		
5 6 7	123	incidence of hypertension by using the study sample from wave 2011 and wave 2015 as the standard
7 8 9	124	population. Subgroup analyses were conducted by sex.
10 11 12 13	125	To further evaluate the long-term trends and geographic variations of incident hypertension, we performed
14 15	126	an extended Cox proportional hazard model while including all covariates to control for baseline variations.
16 17 19	127	Because the effect of age didn't conform to the proportional hazard assumption, we performed a time-
19 20	128	dependent Cox regression model with age as a time-dependent variable. As for sensitivity analyses, we
21 22 23	129	construct the multi-level Poisson regression indicating similar findings.
24 25 26	130	Data analyses were performed with Stata 15.0 (StataCorp, TX, USA). A two-tailed P value of less than 0.05
27 28	131	was considered statistical significance.
29 30 31 32	132	Patient and public involvement statement
33 34 35	133	Patients and the public were not involved in the research.
36 37 38	134	RESULTS
39 40 41 42	135	Study population
43 44 45	136	The CHNS consisted of data of 38 558 individuals with 143 586 observations from 1989 and 2015, and the
46 47	137	present study only included 12 952 individuals from 1991 to 2015 after sample selection (figure 1). Table 1
48 49 50	138	presents the distribution of observations from included individuals during the study period. For example, 5
51 52 53	139	938 individuals entered the cohort in 1991, with only 912 followed-up in 2015 (table 1). Among the 12 952
54 55	140	participants, 5 119 of them developed hypertension during the follow-up period.
56 57 58 59	141	
60		

1991 5938 1993 5166 677 997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations exister acteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (F re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	989 991 5938 993 5166 677 997 3313 485 1691 000 2658 335 1451 1009 004 2050 234 1037 813 837 006 1722 188 865 642 684 376 009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0		1991	1993	1997	2000	2004	2006	2009	2011	2015
1991 5938 1993 5166 677 1997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0	991 5938 993 5166 677 997 3313 485 1691 000 2658 335 1451 1009 004 2050 234 1037 813 837 006 1722 188 865 642 684 376 009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0	1989									
1993 5166 677 1997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations exister aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (P re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	993 5166 677 997 3313 485 1691 000 2658 335 1451 1009 004 2050 234 1037 813 837 006 1722 188 865 642 684 376 009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0	1991	5938								
1997 3313 485 1691 2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations existed tracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (P re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	997 3313 485 1691 000 2658 335 1451 1009 004 2050 234 1037 813 837 006 1722 188 865 642 684 376 009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0	1993	5166	677							
2000 2658 335 1451 1009 2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations existed aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (P re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	000 2658 335 1451 1009 004 2050 234 1037 813 837 006 1722 188 865 642 684 376 009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0	1997	3313	485	1691						
2004 2050 234 1037 813 837 2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations existed aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (P re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	004 2050 234 1037 813 837 006 1722 188 865 642 684 376 009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0 All 2 presents the baseline characteristics of the study sample. Overall, variations exists racteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (A is more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and the end of the study sample of the study satisfies ($P < 0.001$), and the end of the study satisfies ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2000	2658	335	1451	1009					
2006 1722 188 865 642 684 376 2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0	006 1722 188 865 642 684 376 009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0	2004	2050	234	1037	813	837				
2009 1378 142 385 398 413 302 692 2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations exists aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (P re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	009 1378 142 385 398 413 302 692 011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0	2006	1722	188	865	642	684	376			
2011 1200 114 329 335 359 216 630 1732 2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations existent aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (F re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	011 1200 114 329 335 359 216 630 1732 015 912 86 250 236 231 152 353 1732 0 116 2 presents the baseline characteristics of the study sample. Overall, variations exist racteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (R re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and the re smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2009	1378	142	385	398	413	302	692		
2015 912 86 250 236 231 152 353 1732 0 ble 2 presents the baseline characteristics of the study sample. Overall, variations existed aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (F re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	015 912 86 250 236 231 152 353 1732 0 ole 2 presents the baseline characteristics of the study sample. Overall, variations exist racteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (A re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and the re smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2011	1200	114	329	335	359	216	630	1732	
ble 2 presents the baseline characteristics of the study sample. Overall, variations existent aracteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (F re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and they be smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	whe 2 presents the baseline characteristics of the study sample. Overall, variations exist racteristics. Newly recruited individuals were older ($P < 0.001$) and well-educated (A re more likely to be obese ($P < 0.001$), Han ($P < 0.001$), and male ($P < 0.001$), and the re smokers ($P < 0.001$), employed ($P < 0.001$), and physically active ($P < 0.001$).	2015	912	86	250	236	231	152	353	1732	0
		ere mo be smo	re likely t okers (<i>P</i> <	to be obe: < 0.001),	se $(P < 0)$.001), Ha d (<i>P</i> < 0.0	n (<i>P</i> < 0.0	001), and physicall	male (<i>P</i>	< 0.001)	, and the 1).
			X	,,	1 5	× ·	,,	1 5		2/	,

Navaataristia	Time entering the cohort				
	1991-1997	2000-2009	2011-2015	<i>P</i> value	
Region					
Western	2256 (27.16)	611 (20.97)	523 (30.20)		
Central	2817 (33.92)	800 (27.45)	85 (4.91)	<0.001	
Northeastern	1288 (15.51)	794 (27.25)	83 (4.79)	<0.001	
Eastern	1945 (23.42)	709 (24.33)	1041 (60.10)		
Urban-rural					
Rural	5616 (67.61)	1717 (58.92)	777 (44.86)	<0.001	
Urban	2690 (32.39)	1197 (41.08)	955 (55.14)	<0.001	
Age (years)					
18-29	2374 (28.58)	695 (23.85)	221 (12.76)		
30-39	2382 (28.68)	854 (29.31)	345 (19.92)		
40-49	1752 (21.09)	621 (21.31)	424 (24.48)	< 0.001	
50-59	1004 (12.09)	405 (13.90)	456 (26.33)		
≥60	794 (9.56)	339 (11.63)	286 (16.51)		
Sex					
Male	3986 (47.99)	1168 (40.08)	736 (42.49)	.0.001	
Female	4320 (52.01)	1746 (59.92)	996 (57.51)	<0.001	
BMI (kg/m ²)					
<18.5	763 (9.27)	191 (6.60)	60 (3.46)		
18.5-23.9	6012 (73.07)	1776 (61.35)	955 (55.14)	-0.001	
24.0-27.9	1238 (15.05)	760 (26.25)	545 (31.47)	<0.001	
≥28	215 (2.61)	168 (5.80)	172 (9.93)		
Race					
Other	1038 (12.59)	340 (11.69)	72 (4.17)	.0.001	
Han	7204 (87.41)	2568 (88.31)	1656 (95.83)	<0.001	
Marital status					

BMJ Open

Other	1183 (14.29)	341 (11.82)	192 (11.14)	
Married	7098 (85.71)	2545 (88.18)	1531 (88.86)	< 0.001
Education attainment				
Primary school and below	4416 (53.81)	741 (26.43)	410 (23.73)	
Middle school	2377 (28.97)	1103 (39.34)	457 (26.45)	<0.001
High school or equivalent	1240 (15.11)	742 (26.46)	472 (27.31)	<0.001
College and above	173 (2.11)	218 (7.77)	389 (22.51)	
Employed				
No	1145 (13.85)	1044 (35.95)	716 (41.34)	<0.001
Yes	7121 (86.15)	1860 (64.05)	1016 (58.66)	<0.001
Smoking history				
Never or smoking cessation	5300 (64.72)	2163 (74.97)	1326 (77.18)	
Current smoker, cigarettes < 20/d	1481 (18.09)	370 (12.82)	205 (11.93)	< 0.001
Current smoker, cigarettes $\geq 20/d$	1408 (17.19)	352 (12.20)	187 (10.88)	
Alcohol consumption				
Never	5042 (61.82)	2037 (70.93)	1116 (65.03)	
Not more than once per month	469 (5.75)	102 (3.55)	144 (8.39)	
1-3 times per month	661 (8.10)	173 (6.02)	127 (7.40)	<0.001
1-2 times per week	781 (9.58)	227 (7.90)	127 (7.40)	<0.001
3-4 times per week	450 (5.52)	126 (4.39)	64 (3.73)	
On a daily basis	753 (9.23)	207 (7.21)	138 (8.04)	
Physical activity				
Very light	997 (12.56)	780 (27.73)	823 (49.46)	
Light	1307 (16.46)	799 (28.40)	453 (27.22)	<0.001
Moderate	1291 (16.26)	461 (16.39)	209 (12.56)	<u>\0.001</u>
Heavy or very heavy	4344 (54.71)	773 (27.48)	179 (10.76)	

*Overall, we included 11 685 individuals in the modelling analyses after excluding 97 individuals without
BMI, 74 without race, 62 without marital status, 214 without educational attainment, 50 without employment

152	status, 160 without smoking history, 208 without alcohol consumption, and 449 without physical activity.
153	(Missing rate 9.78 %)
154	
155	Crude and age-standardized incidence
156	Table 3 presents the crude and age-standardized hypertension incidence during the study period. For the
157	calculation of hypertension incidence, we employed the full sample of 12 952 individuals with 53 703
158	observations. The age-standardized incidence of hypertension witnessed a significant increase, ranging from
159	40.8 per 1 000 person-years (95% CI: 38.3 to 43.4) between 1993 and 1997 to 48.6 per 1 000 person-years
160	(95% CI: 46.1 to 51.0) between 2011 and 2015. The increasing pattern was also exhibited among men (1993-
161	1997: 46.2, 95% CI: 42.1 to 50.4; 2011-2015: 55.7, 95% CI: 51.7 to 59.7) and women (1993-1997: 36.5,
162	95% CI: 33.2 to 39.7; 2011-2015: 43.3, 95% CI: 40.2 to 46.3).
163	

Incidence	1991	1993-1997	2000-2009	2011-2015		
Total						
Case (person-year)	-	1114 (35486)	2571 (70575)	1434 (29492)		
Crude incidence (95% CI)	-	31.3 (29.6-33.2)	36.4 (35.0-37.8)	48.6 (46.1-51.2)		
Age-standardized incidence (95% CI)*	-	40.8 (38.3-43.4)	41.5 (39.9-43.2)	48.6 (46.1-51.0)		
Male						
Case (person-year)	-	594 (17530)	1292 (32524)	699 (12532)		
Crude incidence (95% CI)	-	33.8 (31.2-36.7)	39.7 (37.6-41.9)	55.7 (51.7-60.0)		
Age-standardized incidence (95% CI)*	-	46.2 (42.1-50.4)	45.7 (43.0-48.3)	55.7 (51.7-59.7)		
Female						
Case (person-year)	<u> </u>	520 (17956)	1279 (38051)	735 (16960)		
Crude incidence (95% CI)	-	28.9 (26.5-31.5)	33.6 (31.8-35.5)	43.3 (40.3-46.5)		
Age-standardized incidence (95% CI)*	-	36.5 (33.2-39.7)	38.0 (35.9-40.1)	43.3 (40.2-46.3)		
Extended Cox proportional hazard anal	ysis					
For the modeling analysis, we included 11 685 individuals without missing data (missing rate, 9.78%)						
Among the identified cases, the duration f	rom fre	e of hypertension	to incident hyperte	nsion ranged from		
to 24 years, with a median of 9 years.						
Table 4 presents results from extended Co.	x propo	rtional hazard anal	lysis while taking v	variations in baseli		
characteristics into account. First, the incre	easing tr	rends of hypertensi	ion incidence were	robust, as suggest		
by the modeling results. Specifically, indiv	viduals	entering the cohor	t from 2000 to 200	9 (aHR = 1.10, 95		

2 3		
4 5 6	175	hypertension in comparison with individuals entering the cohort from 1991 to 1997. With reference to
7 8 9	176	regional variations, individuals in Central (aHR = 1.26, 95% CI: 1.16 to 1.37), Northeastern (aHR = 1.56,
10 11	177	95% CI: 1.41 to 1.72), and Eastern China (aHR = 1.48, 95% CI: 1.36 to 1.63) respectively had a higher risk
12 13 14	178	of hypertension occurrence relative to their counterparts in Western China.
15 16 17 18 20 21 22 23 25 26 27 28 29 31 23 34 35 37 38 9 41 42 34 45 46 7 89 51 22 34 55 67 58 960	179	
Characteristic	aHR (95% CI)	P value
-------------------------------	-------------------	---------
Timing of entering the cohort		
1991-1997	Ref.	
2000-2009	1.10 (1.01-1.21)	0.025
2011-2015	1.19 (1.04-1.37)	0.010
Geographic region		
Western	Ref.	
Central	1.26 (1.16-1.37)	< 0.001
Northeastern	1.56 (1.41-1.72)	< 0.001
Eastern	1.48 (1.36-1.63)	< 0.001
Urban (vs. rural)	0.94 (0.88-1.01)	0.109
Age*		
18-29	Ref.	
30-39	1.93 (1.41-2.65)	< 0.001
40-49	3.99 (2.93-5.43)	< 0.001
50-59	5.16 (3.74-7.12)	< 0.001
≥60	9.11 (6.50-12.77)	<0.001
Female (vs. male)	0.81 (0.74-0.88)	< 0.001
BMI (kg/m ²)		
<18.5	Ref.	
18.5-23.9	1.31 (1.16-1.48)	< 0.001
24.0-27.9	2.07 (1.81-2.36)	< 0.001
≥28	2.82 (2.37-3.34)	< 0.001
Race (Han vs. others)	1.11 (1.01-1.23)	0.032
Married (vs. others)	0.92 (0.83-1.02)	0.149
Educational attainment		
Primary school and below	Ref.	

e

2				
3 4				
5 6		High school or equivalent	0.86 (0.77-0.95)	0.002
7		College and above	0.82 (0.68-0.98)	0.033
8 9		Employed (yes vs. no)	0.90 (0.82-0.99)	0.036
10 11		Smoking		
12 13		Never or smoking cessation	Ref.	
14 15		Current smoker, cigarettes < 20/d	0.98 (0.89-1.07)	0.752
16		Current smoker, cigarettes $\geq 20/d$	1.05 (0.96-1.16)	0.237
17		Alcohol consumption		
19 20		never	Ref.	
21 22		Not more than once per month	0.89 (0.78-1.03)	0.125
23 24		1–3 times per month	1.17 (1.04-1.32)	0.006
25 26		1–2 times per week	1.00 (0.89-1.12)	0.963
27 28		3–4 times per week	1.05 (0.92-1.21)	0.412
29 30		On a daily basis	1.18 (1.06-1.31)	0.002
31 32		Physical activity		
33 34		very light	Ref.	
35 26		light	0.92 (0.83-1.02)	0.154
30 37		moderate	0.99 (0.88-1.11)	0.930
38 39		heavy and very	0.91 (0.82-1.02)	0.118
40 41 42	181	*Estimated time effect of age, $P < 0.00$)1	
43 44	182			
45 46 47	183	In addition, there existed no urban-rura	l differences in dev	eloping hypertension (Table 4). Risks of incider
48 49 50	184	hypertension increased with age, BMI	, and alcohol consu	imption, while it was negatively associated wit
51 52	185	educational attainment. Women had a l	ower risk of incider	nt hypertension compared with men ($aHR = 0.81$

95% CI: 0.74 to 0.88). Relative to those without a job, employees had a lower risk of developing hypertension

(aHR = 0.90, 95% CI: 0.82 to 0.99). Han individuals were significantly associated with a higher risk (aHR =

188 1.11, 95% CI: 1.01 to 1.23) relative to the minority.

DISCUSSION

By employing a study sample of 12 925 individuals from diverse social and geographic contexts, we found the age-standardized incidence of hypertension increased during the study period. The increasing pattern remained even after controlling for variations in baseline characteristics. Furthermore, we found that individuals in economically developed Eastern, Central, and Northeastern China had greater risks of incident hypertension in comparison with those in Western China.

Instead of focusing on the incidence measure, the vast majority of prior studies focused on the prevalence measure. For example, one of the previous studies in China indicated that the prevalence of hypertension rose substantially from 13.6% in 1991 to 27.9% in 2015.¹¹ The findings were further supplemented by results from Lu et al. (2017), which suggested a higher prevalence of hypertension among those aged between 35 and 75 years old (44.7%).²⁶ Compared with these earlier studies, our focus on the incidence measure provided a more accurate reflection of the epidemiologic transition of hypertension in China.¹² Our findings updated the trends of hypertension incidence in comparison with that from Liang et al. (2014), which indicated a similar pattern from 1991 to 2009.¹⁵ Even though hypertension incidence appeared to vary across countries.²⁷⁻²⁹ the comparison is untenable because we adopted different standard populations. Further empirical research across countries is warranted.

With the rapid economic development, people often change their dietary patterns from light diet to high salt and fat diet along with a secondary lifestyle.³⁰ These changes would significantly impact the prevalence and control of hypertension in China.³⁰ In addition, due to data limitation, we were unable to introduce several

BMJ Open

3 ⊿		
4 5 6 7	208	potential risks factors, such as sodium intake or dietary pattern, parental history, psychological status,
7 8 9	209	ambient air pollutants, working hours, and household income. ³¹⁻³⁴ These factors may explain the residual
10 11 12	210	time-effects in the model.
13 14 15	211	Although existing evidence on the regional disparities of hypertension incidence is scant, prior research
16 17 18	212	indicates that Central, Northeastern, and Eastern China had a higher prevalence of hypertension compared
19 20	213	with Western China, ³⁵ which is in line with our findings. In sharp contrast, prior investigators have noted
21 22 23	214	that Northeastern and Central China had lower all-cause mortality rates relative to Western China. ³⁶ These
24 25	215	findings appear to suggest that individuals in China's economically developed regions are experiencing
26 27 28	216	extended life expectancy with relatively unhealthy aging. ¹² However, one should be aware of the possibility
29 30	217	that although individuals in Western China had lower risks of hypertension compared with the other three
31 32 33	218	regions, local public awareness and timely treatment could be a challenging issue.
34 35 36	219	Differed from previous studies, ^{15 37} no urban-rural disparities were observed in the present study. This may
37 38 39	220	be a result of the narrowing gap of lifestyle between rural and urban residents. With the rapid economic
40 41 42	221	development and urbanization in the past few decades, the lifestyle and dietary pattern of rural residents are
42 43 44	222	approaching to those of their counterparts in urban China. ^{9 10} This possibility has been further supported by
45 46 47	223	the fact that the prevalence of hypertension in rural China exceeded that of urban China in 2015. ²⁶ Taking
48 49	224	into account the lower treatment rate and insufficient awareness among rural residents, ³⁸ one should direct
50 51 52	225	more attention to rural China.
55 54 55	226	Moreover, we found that smoking history was not associated with incident hypertension. The effect of
56 57 58	227	smoking on the development of the chronic disease is unclear and appears to differ across life courses. ³⁹⁻⁴¹

BMJ Open

Prior research based on Korean has found a J-shaped association between physical activity and incident hypertension,⁴² while the present study on Chinese did not observe a similar association, which is in line with findings based on Japanese.⁴³ The effect of physical activity on the development of hypertension seems to be controversial and varies across countries. Further analyses are warranted.

232 Consistent with the previous studies,⁴⁴⁻⁴⁷ several risk factors, including age, gender, educational attainment, 233 race, alcohol consumption, and BMI, were confirmed by our analyses. The growing incidence of 234 hypertension emphasizes the early prevention, education, detection, and management for hypertension.⁴⁸ 235 Mentoring aforementioned lifestyle behaviors, such as alcohol consumption, may be helpful to constrain the 236 hypertension incidence.⁴⁹ Public health and lifestyle interventions targeting high-risk individuals, such as 237 older adults, men, and obese population, hold promise.

238 Conclusion

Hypertension incidence increased during the study period. Individuals in Eastern, Central, and Northeastern China had greater risks of hypertension in comparison with their counterparts in Western China. Risks of incident hypertension increased with age, BMI, and alcohol consumption, but negatively associated with educational attainment. The growth of hypertension incidence calls for more attention on the health education and health promotion of individuals with great risks.

244 Strengths and limitations of this study

The present study has two major strengths. First, the dynamic cohort study-design employed individuals from diverse social and geographic contexts, which enabled us to depict the long-term trends of hypertension incidence and regional disparities in the context of China's rapid social development and population aging.

3		
4 5 6 7	248	In addition, we adopted both self-reported health outcomes and objective outcomes from physical tests,
7 8 9	249	which avoided the recall bias and underestimation in underserved areas.
10 11 12	250	Nevertheless, this study is subject to several limitations. First, we did not employ a national-representative
13 14 15	251	sample and did not include individuals from all provinces in China, which undermined the representation of
16 17 18	252	our findings. As a community-based survey, the CHNS excluded institutionalized individuals, which further
19 20	253	diminished the representation of our findings among Chinese. Third, 2018 Clinical Guideline in China
21 22 23	254	recommend to identify hypertension cases by using blood pressure values that are measured in different
24 25 26	255	days ²³ , while individuals' blood pressure data in the CHNS were collected on the same day in the CHNS,
20 27 28	256	leading to unavoidable bias. Last, we did not distinguish the grade of hypertension, and future research is
29 30 31	257	necessary.
32 33 34	258	
35 36 37	259	Acknowledgments We thank the National Institute for Nutrition and Health, China Center for Disease Control and
38 39 40	260	Prevention, Carolina Population Center at(P2C HD050924, T32 HD007168), the University of North Carolina at Chapel Hill,
41 42	261	the NIH (R01-HD30880, DK056350, R24 HD050924, and R01-HD38700) and the NIH Fogarty International Center (D43
43 44 45	262	TW009077, D43 TW007709) for financial support for the CHNS data collection and analysis files from 1989 to 2015 and
46 47 48	263	future surveys, and the China-Japan Friendship Hospital, Ministry of Health for support for CHNS 2009, Chinese National
49 50 51	264	Human Genome Center at Shanghai since 2009, and Beijing Municipal Center for Disease Prevention and Control since 2011.
52 53	265	Contributors WZ designed this study and revised the manuscript. Y-ML, FX, and X-XY performed data clean, statistical
54 55 56	266	analysis, and wrote the first draft of the manuscript, which P-YL and W-ZH subsequently revised. All authors read the article
57 58 59	267	and approve it for publication.

3 4		
5 6 7	268	Funding This study was supported by China's National Development and Reform Commission Grant (No. 2018GFGW001)
7 8 9	269	to Wei Zhang.
10 11 12 12	270	Competing interests None declared.
14 15 16	271	Patient consent for publication Not required.
17 18 19	272	Ethics approval China Health and Nutrition Survey (CHNS) was approved by the ethics committee of Carolina Population
20 21 22	273	Center at the University of North Carolina at Chapel Hill and the NINH at the CCDC. Informed consent was obtained from
22 23 24	274	all subjects before the investigation.
25 26 27	275	Data availability statement Data are available from China Health and Nutrition Survey
28 29 30	276	(https://www.cpc.unc.edu/projects/china/data/).
31 32	277	ORCID iD
33 34	278	Wei Zhang http://orcid.org/0000-0003-3113-9577
35 36	279	
37 38	280	REFERENCES
39	281	1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of
40 41	282	death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet
42 43	283	2018; 392: 1736-88.
44	284	2. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural,
45	285	environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a
46 47	286	systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923-94.
48	287	3. Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart
49 50	288	Study. Circulation 2002; 106: 3068-72.
51	289	4. Lewington S. Clarke R. Oizilbash N. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-
52 53 54	290	analysis of individual data for one million adults in 61 prospective studies. <i>Lancet</i> 2002; 360: 1903-13.
55	291	5 GBD 2017 DALYs and HALE Collaborators. Global regional and national disability-adjusted life-years (DALYs) for
56	292	359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories 1990-2017: a systematic
57	292	analysis for the Global Burden of Disease Study 2017 Lancet 2018: 302. 1850-022
58 59 60	_,,	amily 5.5 101 me Groom Burden of Disease Grady 2017. Burley 2010, 572. 1057-722.

2	2
2	2

2		
3 4		
5	294	6. Liew SJ, Lee JT, Tan CS, et al. Sociodemographic factors in relation to hypertension prevalence, awareness, treatment
6 7	295	and control in a multi-ethnic Asian population_ a cross sectional study. <i>BMJ Open</i> 2019; 9: e025869.
8	296	7. Cho SMJ, Lee H, Kim HC. Differences in prevalence of hypertension subtypes according to the 2018 Korean Society.
9 10	297	<i>Clin Hypertens</i> 2019; 25: 26.
11	298	8. GBD 2017 Mortality Collaborators. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-
12 13	299	2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1684-735.
14	300	9. Gong P. Liang S. Carlton EJ. et al. Urbanisation and health in China. Lancet 2012: 379: 843-52.
15 16	201	
17 19	301	10. LeBlanc AG, Chaput JP. Orbanisation and fitness: worrying frends from China. Lancet Chila Adolesc Health 2019; 3:
18 19	302	037-7.
20	303	11. Wang Z, Chen Z, Zhang L, et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012-
21 22	304	2015. <i>Circulation</i> 2018; 137: 2344-56.
23	305	12. Omran AR. The epidemiologic transition: a theory of the epidemiology of population change. 1971. Milbank Q 2005;
24 25	306	83(4): 731-57.
26	307	13 Geiss IS Wang I Cheng VI et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79
27	308	vears United States 1980-2012 JAMA 2014: 312: 1218-26
28 29		, ,
30	309	14. Chen Z, Li SN, Wang X, et al. The incidence of hypertension, overweight, and obesity and relationship with
31	310	cardiovascular events among middle-aged Chinese 6 years follow-up results. Zhonghua Xin Xue Guan Bing Za Zhi, 2020; 48:
33	311	47-53.
34 25	312	15. Liang Y, Liu R, Du S, et al. Trends in incidence of hypertension in Chinese adults, 1991-2009: the China Health and
35 36	313	Nutrition Survey. Int J Cardiol 2014; 175: 96-101.
37 39	314	16. Yu X, Xia F, Zhang W. Trends and geographic variations in self-reported diabetes incidence: A prospective open cohort
39	315	study of Chinese men and women, 1997-2015. Diabet Med 2020: e14447.
40 41	316	17. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017; a
42	317	systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 394: 1145-58.
43	210	
44 45	318	18. Xia F, Yu X, Li Y, <i>et al.</i> Geographic variations of stroke incidence in chinese communities: an 18-year prospective
46	519	conort study from 1997 to 2015. J Stroke 2020; 22: 345-56.
47 48	320	19. Chen Y, Liang X, Zheng S, et al. Association of body fat mass and fat distribution with the incidence of hypertension in
49	321	a population-based chinese cohort: a 22-year follow-up. J Am Heart Assoc 2018; 7: e007153.
50	322	20. Sun Z, Zheng L, Zhang X, et al. Ethnic differences in the incidence of hypertension among rural Chinese adults: results
52	323	from Liaoning Province. PLoS One 2014; 9: e86867.
53	224	
54 55	324 325	21. Chen X, Liu Y, Sun X, <i>et al.</i> Comparison of body mass index, waist circumference, conicity index, and waist-to-height ratio for predicting incidence of hupertancien: the rural Chinese schort study. <i>J. Hum Hupertane</i> 2018; 32: 328-35
56	523	ratio for predicting incluence of hypertension, the fural Chinese conort study. J hum Hypertens 2018; 52: 228-55.
57	326	22. Popkin BM, Du S, Zhai F, et al. Cohort Profile: The China Health and Nutrition Surveymonitoring and understanding
58 59	327	socio-economic and health change in China, 1989-2011. Int J Epidemiol 2010; 39: 1435-40.
60		

5	328	23. Williams B, Mancia G. Ten Commandments of the 2018 ESC/ESH HTN Guidelines on Hypertension in Adults. Eur
6 7	329	<i>Heart J</i> 2018; 39: 3007-8.
8	330	24 Qi SF, Zhang B, Wang HJ, et al. Joint effects of age and body mass index on the incidence of hypertension subtypes in
9 10	331	the China Health and Nutrition Survey: a cohort study over 22years. Prev Med 2016; 89: 23-30.
11	332	25 Gao M, Kuang W, Qiu P, et al. The time trends of cognitive impairment incidence among older Chinese people in the
12 13	333	community: based on the CLHLS cohorts from 1998 to 2014. Age Ageing 2017; 46: 787-93.
14 15	334	26 Lu J, Lu Y, Wang X, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million
16 17	335	adults in a population-based screening study (China PEACE Million Persons Project). Lancet 2017; 390: 2549-58.
18	336	27 Mendonça RD, Lopes AC, Pimenta AM, et al. Ultra-processed food consumption and the incidence of hypertension in a
19 20	337	mediterranean cohort: The Seguimiento Universidad de Navarra Project. Am J Hypertens 2017; 30: 358-66.
21	338	28 Li M, McDermott R. Obesity, albuminuria, and gamma-glutamyl transferase predict incidence of hypertension in
22	339	indigenous Australians in rural and remote communities in northern Australia. J Hypertens 2015; 33: 704-9; discussion 709-
23 24 25	340	710.
26	341	29 Bernabe-Ortiz A, Sanchez JF, Carrillo-Larco RM, et al. Rural-to-urban migration and risk of hypertension: longitudinal
27 28	342	results of the PERU MIGRANT study. J Hum Hypertens 2017; 31: 22-8.
29	343	30 Fan WG, Xie F, Wan YR, et al. The impact of changes in population blood pressure on hypertension prevalence and
30 31	344	control in China. J Clin Hypertens (Greenwich) 2020; 22: 150-6.
32 33	345	31 He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review
34 35	346	and meta-analysis of randomised trials. BMJ 2013; 346: f1325.
36	347	32 Gando Y, Sawada SS, Kawakami R, et al. Combined association of cardiorespiratory fitness and family history of
37 38	348	hypertension on the incidence of hypertension: a long-term cohort study of Japanese males. <i>Hypertens Res</i> 2018; 41: 1063-9.
39	349	33 Bo Y, Guo C, Lin C, et al. Dynamic changes in leong-term exposure to ambient particulate matter and incidence of
40 41	350	hypertension in adults. <i>Hypertension</i> 2019; 74: 669-77.
42	351	34 Trudel X, Brisson C, Gilbert-Ouimet M, et al. Long working hours and the prevalence of masked and sustained
45 44	352	hypertension. <i>Hypertension</i> 2020; 75: 532-8.
45 46	353	35 Li J, Shi L, Li S, et al. Urban-rural disparities in hypertension prevalence, detection, and medication use among Chinese
47 48	354	Adults from 1993 to 2011. Int J Equity Health 2017, 16: 50.
49	355	36 Yu X, Zhang W. All-cause mortality rate in China: do residents in economically developed regions have better health?
50 51	356	<i>Int J Equity Health</i> 2020, 19: 12.
52	357	37 Arici M, Turgan C, Altun B, et al. Hypertension incidence in Turkey (HinT): a population-based study. J Hypertens 2010;
53 54	358	28: 240-4.
55 56	359	38 Feng XL, Pang M, Beard J. Health system strengthening and hypertension awareness, treatment and control: data from
50 57	360	the China Health and Retirement Longitudinal Study. Bull World Health Organ 2014; 92: 29-41.
59 60	361	39 Kim BJ, Seo DC, Kim BS, <i>et al.</i> Relationship between cotinine-verified smoking status and incidence of hypertension in

2 3		
4 5	362	74,743 Korean adults. Circ J 2018; 82: 1659-65.
6 7	363	40 Gao K, Shi X, Wang W. The life-course impact of smoking on hypertension, myocardial infarction and respiratory
8 9	364	diseases. Sci Rep 2017, 7: 4330.
10	365	41 Li G, Wang H, Wang K, et al. The association between smoking and blood pressure in men: a cross-sectional study. BMC
11 12	366	Public Health 2017, 17: 797.
13	367	42 Kim Y, Sharp S, Hwang S, et al. Exercise and incidence of myocardial infarction, stroke, hypertension, type 2 diabetes
14 15 16	368	and site-specific cancers: prospective cohort study of 257 854 adults in South Korea. BMJ Open 2019; 9: e025590.
10 17	369	43 Lu Y, Lu M, Dai H, et al. Lifestyle and risk of hypertension: follow-up of a young pre-hypertensive cohort. Int J Med Sci
18 19	370	2015, 12: 605-12.
20	371	44 Jayawardana NWIA, Jayalath WATA, Madhujith WMT, et al. Aging and obesity are associated with undiagnosed
21	372	hypertension in a cohort of males in the Central Province of Sri Lanka: a cross-sectional descriptive study. BMC Cardiovasc
22 23	373	Disord 2017; 17: 165.
24 25	374	45 Sinnott SJ, Smeeth L, Williamson E, et al. Trends for prevalence and incidence of resistant hypertension: population
26 27	375	based cohort study in the UK 1995-2015. BMJ 2017; 358: j3984.
28	376	46 Zhou W, Shi Y, Li YQ, et al. Body mass index, abdominal fatness, and hypertension incidence: a dose-response meta-
29 30	377	analysis of prospective studies. J Hum Hypertens 2018; 32: 321-33.
31	378	47 Roerecke M, Kaczorowski J, Tobe SW, et al. The effect of a reduction in alcohol consumption on blood pressure: a
32 33	379	systematic review and meta-analysis. Lancet Public Health 2017; 2: e108-20.
34 25	380	48 Whelton PK, Carey RM, Aronow WS, et al. 2017
36	381	ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation,
37	382	and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of
38 39	383	Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018; 138: e426-83.
40	384	49 Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian
41 42	385	randomisation analysis based on individual participant data. <i>BMJ</i> 2014; 349: g4164.
43 44	386	
45 46	387	Figure 1 Flowchart showing the selection of the subjects who were included in the final analysis of
40 47 48	388	hypertension incidence in China, with covariate information missing rate of 9.78%
49 50 51 52 53 54 55 56 57 58 59 60	389	

143 586 observations	
	22 records without individual ID or
	community ID
38 536 individuals 143 564 observations	
50 550 marviduals, 145 504 observations	
	Excluded 25 584 individuals, 79 249
	observations:
	• 12 387 individuals < 18 years old in
	the first investigation
0	• 12 861 individuals with < =1
	hypertension observation or had
	hypertension in the first investigation
	 336 individuals were pregnant
	during the follow up duration
12 952 individuals, 64 315 observations	
)	10 612 observations after developing
	hypertension
12 952 individuals with 53 703	L
observations to calculate hypertension	
incidence	
	1 267 individuals have missing data of
	covariates
	l
11 685 individuals for modeling analyses	

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	t page 1
		(b) Provide in the abstract an informative and balanced summary of what was done	
		and what was found	page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	page 4
Objectives	3	State specific objectives including any prespecified hypotheses	page 5
Mathada		Sate speente objectives, metalang any prespective hypotheses	1.9.1
Study design	1	Present key elements of study design early in the paper	page 6
Sotting	5	Describe the setting locations, and relevant dates including periods of recruitment	1.0.1
Setting	0	exposure follow-up and data collection	page 6-7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
1 articipants	0	selection of participants. Describe methods of follow-up	(Cohort
		<i>Case-control study</i> —Give the eligibility criteria and the sources and methods of	study)
		case ascertainment and control selection. Give the rationale for the choice of cases	puge o /
		and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria and the sources and methods of	,
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	(Coho
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of	f study)
		controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect	t c
		modifiers. Give diagnostic criteria, if applicable	page 6-
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	
measurement		assessment (measurement). Describe comparability of assessment methods if there	page 5-
		is more than one group	
Bias	9	Describe any efforts to address potential sources of bias page	e^2 and 7
Study size	10	Explain how the study size was arrived at	page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	n age 6
		describe which groupings were chosen and why	page 0
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	page 7-8
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		Cross-sectional study—If applicable, describe analytical methods taking account of	f
		sampling strategy	
		(e) Describe any sensitivity analyses	
Continued on next page			

1
4
5
6
7
,
8
9
10
11
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
32
22
33
34
35
36
27
37
38
39
40
л <u>л</u>
41
42
43
44
45
40
46
47
48
49
50
50
51
52
53
51
54
55
56
57
58
50
59
60

Results					
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligibl examined for eligibility, confirmed eligible, included in the study, completing follow-up analysed	e, , and	page 8, figure 1, and table	
		(b) Give reasons for non-participation at each stage		9	
		(c) Consider use of a flow diagram			
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and inform	nation	nation page	
data		on exposures and potential confounders	9-11		
		(b) Indicate number of participants with missing data for each variable of interest		page 11-12	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)		page 13	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time		<u>C</u> ohort	
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure	of	study: page 13	
		Cross-sectional study—Report numbers of outcome events or summary measures			
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	r page 13-16		
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	or and		
		why they were included	1	age 15	
		(b) Report category boundaries when continuous variables were categorized	Puge 15		
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a mean time second	not a	pplicable	
0.1	17			_	
Other analyses 17		Report other analyses done—eg analyses of subgroups and interactions, and sensitivity	r analyses done—eg analyses of subgroups and interactions, and sensitivity not app		
Discussion		anaryses			
Key results	18	Summarise key results with reference to study objectives	page 17-19		
Limitations	19	Discuss limitations of the study taking into account sources of potential bias or imprecis	sion		
Limutions	17	Discuss both direction and magnitude of any potential bias	page	19-20	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multi	plicity	icity	
		of analyses, results from similar studies, and other relevant evidence	page 1	19	
Generalisability	21	Discuss the generalisability (external validity) of the study results	page 1	7-19	
Other information					
Funding	22	Give the source of funding and the role of the funders for the present study and, if applic	able,	page 20	
		for the original study on which the present article is based	L	<u> </u>	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.