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Supplementary Information Text 41 

Methods 42 

Log marginal likelihood 43 
The log marginal likelihood function in cryo-EM refinement problem can be derived as follows. For 44 

simplicity, we assume the particles are from a single structure, whereas structural heterogeneity can be 45 
easily incorporated into our generative model by treating the class membership of each particle as a 46 
hidden variable(1). Since the images collected by cryo-EM are 2D projections of a 3D molecular structure, 47 
the Fourier transform of the image has the following relation with the Fourier transform of the 3D 48 
molecular structure. Let the Fourier transform of a 3D molecular structure be 𝑉𝑉, we first arrange the 3D 49 
volume 𝑉𝑉 into a vector with 𝐿𝐿 elements. Assume an 𝑁𝑁 × 𝑁𝑁 image 𝑖𝑖 is formed by rotating the 3D volume 𝑉𝑉 50 
with the Euler angle set 𝜙𝜙 and projecting along with the 𝑧𝑧 axis, and shifting by [Δ𝑥𝑥,Δ𝑦𝑦] from the origin, 51 
using projection-slice theorem, the Fourier transform of the image 𝑖𝑖 can be expressed as  52 

 
𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖

2𝜋𝜋
𝑁𝑁 (Δ𝑥𝑥ℎ+Δ𝑦𝑦𝑘𝑘)CTF𝑖𝑖𝑖𝑖� 𝑃𝑃𝑖𝑖𝑗𝑗
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(Equation S1) 

where 𝑋𝑋𝑖𝑖𝑖𝑖 is the 𝑗𝑗th component of the Fourier transform of the image 𝑖𝑖 whose corresponding 2D index is 53 
[ℎ, 𝑘𝑘], CTF𝑖𝑖𝑖𝑖 is the 𝑗𝑗th component of the contrast transfer function for the image 𝑖𝑖, and 𝑃𝑃𝑖𝑖𝑗𝑗

𝜙𝜙 is the slice 54 
operator which cuts out the plane in the 3D Fourier transform 𝑉𝑉 which is rotated from the 𝑥𝑥𝑥𝑥 plane 55 
according to the Euler angle set 𝜙𝜙. We elaborate on the slice operator 𝑃𝑃𝜙𝜙 by giving its formal definition. 56 
Let the index of a voxel in the 3D Foruier transform 𝑉𝑉 be [ℎ′,𝑘𝑘′, 𝑙𝑙′], and the index of the corresponding 57 
pixel of the Fourier transform of the image 𝑖𝑖 is [ℎ, 𝑘𝑘], the slice operator 𝑃𝑃𝜙𝜙 transforms the 3D index to 2D 58 
index by the following equation,  59 
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(Equation S2) 

where 𝑅𝑅𝜙𝜙 is a rotation matrix parameterized by Euler angles 𝜙𝜙. Furthermore, suppose the Fourier 60 
component 𝑋𝑋𝑖𝑖𝑖𝑖 is distributed according to Gaussian with the mean defined in Equation S1 and variance 61 
𝜎𝜎2, and the Gaussian noise of each component is independent, the marginal probability of observing 62 
image 𝑖𝑖 can be obtained by integrating over all possible orientations 𝜙𝜙 and translations Δ = [Δ𝑥𝑥,Δ𝑦𝑦] as 63 
follows, 64 
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(Equation S3) 

We omit translation factors in the squared difference term in Equation S3 to simplify expressions 65 
elsewhere. The marginal probability of an image can then be leveraged to construct the log marginal 66 
likelihood in Equation 1 in main text.  67 

Expectation maximization 68 
The expectation maximization algorithm works as follows. Since the difference between log 69 

likelihoods of the marginal probability can be lower bounded by the difference between the sums of log 70 
likelihoods of the joint probability weighted by their corresponding posterior probabilities for latent 71 
variables, i.e.,  72 

log𝑃𝑃(𝑋𝑋𝑖𝑖|𝑉𝑉) − log𝑃𝑃(𝑋𝑋𝑖𝑖|𝑉𝑉𝑘𝑘−1)
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(Equation S4) 

thus maximizing the lower bound improves the log likelihood of the marginal probability at least as 73 
much(3). At the expectation step, we calculate the posterior probability of hidden variables conditioned on 74 
a given image and the map. The method to compute the posterior probability derived in RELION(1) can 75 
be applied in the context of our method without any modification. 76 



Weighted approximation 77 

The derivative of ∑ log(�𝑥𝑥𝑖𝑖� + 𝜖𝜖)𝑖𝑖  at the point 𝑥𝑥 = 𝑥𝑥𝑖𝑖 is 
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tangent lines of ∑ log(�𝑥𝑥𝑖𝑖� + 𝜖𝜖)𝑖𝑖  at this point are ∑
sign�𝑥𝑥𝑗𝑗
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�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖� + log(�𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜖𝜖)𝑖𝑖 , where sign�𝑥𝑥𝑖𝑖� =79 

sign(𝑥𝑥𝑖𝑖𝑖𝑖). Note that 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑖𝑖 are of the same sign, the form of tangent lines can be simplified as, 80 

𝑔𝑔(𝑥𝑥|𝑥𝑥𝑖𝑖) = �
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, 
(Equation S5) 

where const𝑖𝑖 =
�𝑥𝑥𝑗𝑗
𝑖𝑖�
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+ log(�𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜖𝜖). We hence obtain the weighted approximation for the log norm. Since 81 

the log norm is concave, its tangent line is its upper bound, namely, 𝑔𝑔(𝑥𝑥|𝑥𝑥𝑖𝑖) ≥ ∑ log(�𝑥𝑥𝑖𝑖� + 𝜖𝜖)𝑖𝑖 , and 82 
𝑔𝑔(𝑥𝑥𝑖𝑖�𝑥𝑥𝑖𝑖) = ∑ log(�𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜖𝜖)𝑖𝑖 . If 𝑔𝑔(𝑥𝑥𝑖𝑖+1�𝑥𝑥𝑖𝑖) < 𝑔𝑔(𝑥𝑥𝑖𝑖|𝑥𝑥𝑖𝑖), we have ∑ log��𝑥𝑥𝑖𝑖𝑖𝑖+1� + 𝜖𝜖�𝑖𝑖 < 𝑔𝑔(𝑥𝑥𝑖𝑖+1�𝑥𝑥𝑖𝑖) < 𝑔𝑔(𝑥𝑥𝑖𝑖�𝑥𝑥𝑖𝑖) =83 
∑ log(�𝑥𝑥𝑖𝑖� + 𝜖𝜖)𝑖𝑖 . Combining the previous relation with Equation S4, we have log𝑃𝑃(𝑋𝑋𝑖𝑖|𝑉𝑉) − log𝑃𝑃(𝑋𝑋𝑖𝑖|𝑉𝑉𝑘𝑘−1) −84 
∑ (𝛼𝛼 log��𝑥𝑥𝑖𝑖� + 𝜖𝜖� + 𝛽𝛽 log(�∇𝑥𝑥𝑖𝑖�2 + 𝜖𝜖′))𝐿𝐿
𝑖𝑖=1 ≥ ∑ −𝑃𝑃(𝜙𝜙|𝑋𝑋𝑖𝑖 ,𝑉𝑉𝑘𝑘−1) ��𝑋𝑋𝑖𝑖 − CTF𝑖𝑖𝑃𝑃𝜙𝜙𝑉𝑉�

2 − �𝑋𝑋𝑖𝑖 − CTF𝑖𝑖𝑃𝑃𝜙𝜙𝑉𝑉𝑘𝑘−1�
2� −𝜙𝜙85 

𝑔𝑔(𝑥𝑥�𝑥𝑥𝑖𝑖) − 𝑔𝑔(∇𝑥𝑥�∇𝑥𝑥𝑖𝑖). Thus, we can then prove that improving the lower bound will cause the left-hand 86 
side of the inequality to improve at least as much by induction. The right-hand side of the preceding 87 
inequality is the Equation 4 in main text ignoring constant terms and implicit gradient restraint.  88 

Nesterov smoothed TV norm 89 
To derive the gradient of Nesterov smoothed TV norm, we begin by stating the discrete form of 90 

the gradient in TV norm. For a voxel 𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] of a 3D map 𝑥𝑥, the gradient of the 3D map obtained by 91 
discrete differentiation operator 𝐷𝐷 at this voxel is of the form 92 

 
𝐷𝐷𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] = �

𝐷𝐷1𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]
𝐷𝐷2𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]
𝐷𝐷3𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]

� = �
𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] − 𝑥𝑥[𝑖𝑖 − 1, 𝑗𝑗, 𝑘𝑘]
𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] − 𝑥𝑥[𝑖𝑖, 𝑗𝑗 − 1, 𝑘𝑘]
𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] − 𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘 − 1]

� . 
(Equation S6) 

By denoting 𝐷𝐷𝑖𝑖 as the matrix representation of the discrete differentiation operator along the 𝑖𝑖th 93 
dimension, we can express the gradient of the map 𝑥𝑥 along the 𝑖𝑖th dimension as 𝐷𝐷𝑖𝑖𝑥𝑥. By abuse of 94 
notation, let 𝐷𝐷 = [𝐷𝐷1,𝐷𝐷2,𝐷𝐷3]𝑇𝑇 be a matrix composed by concatenating 𝐷𝐷𝑖𝑖 by rows, the TV norm can be 95 
defined as, 96 

 ‖𝑥𝑥‖TV = max
𝑢𝑢∈𝑄𝑄𝑑𝑑

〈𝑢𝑢,𝐷𝐷𝑥𝑥〉 , (Equation S7) 

where 𝑢𝑢 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 ∈ 𝑄𝑄𝑑𝑑 is the vector of dual variables of the gradients of 𝑥𝑥 along three directions, and 97 
𝑄𝑄𝑑𝑑 is the dual space in which each vector satisfies the inequality 𝑢𝑢1[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]2 + 𝑢𝑢2[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]2 + 𝑢𝑢3[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]2 ≤ 1. 98 
Using Nesterov smoothing with smoothing parameter 𝜇𝜇, the smoothed TV norm 𝑓𝑓𝜇𝜇(𝑥𝑥) is the TV norm with 99 
a quadratic restraint on the dual variables, which can be written as, 100 

 𝑓𝑓𝜇𝜇(𝑥𝑥) = max
𝑢𝑢∈𝑄𝑄𝑑𝑑

〈𝑢𝑢,𝐷𝐷𝑥𝑥〉 −
𝜇𝜇
2
‖𝑢𝑢‖22 , (Equation S8) 

according to Candes et al.(4). The gradient of the smoothed TV norm 𝑓𝑓𝜇𝜇(𝑥𝑥) can be expressed as 101 
 ∇𝑓𝑓𝜇𝜇(𝑥𝑥) = 𝐷𝐷𝑇𝑇𝑢𝑢𝜇𝜇(𝑥𝑥), (Equation S9) 

according to Candes et al.(4), where 𝐷𝐷 is the discrete differentiation operator defined in Equation S6, 102 
𝑢𝑢𝜇𝜇(𝑥𝑥) is a vector of the form [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 and for each dimension 𝑎𝑎 ∈ [1,2,3] and voxel [𝑖𝑖, 𝑗𝑗, 𝑘𝑘],  103 

 
𝑢𝑢𝑎𝑎[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] = � 𝜇𝜇−1(𝐷𝐷𝑎𝑎𝑥𝑥)[𝑖𝑖, 𝑗𝑗, 𝑘𝑘], if ‖∇𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]‖ < 𝜇𝜇

‖∇𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]‖−1(𝐷𝐷𝑎𝑎𝑥𝑥)[𝑖𝑖, 𝑗𝑗, 𝑘𝑘], otherwise.
 

(Equation S10) 

For the weighted smoothed TV norm in Equation 4 in main text, its gradient 𝑢𝑢𝑎𝑎[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] can be obtained by 104 
multiplying Equation S10 with the weight 1

�∇𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑖𝑖 �+𝜖𝜖′

. Equation S10 shows that the gradient of smoothed 105 
TV norm can be easily obtained by first calculating the norm of discrete gradient of the volume 𝑥𝑥 at each 106 
voxel [𝑖𝑖, 𝑗𝑗, 𝑘𝑘], and then setting the norm of gradient at this voxel ‖∇𝑥𝑥[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]‖ with value smaller than the 107 
smoothing parameter 𝜇𝜇 to 𝜇𝜇, thus keeping the denominator of the gradient of TV norm in a valid range 108 



 
 

 
 

3 

and avoiding the non-differentiability of the non-smoothed TV norm at zero. With the form of discrete 109 
differentiation operator 𝐷𝐷 in Equation S6, we can write the gradient of the smoothed TV norm at a voxel 110 
[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] as follows,  111 

 
∇𝑓𝑓𝜇𝜇(𝑥𝑥)𝑖𝑖𝑖𝑖𝑘𝑘 = �𝑢𝑢𝑎𝑎[𝑖𝑖, 𝑗𝑗, 𝑘𝑘]

3

𝑎𝑎=1

− 𝑢𝑢𝑎𝑎[(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) + Δ𝑎𝑎], 
(Equation S11) 

where Δ𝑎𝑎 is a 1 × 3 vector with one on the 𝑎𝑎th entry and zeros elsewhere. Substituting Equation S10 into 112 
Equation S11 leads to the complete form of the gradient in Equation 5 in main text. We then observe that 113 
the gradient of TV norm at the voxel [𝑖𝑖, 𝑗𝑗, 𝑘𝑘] depends on gradients of 3D map around this voxel. 114 

Local kernel regression  115 
Nonparametric regression is often used to estimate the value of a point given the values of its 116 

neighborhoods. Denote 𝑌𝑌𝑖𝑖 as the value at a certain point 𝑥𝑥𝑖𝑖 ∈ ℝ𝑁𝑁, and let y be the value at the point 𝑥𝑥 ∈117 
ℝ𝑁𝑁 which is to be predicted, as in Takeda et al.(2), we can define y as the maximizer of 118 

 
−�𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥)‖𝑌𝑌𝑖𝑖 − 𝑥𝑥‖2

𝐿𝐿

𝑖𝑖=1

, 
(Equation S12) 

where 𝐾𝐾(∙) represents a chosen kernel function. In the context of cryo-EM refinement, for an orientation 119 
𝜙𝜙, let 𝑛𝑛𝑖𝑖(𝜙𝜙) = [ℎ𝑖𝑖,𝑘𝑘𝑖𝑖 , 𝑙𝑙𝑖𝑖] ∈ ℝ3 be the back-projected voxel in the 3D volume 𝑉𝑉 which is rotated from the 120 
Fourier coefficient 𝑗𝑗 of an image 𝑋𝑋𝑖𝑖 (see “Back-projection as lock kernel regression”), we can define the 121 
value of the target voxel 𝑛𝑛 = [ℎ, 𝑘𝑘, 𝑙𝑙] ∈ ℤ3 as the maximizer of the following regression problem, 122 

 
−���𝑃𝑃(𝜙𝜙|𝑋𝑋𝑖𝑖 ,𝑉𝑉𝑘𝑘−1)𝐾𝐾�𝑛𝑛𝑖𝑖(𝜙𝜙),𝑛𝑛��𝑋𝑋𝑖𝑖𝑖𝑖 − CTF𝑖𝑖𝑖𝑖𝑉𝑉𝑛𝑛�
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𝑁𝑁
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(Equation S13) 

where 𝐾𝐾(∙) is a kernel function measuring the closeness of the back-projected voxel and the target voxel. 123 
A summation on losses of all voxels leads to Equation 7 in main text. 124 

Parameter settings 125 
Theoretically optimal scales of the parameters in OPUS-SSRI can be obtained by using the 126 

closed form solution of our new target function. For the LASSO type problem, the closed form solution 127 
can be derived from its dual form(5). The first step towards the dual form of our new target function is 128 
converting our new target function to a matrix form. Assume 𝑥𝑥 is the 3D volume which is rearranged into a 129 
vector, that is, a voxel with index [𝑖𝑖, 𝑗𝑗, 𝑘𝑘] is mapped to the ℎth component 𝑥𝑥ℎ of 𝑥𝑥, and let 𝐴𝐴 be the 130 
corresponding 3D Fourier transform matrix, we can express the Fourier coefficients of the 3D volume 𝑉𝑉 131 
as the result of matrix vector multiplication, namely, 𝑉𝑉 = 𝐴𝐴𝑥𝑥. With Equation 7 in main text in hand, we can 132 
write the matrix form of our 3D reconstruction problem as  133 

 
min
𝑥𝑥

1
2
‖𝑥𝑥 − 𝐷𝐷𝐴𝐴𝑥𝑥‖2 + 𝛼𝛼�
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�𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜖𝜖
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+ 𝛽𝛽�

�∇𝑥𝑥𝑖𝑖�2
�∇𝑥𝑥𝑖𝑖𝑖𝑖�2 + 𝜖𝜖′

𝐿𝐿

𝑖𝑖=1
+ 𝛾𝛾‖𝑥𝑥 − 𝑥𝑥𝑘𝑘−1‖22, 

(Equation S14) 

where 𝑥𝑥 is a vector representation of  the 3D Fourier transform data with 𝑥𝑥(𝑛𝑛) =134 
∑ ∑ ∑ 𝑃𝑃(𝜙𝜙|𝑋𝑋𝑖𝑖,𝑉𝑉𝑘𝑘−1)𝐾𝐾�𝑛𝑛𝑗𝑗(𝜙𝜙),𝑛𝑛�CTF𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖𝑗𝑗𝜙𝜙

𝐽𝐽
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

�𝑁𝑁(𝑛𝑛)
 for 𝑛𝑛 = [ℎ, 𝑘𝑘, 𝑙𝑙] ∈ [0, 𝐿𝐿], 𝐷𝐷 is a 𝐿𝐿 × 𝐿𝐿 diagonal matrix with diagonal 135 

element 𝐷𝐷(𝑛𝑛,𝑛𝑛) = �𝑁𝑁(𝑛𝑛), and 𝐴𝐴𝑥𝑥 is the Fourier transform of the 3D map 𝑥𝑥. We can derive the dual form 136 
of Equation S14 by simplifying our restraint. According to Tibshirani et al.(5), substituting the restraints in 137 
Equation S14 by a generalized LASSO restraint, 𝜆𝜆‖𝐺𝐺𝑥𝑥‖1, the dual of Equation S14 with new restraint is of 138 
the form, 139 

 min
𝑢𝑢

(𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥 − 𝐺𝐺𝑇𝑇𝑢𝑢)𝑇𝑇(𝐴𝐴𝐻𝐻𝐷𝐷2𝐴𝐴)+(𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥 − 𝐺𝐺𝑇𝑇𝑢𝑢) (Equation S15) 

subject to ‖𝑢𝑢‖∞ ≤ 𝜆𝜆,𝐺𝐺𝑇𝑇𝑢𝑢 ∈ row(𝐷𝐷𝐴𝐴), where (𝐴𝐴𝐻𝐻𝐷𝐷2𝐴𝐴)+ is the Moore-Penrose inverse of 𝐴𝐴𝐻𝐻𝐷𝐷2𝐴𝐴, ‖𝑢𝑢‖∞ =140 
max
𝑢𝑢𝑖𝑖∈𝑢𝑢

|𝑢𝑢𝑖𝑖|, 𝜆𝜆 is the parameter for 𝑙𝑙1 restraint and 𝑢𝑢 is the dual variable of the 3D volume 𝑥𝑥. Given 𝑢𝑢, the 141 
closed form solution of 𝑥𝑥 can be written as, 142 



 𝑥𝑥 = (𝐴𝐴𝐻𝐻𝐷𝐷2𝐴𝐴)+(𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥 − 𝐺𝐺𝑇𝑇𝑢𝑢). (Equation S16) 

In Equation S16, 𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥 represents the inverse Fourier transform of the data, which is the unregularized 143 
solution. 𝐺𝐺𝑇𝑇𝑢𝑢 is the dual variable of restraint, which regularizes 𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥. To achieve sparseness in the 144 
solution 𝑥𝑥, 𝑢𝑢 needs to zero out certain components of 𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥. Since the dual variable 𝑢𝑢 is bounded by 𝜆𝜆, 145 
the restraint parameter 𝜆𝜆 should be of the same scale as the average of the magnitudes of 𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥. Though 146 
our restraint is of a more complex form than ‖𝐺𝐺𝑥𝑥‖1, the dual of our restraint is in the space of a 147 
combination of two domains similar to ‖𝑢𝑢‖∞ ≤ 𝜆𝜆. Detailed derivations about the dual space of the 148 
combination of two norm can be found in Rockafellar et al.(6). Therefore, the simplified discussion drives 149 
us to set the parameters of our restraint to be of the scale as the square root of the average of the 150 
squares of 𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥. We denote the square root of the average of the squares of 𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥 as ‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������ 151 
henceforth.  152 

The scale of implicit gradient ascent restraint is easy to set since it is quadratic. Note that each 153 
quadratic data loss term in our target function is scaled by 𝑁𝑁(𝑛𝑛) in Equation 8 in main text. Using the 154 
heuristic that the penalty term should match the loss term, we can set the restraint parameter 𝛾𝛾 to be on 155 
the scale of the average of 𝑁𝑁(𝑛𝑛). We denote the average of 𝑁𝑁(𝑛𝑛) as 𝑁𝑁(𝑛𝑛)������� henceforth. 156 

Other important parameters to be set are 𝜖𝜖 and 𝜖𝜖′, which are in the denominators of our sparsity 157 
and smoothness restraint, respectively. If they are too small compared to the density values of the 3D 158 
volume, the weights in our weighted norms will be very flexible and strongly depend on the magnitude of 159 
the value of each voxel in the 3D volume. Such kinds of restraints might not be able to effectively remove 160 
background noises and cause two independent refinements to diverge. If they are too large compared to 161 
the density values of the 3D volume, the restraints degrade to the original 𝑙𝑙1 and TV norms and leads to 162 
more biased solutions. Optimal values of 𝜖𝜖 and 𝜖𝜖′ should assign large weights to background noises and 163 
small weights to true molecular densities. Hence, we can set 𝜖𝜖 to the level of density values 164 
corresponding to molecular content in the 3D volume. 𝜖𝜖′ can be set close to 𝜖𝜖. This level can be easily 165 
obtained from the intermediate volumes generated by the refinements using RELION 3.0. This is also 166 
similar to choose a threshold for creating a mask when computing masked FSC. 167 

In conclusion, we should set the restraint parameters 𝛼𝛼 and 𝛽𝛽 to be on the same scale as 168 
‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������. Since the corresponding restraints are inversely weighted by quantities with two other 169 
parameters 𝜖𝜖 and 𝜖𝜖′, we multiply the scale ‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������ by 𝜖𝜖 or 𝜖𝜖′ to counter acting the effects of 𝜖𝜖 and 𝜖𝜖′. For 170 
zero elements, their restraint parameters are then normalized to be on the scale of ‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������.  171 

Experiment process 172 
𝛽𝛽-galactosidase (EMPIAR-10017) : Since there was no ready-to-use particle stack for model 173 

building, our test began with extracting particles from micrographs using the coordinates manually picked 174 
by Richard Henderson(7). We carried out 3D refinement in RELION 3.0 with a 50 Å low-pass filtered initial 175 
map while enforcing D2 symmetry. Then, we performed further 3D refinement using OPUS-SSRI with a 176 
grid search to determine the possible ranges of parameters α, β, γ and ε. We started by setting 𝜖𝜖 to 0.1, 177 
which is higher than the level of density values of the EM map from RELION 3.0. We considered setting 𝜖𝜖′ 178 
to be 𝜖𝜖/3 since the magnitude of gradient is often smaller than the density value of molecule. The initial 179 
guesses for 𝛽𝛽 and 𝛾𝛾 were 𝛽𝛽 = 2/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖, 𝛾𝛾 = 0.05𝑁𝑁(𝑛𝑛)�������. We scanned through 𝛼𝛼 ∈ [0.4,0.6]‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 180 
with as a step size of 0.1‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖. The final resolutions based on gold standard FSC=0.143 for different 181 
𝛼𝛼 is shown in Fig.S4a. The best resolution was obtained at 𝛼𝛼 = 0.5‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖. We then set 𝛼𝛼 =182 
0.5‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and scanned through 𝛽𝛽 ∈ [1/3, 2.2/3]‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 with a step size of 0.2/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖. The 183 
best resolution was obtained at 𝛽𝛽 = 1.6/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 or 1.8/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 (Fig.S4b). To calculate the model 184 
vs. map FSCs, we fitted the atomic coordinates of an E. coli 𝛽𝛽-galactosidase structure (PDB code 185 
3I3E)(8) into the post-processed density maps reconstructed by different methods. 186 
 80S ribosome (EMPIAR-10002): We extracted particles from the micrographs using the semi-187 
automated selection process in RELION 3.0(9). The particles were pruned by one round of 2D 188 
classification where only the particles classified to major classes were kept. We then constructed an ab 189 
initio map in RELION 3.0 through 3D classification. 3D refinements continued from the 70 Å low pass 190 
filtered initial map. For OPUS-SSRI, we used the same 𝜖𝜖, 𝜖𝜖′ and 𝛾𝛾 as 𝛽𝛽-galactosidase and scanned 191 
through 𝛼𝛼 ∈ [0.3,0.5]‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 with a step size of 0.1‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖. The resolutions with different 𝛼𝛼 are 192 
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shown in Fig.S4c. The best result is obtained at 𝛼𝛼 = 0.4‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖. We then scanned through 𝛽𝛽 ∈193 
[1.2,2.4] with a step size of 0.4/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 for 𝛼𝛼 = 0.4‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and 𝛼𝛼 = 0.5‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖. The results are 194 
shown in Fig.S4d. The best results were obtained at 𝛼𝛼 = 0.4‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and 𝛽𝛽 = 1.6/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 or 195 
2/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖. To assess the cryo-EM maps determined using different methods, we fitted 80S crystal 196 
structure (PDB code 3U5B(10)) using a simple rigid-body fit into post-processed maps. The 40S and 60S 197 
subunits were fitted separately. 198 
 Hemagglutinin (EMPIAR-10097): The 3D refinements were performed by using a 40 Å low-199 
passed filtered initial map and enforcing the C3 symmetry. For OPUS-SSRI, the optimal parameters are 200 
𝜖𝜖 = 0.015 and 𝜖𝜖′ = 𝜖𝜖/3, 𝛼𝛼 = 0.4‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖, 𝛽𝛽 = 2.6/3‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and 𝛾𝛾 = 0.2𝑁𝑁(𝑛𝑛)�������. To compare the post-201 
processed density maps obtained from different refinement methods, we used a crystal structure of HA 202 
trimer (PDB code 3WHE)(11) as a reference following the original publication(12). 203 
 TRPM4 (EMPIAR-10126): The 3D refinement rounds were performed with a 50 Å low-passed 204 
filtered initial map and C4 symmetry. The best parameters of our method were 𝜖𝜖 = 0.01, 𝜖𝜖′ = 𝜖𝜖,𝛼𝛼 =205 
0.8‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖,𝛽𝛽 = 4‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and 𝛾𝛾 = 0.1𝑁𝑁(𝑛𝑛)�������. The cryo-EM maps were compared with the atomic 206 
model in PDB code 6BQR(13). 207 
 Hrd1/Hrd3 (EMPIAR-10099): Due to the heterogeneity of this dataset, the 3D classification was 208 
used to classify the particles, and generate the corresponding initial maps of different complexes for 3D 209 
refinements. The particles classified as Hrd1/Hrd3 dimer were selected, and then subject to 3D 210 
refinements. We performed 3D refinements using different methods and the same 20 Å low-passed 211 
filtered initial map. The best parameters of our method are 𝜖𝜖 = 0.01, 𝜖𝜖′ = 𝜖𝜖

2
,𝛼𝛼 = 0.4‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖,𝛽𝛽 =212 

0.6‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and 𝛾𝛾 = 0.1𝑁𝑁(𝑛𝑛)�������. The final results were compared with the atomic models of Hrd1 dimer 213 
(PDB code 5V6P) and Hrd3 monomer (PDB code 5V7V)(14). 5V6P and 5V7V were fitted into density 214 
map separately. 215 
 TRPV5 (EMPIAR-10254): The 3D refinement rounds were performed by using a 40 Å low-pass 216 
filtered 3D initial map and enforcing C4 symmetry. The best parameters of our method were 𝜖𝜖 = 0.01, 𝜖𝜖′ =217 
2𝜖𝜖,𝛼𝛼 = 0.5‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖,𝛽𝛽 = 2‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and 𝛾𝛾 = 0.1𝑁𝑁(𝑛𝑛)�������. The cryo-EM maps were compared to the atomic 218 
model in PDB code 6O1P(15). 219 
 TMEM16A (EMPIAR-10123): The 3D refinements were performed by using a 40 Å low-passed 220 
filtered initial map and enforcing the C2 symmetry. The best parameters of our method are 𝜖𝜖 = 0.01, 𝜖𝜖′ =221 
𝜖𝜖,𝛼𝛼 = 0.5‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖,𝛽𝛽 = 2‖𝐴𝐴𝐻𝐻𝐷𝐷𝑥𝑥‖2������������𝜖𝜖 and 𝛾𝛾 = 0.1𝑁𝑁(𝑛𝑛)�������. The final results were compared to the atomic 222 
model in PDB code 6BGI(16) by calculating model vs. map FSC. 223 
 224 
  225 



 226 

Table S1. Comparison of the final reconstructions refined by RELION 3.0, THUNDER or OPUS-SSRI  227 

Proteins Model vs. Map FSC=0.143 

RELION THUNDER OPUS-SSRI 
Resolution (Å) Resolution 

(Å) 
ΔÅ over 

RELION1 
Resolution 

(Å) 
ΔÅ over 

RELION1 
ΔÅ over 

THUNDER2 
𝛽𝛽-galactosidase 
(EMPIAR-10017) 

4.05 4.08 -0.03 3.91 0.14 0.17 

80S ribosome 
(EMPIAR-10002) 

4.04 3.70 0.34 3.89 0.15 -0.19 

Hemagglutinin 
(EMPIAR-10097) 

4.06 3.89 0.17 3.72 0.34 0.17 

TRPM4 
(EMPIAR-10126) 

3.34 / / 2.93 0.41 / 

Hrd1/Hrd3 
(EMPIAR-10099) 

4.70 4.88 -0.18 4.25 0.45 0.63 

TRPV5 
(EMPIAR-10254) 

3.05 2.98 0.07 2.76 0.29 0.22 

TMEM16A 
(EMPIAR-10123) 

3.87 / / 3.14 0.73 / 

Average 
improvement 

  0.07  0.30 0.20 

1: the value in negative indicates the resultant resolution is worse than that from RELION, while the value in positive indicates the 228 
resultant resolution is better than that from RELION. 229 
2: the value in negative indicates the resultant resolution is worse than that from THUNDER, while the value in positive indicates the 230 
resultant resolution is better than that from THUNDER. 231 

/: indicates that the comparison was unavailable in two cases where THUNDER failed to execute due to computer incompatibility. 232 

 233 
  234 



 

 

Fig. S1. Model vs. map FSC curves between the post processed density maps and the corresponding rigid-body fitted atomic models for seven 
proteins. (a) β-galactosidase with atomic model in PDB code 3I3E; (b) 80S ribosome with atomic model in PDB code 3U5B, for which the 40S and 
60S subunits were fitted separately; (c) Influenza hemagglutinin with atomic model in PDB code 3WHE; (d) TRPM4 with atomic model in PDB 
code 6BQR; (e) Hrd1/Hrd3 complex, for which the Hrd1 dimer (PDB code 5V6P) and Hrd3 monomer (PDB code 5V7V) were fitted separately; (f) 
TRPV5 with atomic model in PDB code 6O1P; (g) TMEM16A with atomic model in PDB code 6BGI. Dashed black line represents FSC=0.143 in 
all panels. 
  



 

Fig. S2. Gold standard masked FSC curves for the final 3D reconstructions refined by OPUS-SSRI or THUNDER for (a) β-galactosidase, (b) 80S 
ribosome, (c) influenza hemagglutinin, (d) Hrd1/Hrd3 and (e) TRPV5. In all panels, dashed black line represents FSC=0.143.  
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Fig. S3. Model vs. map FSC curves between the post processed density maps and the corresponding rigid-body fitted atomic models for five 
proteins. (a) β-galactosidase with atomic model in PDB code 3I3E; (b) 80S ribosome with atomic model in PDB code 3U5B, for which the 40S and 
60S subunits were fitted separately; (c) Influenza hemagglutinin with atomic model in PDB code 3WHE; (d) Hrd1/Hrd3 complex, for which the 
Hrd1 dimer (PDB code 5V6P) and Hrd3 monomer (PDB code 5V7V) were fitted separately; (e) TRPV5 with atomic model in PDB code 6O1P. 
Dashed black line represents FSC=0.143 in all panels. 
  



 

 

Fig. S4. Grid search for optimal parameters in OPUS-SSRI. (a) Resolutions of EM maps refined with different 𝜶𝜶 for β-galactosidase. (b) 
Resolutions of EM maps refined with different 𝜷𝜷 for β-galactosidase. (c) Resolutions of EM maps refined with different 𝜶𝜶 for 80S ribosome. (d) 
Resolutions of EM maps refined with different 𝜷𝜷 and 𝜶𝜶 for 80S ribosome. 
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