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1. Linear, static statFEM10

An elliptic PDE with coefficients Λ can be written as:11 
LΛu = f + ξθ, in Ω, ξθ ∼ GP(0, kθ(·, ·)),
u = 0 on ∂Ω,
u := u(x), f := f(x), x ∈ Ω ⊂ Rd.

[1]12

We will now derive a Gaussian measure µ0 which serves as the prior reference measure. Typical analysis of the deterministic13

problem begins by looking for weak solutions to Eq. (1) by multiplying by testing functions ψ ∈ H1
0 (Ω) assuming that f ∈ L2(Ω).14

The space H1
0 (Ω) denotes the Sobolev space with first-order weak derivatives in L2(Ω) that vanish on ∂Ω.15

To start we show that if we assume ξθ ∈ L2(Ω) then we can define a Gaussian measure on L2(Ω). Writing the L2 inner16

product as 〈f, g〉 =
∫

Ω f(x)g(x) dx, which is understood as a Lebesgue integral, we can define a Gaussian measure N (0, Cθ)17

from the random field as the covariance operator Cθ is defined from the kernel kθ (see (1), Chapter 6), i.e.18

(Cθh)(x) =
∫
kθ(x, x′)h(x′) dx′,19

so ξθ ∼ N (0, Cθ) on L2(Ω).20

We now return to Eq. (1) and multiply by test functions ψ ∈ H1
0 (Ω) — also assuming solutions u ∈ H1

0 (Ω) — and integrating21

over the problem domain Ω to give the weak form:22

AΛ(u, ψ) = 〈f, ψ〉,+〈ξθ, ψ〉23

where AΛ(·, ·) is the bilinear form generated from LΛ. We note that it is assumed f, ξθ ∈ L2(Ω). The Sobolev space H1
0 (Ω) has24

an orthonormal basis {φi}i∈N so u =
∑∞

i=1 uiφi(x) and thus25

∞∑
i=1

uiAΛ(φi, ψ) = 〈f, ψ〉,+〈ξθ, ψ〉.26

Now as ψ ∈ H1
0 (Ω) also we can write without loss of generality27

∞∑
i=1

uiAΛ(φi, φj) = 〈f, φj〉,+〈ξθ, φj〉, j ∈ N.28

The above can be viewed as an infinite system of equations with the matrix A having entries Aij = AΛ(φi, φj), and thus can29

be viewed as an operator on `2 as Au =
{∑∞

i=1 uiAΛ(φi, φj)
}
j∈N

. We assume the `2 structure for the following theorem.30

Theorem 1. The operator A : `2 → `2 is invertible.31

Proof. If A is not invertible then Au = 0 for some u 6= 0. We show that if Au = 0 and u 6= 0 that this leads to a contradiction.

〈Au, u〉 =
∑
i

ui
∑
j

AΛ(φi, φj)uj

=
∑
i

∑
j

AΛ(uiφi, ujφj)

= AΛ

(∑
i

uiφi,
∑
j

ujφj

)
= AΛ(u, u) ≥ |C|‖u‖2 > 0,

where the last inequality is because u 6= 0 and is established from the coercivity of the bilinear form (2). This contradicts32

Au = 0.33

Then for b = {〈f, φj〉}j , ξ = {〈ξθ, φj〉}j , we have u = A−1(b+ ξ). Thus Eu = A−1b, and

E [(u− Eu)⊗ (u− Eu)] = A−1GA−1, Gij =
∫
φi(x)

∫
kθ(x, x′)φj(x′) dx′dx.

So {ui}i ∼ µ0 = N (A−1b, A−1GA−1) and so we write u ∼ µ0 = N (mu, Cu) (the dominating measure for the posterior).34

Using the Radon-Nikodym derivative we can then define the posterior measure µy on function space (1) under the condition35

that the posterior is absolutely continuous with respect to the prior. This gives the (infinite-dimensional) posterior (Z a36

normalizing constant):37

dµy
dµ0

= 1
Z

exp
(
−1

2‖y−Hu‖
2
σ2I

)
.38
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With H : H1
0 (Ω) → RN . In this work we assume that H is a linear operator that maps from the function space to the39

data space and typically refer to it as the observation operator. The data-generating-process is assumed to have Gaussian40

measurement error given by N (0, σ2I). Note the posterior measure as written above implicitly conditions on PDE parameters41

Λ, and covariance parameters θ.42

In order to permit computation, however, we need to project from the infinite dimensional Sobolev space to a finite43

dimensional subset Uh and do the same for the testing functions (i.e. projecting to Vh ⊂ H1
0 (Ω)). One can take the projection44

operator PMu =
∑M

i=1 uiφi(x) and project to a finite-dimensional subset of a basis {φi}i and thus as in the introduction we45

discretize: uh(x) =
∑M

i=1 uh,iφi(x), vh(x) =
∑M

i=1 vh,iψi(x), and46

AΛ(uh, ψj) = 〈f, ψj〉,+〈ξθ, ψj〉.47

This then defines the (now finite-dimensional) Gaussian measure over the vector of FEM coefficients u = (uh,1, uh,2, . . .)>:48

p(u | Λ, θ) = N (A−1b,A−1G(θ)A−T),49

where Aij = AΛ(φi, ψj), bi = 〈f, ψi〉, and G(θ)ij = 〈φi, Cθψj〉. We write this as shorthand p(u | θ,Λ) = N (mu,Cu).50

The full covariance matrix G(θ) can be written as51

G(θ)ij =
∫

Ω
ψi(x)

∫
Ω
kθ(x, x′)ψj(x′) dx′ dx.52

This covariance kernel can be chosen to encode information about the spatial variation of the process. For example, assuming53

that forcing is smooth in space means the popular squared exponential covariance kernel may be appropriate (we have used this54

covariance in all of our examples). There is a vast literature on covariance kernels; see (3), Chapter 4, for a thorough treatment.55

Arrival of data y with some measurement error process η can be written as56

y = Hu + η, η ∼ N (0, σ2I),57

where H : RM → RN is the now finite-dimensional linear observation operator. The finite-dimensional Bayes theorem gives the
posterior distribution over the FEM coefficients

p(u | y, θ, σ,Λ) ∝ p(y | u, σ)p(u | θ,Λ)
= N (m,C),

in which58

m = mu + CuH>
(
HCuH> + σ2I

)−1 (y−Hmu),59

60

C = Cu −CuH>
(
HCuH> + σ2I

)−1 HCu.61

We note that throughout this paper that this should really be also conditional on the differential operators and forcing functions62

that form the dynamics, but this conditioning is taken as implicit so as to avoid cumbersome notation.63

Parameters θ are estimated from the log-marginal likelihood p(y | θ, σ,Λ) = N
(
Hmu,HCuH> + σ2I

)
using either sampling64

or optimization based approaches depending on the need for uncertainty quantification.65

2. Linear, time-dependent statFEM66

Now we consider the parabolic time-dependent problem:67 {
∂tu+ LΛu = f + ξθ, ξθ ∼ GP(0, kθ(x, x′) · δ(t− t′)),
u := u(x), f := f(x), x ∈ Ω ⊂ Rd, t ∈ [0, T ].

68

For mathematical simplicity we take the separable covariance function69

E
[
ξθ(x, t)ξθ(x′, t′)

]
= kθ(x, x′) · δ(t, t′). [2]70

Which has the implication that stochastic forcing is white noise in time and spatially regular as per kθ(·, ·). We start by making71

a spatial discretization of the above with finite elements to give the semidiscrete problem and then use finite difference methods72

to give the fully discrete problem (see e.g. (4)). We start with the very similar weak form (with u ∈ U , ψ ∈ V ):73

〈ut, ψ〉+AΛ(u, ψ) = 〈f, ψ〉,+〈ξθ, ψ〉,74

and project into finite dimensional subsets Uh ⊂ U , Vh ⊂ V , using finite elements uh(x, t) =
∑

i∈I uh,i(t)φi(x), vh(x, t) =75 ∑
i∈I vh,i(t)ψi(x), to give the system of ODEs:76

〈∂tuh, ψj〉+AΛ(uh, ψj) = 〈f, ψj〉,+〈ξθ, ψj〉, j ∈ I.77
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The covariance of 〈ξθ, ψj〉 is defined by:

E[〈ξθ, ψi〉〈ξθ, ψj〉] = δ(t, t′)
∫

Ω
ψi(x)

∫
Ω
k(x, x′)ψj(x′) dxdx′.

Which implies that the Gaussian process ξt = (〈ξ, ψ1〉, 〈ξ, ψ2〉, . . .)> can be described by:

E[ξt] = 0,
E[ξtξt′ ] = δ(t, t′) ·G(θ),

G(θ)ij =
∫

Ω
ψi(x)

∫
Ω
kθ(x, x′)ψj(x′) dx′ dx.

This ξt can be informally thought of as the derivative of a Brownian motion process βt with diffusion matrix G (5).78

We can concatenate the FEM coefficients into a vector u = (u1(t), u2(t), . . .)> to write the above as a vector SDE:79

M du + Au dt = b dt+ dβt,80

where Mij = 〈φi, ψj〉 (the mass matrix) and A and b are as above. Next making a time discretization, un = (u1(n∆t), u2(n∆t), . . .)>,81

and using an explicit Euler discretization, one can write:82

M (un − un−1) + ∆tAun−1 = ∆tb + en−1,83

in which en−1 = βn − βn−1 ∼ N (0,∆tG(θn)) are i.i.d. Gaussian (timesteps are assumed equal through the simulation). The84

implicit Euler follows85

M (un − un−1) + ∆tAun = ∆tb + en−1,86

so too the Crank-Nicolson87

M (un − un−1) + ∆tAun+1/2 = ∆tb + en−1,88

where un+1/2 := (un+1 + un)/2.89

For exposition let us look at the the explicit Euler method for which the updating equation can be written as90

un = (I−∆tM−1A)un−1 + ∆tM−1b + M−1en−1,91

which defines the conditional measure at time n to be92

un | un−1, θn,Λ ∼ N
((

I−∆tM−1A
)

un−1 + ∆tM−1b,∆tM−1G(θn)M−>) .93

The data are arriving at each timestep in the form yn = Hnun + ηn and have some Gaussian additive noise ηn ∼ N (0, σ2
nI).94

This is a high-dimensional linear Gaussian state space problem. This class of models have been well studied (6) and one can95

apply standard Kalman filtering methods to obtain the filtering distribution p(un | y1:n, θ1:n, σ1:n,Λ). We denote by mn|n−196

the posterior mean at time n conditional on data up to and including time n− 1. The covariance also follows this notation.97

Under the assumption of unknown parameters θ, and a known previous filtering distribution, un−1 | y1:n−1, θ1:n−1, σ1:n−1,Λ ∼98

N (mn|n−1,Cn|n−1), the filtering proceeds as:99

1. Predict:100

mn|n−1 = (I−∆tM−1A)mn−1|n−1 + ∆tM−1b,101

102

Ĉn|n−1 = (I−∆tM−1A)Cn−1|n−1(I−∆tM−1A)>.103

2. Estimate θn, σn:104

arg maxθn,σn
{log p(yn | y1:n−1, θ1:n, σ1:n) + log p(θn) + log p(σn)}105

106

p(yn | y1:n−1, θ1:n, σ1:n) = N
(
Hnmn|n−1,HnĈn|n−1H>n + HnĜ(θn)H>n + σ2

nI
)
,107

where Ĝ(θn) = ∆tM−1G(θn)M−>.108

3. Update using the estimated θn:109

Cn|n−1 = Ĉn|n−1 + Ĝ(θn).110

4. Condition:111

mn|n = mn|n−1 + Cn|n−1H>n
(
HnCn|n−1H>n + σ2

nI
)−1 (yn −Hnmn|n−1),112

113

Cn|n = Cn|n−1 −Cn|n−1H>n
(
HnCn|n−1H>n + σ2

nI
)−1 HnCn|n−1.114

Thus p(un | y1:n, θ1:n, σ1:n,Λ) = N (mn|n,Cn|n).115
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3. Nonlinear, time-dependent statFEM116

A general nonlinear PDE with stochastic forcing can be expressed as:117 {
∂tu+ LΛu+ FΛ(u) + ξθ = 0, ξ ∼ GP(0, kθ(x, x′) · δ(t− t′)),
u := u(x, t), x ∈ Ω ⊂ Rd, t ∈ [0, T ].

[3]118

The nonlinear statFEM construction is then as follows, assuming the separable covariance structure as in Eq. (2). As previous119

we start with the spatial discretization to give a semidiscrete problem (a vector SDE) and then proceed to the fully discrete120

solution via finite differences in time. We begin by multiplying by test functions ψ ∈ V and integrating over the problem121

domain.122

〈∂tu, ψ〉+ 〈LΛu, ψ〉+ 〈FΛ(u), ψ〉+ 〈ξθ, ψ〉 = 0.123

We next divide the domain Ω into finite elements on a given mesh and look for solutions in terms of a finite set of trial124

functions {φi}i∈I against test functions {ψi}i∈I as before. We expand solutions in terms of these basis functions, uh(x, t) =125 ∑
i∈I uh,i(t)φi(x), to give the updated weak form:126

〈∂tuh, ψj〉+ 〈LΛuh, ψj〉+ 〈FΛ(uh), ψj〉+ 〈ξθ, ψj〉 = 0,127

which now defines a nonlinear, coupled system of stochastic differential equations. In general one can make no comment on the128

distributional form of the resultant probability measure on function space due to the nonlinear FΛ. Following the derivations129

given in the linear case above we can write this system as a nonlinear vector SDE:130

M du + FΛ(u)dt+ dβt = 0,131

where M is the mass matrix and FΛ is some nonlinear vector function that encodes the action of LΛ and FΛ.132

Now, we discretize in time using Euler methods. The explicit Euler method at un := u(n∆t) gives133

M
(
un − un−1)+ ∆tFΛ(un−1) + en−1 = 0,134

in which en−1 = βn − βn−1 ∼ N (0,∆tG(θ)) are i.i.d. Gaussian (timesteps are equal through the simulation). We can also use135

the implicit Euler136

M
(
un − un−1)+ ∆tFΛ(un) + en−1 = 0,137

or the Crank-Nicolson138

M
(
un − un−1)+ ∆tFΛ(un+1/2) + en−1 = 0,139

with un+1/2 := (un+1 + un)/2, if stability of the time integration is needed. We can represent the above as some nonlinear140

updating equation:141

FΛ(un,un−1) + en−1 = 0,142

recycling the notation for the nonlinear vector-valued function FΛ. This system of equations requires solving at each timestep143

(via linear solvers or nonlinear Newton/quasi-Newton methods) and the solution will define the prior over the FEM coefficients144

at each time n∆t. Obviously there is much development required to go from the weak form to having a timestepping regime in145

terms of the FEM coefficients, however for brevity we will just deal with the above (or variants thereof). Statisticians will note146

that from here on in we are essentially studying a high-dimensional nonlinear state-space model. We now turn to describing147

the data assimilation procedure.148

4. Computing the posterior149

Now, having the prior, we wish to condition on data to yield the posterior p(un | y1:n, θ1:n, σ1:n,Λ), describing the belief in150

the FEM solution conditioned on data observed up to and including time n∆t. We begin by stipulating the data generating151

process as, at each n, yn = Hnun + ηn in which152

• yn ∈ RN is the observed data at time n∆t.153

• Hn : RM → RN is the observation operator that maps from the FEM solution mesh to the observed points xobs.154

• un ∈ RM is the FEM coefficients at time n.155

• ηn is a noise process that represents the measurement error for the observed values. This is a Gaussian ηn ∼ N (0, σ2
nI)156

and thus so is the likelihood p(yn | un, σn,Λ) = N (Hnun, σ2
nI).157
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A. Extended Kalman filter (EKF). At time n we start with the previous filtering distribution158

p(un−1 | y1:n−1, θ1:n−1, σ1:n−1,Λ) ∼ N (mn−1|n−1,Cn−1|n−1),159

then proceed as follows160

1. Compute the prediction step for the mean by solving161

FΛ(mn|n−1,mn−1|n−1) = 0,162

for mn|n−1, and computing the so-called forward covariance:163

Ĉn|n−1 = (Jn)−1 (Jn−1Cn−1|n−1(Jn−1)>
)

(Jn)−>,164

The Jacobians Jn = ∂
∂unFΛ(un,un−1), Jn−1 = ∂

∂un−1FΛ(un,un−1) are evaluated at the solutions mn|n−1, mn−1|n−1.165

The reason we do this “half” prediction step is that the parameters θn are as yet unknown and must be estimated. The166

full prediction covariance is written as:167

Cn|n−1 = Ĉn|n−1 + ∆t(Jn)−1G(θn)(Jn)−>.168

2. Maximize the log-marginal posterior169

maxθn,σn {log p(yn | y1:n−1, θ1:n, σ1:n,Λ) + log p(θn) + log p(σn)}170

to obtain estimated parameters θn, σn. The marginal likelihood can be written out as:171

p(yn | y1:n−1, θ1:n, σ1:n,Λ) = N
(
Hnmn|n−1,HnĈn|n−1H>n + ∆tHnĜ(θn)H>n + σ2

nI
)

172

where173

Ĝ(θn) = (Jn)−1G(θn)(Jn)−>.174

In this form we can calculate derivatives of marginal likelihood covariance — using well-known formulae from Gaussian175

process regression (see (3), Chapter 5).176

3. Using the estimated θn, compute the full prediction covariance Cn|n−1:177

Cn|n−1 = Ĉn|n−1 + ∆tĜ(θn).178

4. Complete a standard Kalman update, conditioning on yn:

p(un | y1:n, θ1:n, σ1:n,Λ) ∝ p(yn | un, σn)p(un | y1:n−1, θ1:n,Λ)
= N (mn|n,Cn|n).

where

mn|n = mn|n−1 + Cn|n−1H>n
(
HnCn|n−1H>n + σ2

nI
)−1 (yn −Hnmn|n−1),

Cn|n = Cn|n−1 −Cn|n−1H>n
(
HnCn|n−1H>n + σ2

nI
)−1 HnCn|n−1.

B. Ensemble Kalman filter (EnKF). At time n we start with the previous filtering distribution, which with Nens ensemble179

members, is described by:180 {
un−1,[i]}

i
∼ p(un−1 | y1:n−1, θ1:n−1, σ1:n−1,Λ).181

Then proceed as follows182

1. Compute the prediction step (without simulating stochastic forcing) for each i = 1, . . . , Nens183

FΛ(un,[i],un−1,[i]) = 0,184

and computing the so-called forward covariance:185

Ĉn|n−1 = 1
Nens − 1

Nens∑
i=1

(
un,[i] −mn|n−1

) (
un,[i] −mn|n−1

)>
186

where mn|n−1 = 1
Nens

∑Nens

i=1 un,[i]. The reason we do this “half” prediction step is that the parameters θn are as yet187

unknown and must be estimated. The full prediction covariance is approximated as188

Cn|n−1 = Ĉn|n−1 + ∆t(Jn)−1G(θn)(Jn)−>,189

where we employ this approximation in order to use analytical gradients in the optimization step.190
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2. Maximize the log-marginal posterior191

maxθn,σn {log p(yn | y1:n−1, θ1:n, σ1:n,Λ) + log p(θn) + log p(σn)}192

to obtain estimated parameters θn, σn. The marginal likelihood can be written out as:193

p(yn | y1:n−1, θ1:n, σ1:n,Λ) = N
(
Hnmn|n−1,HnĈn|n−1H>n + ∆tHnĜ(θn)H>n + σ2

nI
)

194

where Ĝ(θn) = (Jn)−1G(θn)(Jn)−>.195

3. Using θn, compute the full prediction step:196

FΛ(un,[i],un−1,[i]) + e[i]
n−1 = 0,197

for the predictions
{
un,[i]

}
i
.198

4. Then update the ensemble members by a Kalman shift199

un,[i] = un,[i] + Cn|n−1H>n
(
HnCn|n−1H>n + σ2

yI
)−1 (yn + η[i]

n −Hnun,[i]
)
,200

201

Cn|n−1 = 1
Nens − 1

Nens∑
i=1

(
un,[i] −mn|n−1

) (
un,[i] −mn|n−1

)>
, mn|n−1 = 1

Nens

Nens∑
i=1

un,[i],202

to give the posterior ensemble
{
un,[i]

}
i
∼ p(un | y1:n, θn, σn,Λ).203

C. Discussion of the method. Discretization of the covariance G(θ) requires some care to implement as this is a 2d dimensional
integral and in general does not give a sparse matrix as Cθ is a positive definite integral operator on Hilbert space. For large
problems it may be necessary to impose some sort of sparsity constraint. This can be done e.g. by assuming space-time white
noise to give

G(θ)ij = 〈ψi, Cθψj〉 =
∫

Ω
ψi(x)

∫
Ω
δ(x, x′)ψj(x′) dx′ dx

=
∫

Ω
ψi(x)ψj(x) dx = Mij ,

so the mass matrix M is the covariance matrix. Localization (see, e.g., (7)) may also be used to enforce a sparsity constraint204

and remove spurious correlations that may arise from small ensemble sizes (if the ensemble method is used). Brute force setting205

entries to zero, below some threshold value, could also be used.206

Furthermore often products of the form A−1G(θ)A−> must be formed. If taking a truncated eigendecomposition of G(θ)207

is not too problematic (using e.g. Lanczos iterations (8)) then one can approximate208

A−1G(θ)A−> ≈ A−1QDQ>A−> = (A−1Q)D(A−1Q)>,209

meaning many of matrix solves of A can be avoided by taking this low-rank approximation. This may be especially beneficial210

when G(θ) has some additional structure than can be made use of to quickly compute its eigendecomposition (e.g. sparsity or211

Toeplitz structure).212

The parameters θn and σn require estimation at each time n and are assumed to be independent across time. They are213

estimated by maximizing the log-marginal posterior (3):∗214

log p(θn, σn | y1:n, θ1:n−1, σ1:n−1) ∝ log p(yn|y1:n−1, θ1:n, σ1:n) + log p(θn) + log p(σn)215

where the marginal likelihood at time n is approximated with the EKF approximation216

p(yn | y1:n−1, θn, σn,Λ) = N
(
Hnmn|n−1,HnĈn|n−1H>n + ∆tHnĜ(θn)H>n + σ2

nI
)
.217

Unless otherwise mentioned we use the priors218

τn ∼ N+(1, 12), `n ∼ N+(1, 12), σn ∼ N+(0, 12). [4]219

We choose to introduce prior information in order to regularize the optimization problem. Anecdotally, appropriate choices of220

these priors makes the optimization much better-behaved.221

If parameters are assumed to be constant across time then the updating procedures provided above could be modified to222

account for this. One possibility is outlined in (6) and is based on optimizing the full likelihood:223

log p(y1:N | θ, σ) = −1
2

N∑
n=1

log |Σn(θ, σ)| − 1
2

N∑
n=1

(
yn −Hnmn|n−1

)>Σn(θ, σ)−1 (yn −Hnmn|n−1
)
,224

in which Σn(θ, σ) = HnĈn|n−1H>n + ∆tHnĜ(θ)H>n + σ2I. One could use the above filtering algorithms with fixed parameters225

to evaluate this likelihood, also analytically calculating gradients on the way through. Priors can also be incorporated.226

Optimization can then proceed via standard methods (e.g. L-BFGS-B as we use for the marginal likelihood) noting that each227

likelihood (and gradient) evaluation requires computing the filtered distribution p(uN | y1:N , θ, σ) for fixed parameters θ and σ.228

∗Using Gaussian priors gives the Tikhonov regularization of the marginal likelihood. Other priors are also commonly used, see e.g. Chapter 10 of (9)
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5. statFEM for KdV229

We now illustrate the above using the eKdV equation, given by230 
ut + αuux + βuxxx + cux + νu+ ξθ = 0,
u := u(x, t), x ∈ [0, L], t ∈ [0, T ],
u(x, t) = u(x+ L, t),
u(x, 0) := u0(x).

231

For the deterministic problem, we discretize using the scheme outlined in (10). Start by defining the time grid as nt evenly232

spaced points (0,∆t, 2∆t, . . . , (nt − 1)∆t)>, with un(x) = u(x, n∆t). We use Crank-Nicolson for time integration and continue233

as usual by multiplying with test functions ψ ∈ V 0 (V 0 some appropriate function space) and integrating with respect to x234

over [0, L] to give the weak form235

〈un+1 − un, ψ〉+ ∆tα〈un+1/2un+1/2
x , ψ〉+ ∆tβ〈un+1/2

xxx , ψ〉+ ∆tc〈un+1/2
x , ψ〉+ ∆tν〈un+1/2, ψ〉+ 〈ξnθ − ξn−1

θ , ψ〉 = 0.236

Where ξnθ − ξn−1
θ ∼ GP(0,∆tkθ(x, x′)) with k a squared-exponential kernel. To minimize the order of derivatives split the

above into a system of three first order equations:

〈un+1 − un, ψ〉+ ∆tα〈un+1/2un+1/2
x , ψ〉+ ∆tβ〈wn+1/2

x , ψ〉+ ∆tc〈un+1/2
x , ψ〉+ ∆tν〈un+1/2, ψ〉+ 〈ξnθ − ξn−1

θ , ψ〉 = 0,

〈un+1/2
x , ψ〉 = 〈vn+1/2, ψ〉,

〈vn+1/2
x , ψ〉 = 〈wn+1/2, ψ〉.

This is necessary as we use P0 test functions {ψi}i and P1 trial functions {φi}i. The solutions to the deterministic problem237

thus reside in the space V 1
h = span ({φi}i) ⊂ C1([0, L]).238

To solve the above system at each time requires the solution of a nonlinear system of equations which is implemented using239

Newton’s method. Convergence is typically achieved in < 5 Newton iterations. It is noted in (10) that solving the system240

directly as opposed to linearizing about previous solutions avoids numerical dissipation present in other schemes. When using241

the statFEM for KdV, the covariance G(θ) is evaluated with the trapezoidal rule which is known to be exponentially convergent242

for periodic functions (11).243

A. FEM approximation convergence. To compute discretization error estimates for the EKF prior mean we make use of the244

fact that KdV is integrable with “nice” expressions of the exact solution u(x, t) for judicious choice of coefficients and initial245

conditions. In this study we chose α = 1, β = 10−3, and initial conditions246

u(x, 0) = 3
2sech2

(
1
2

√
1

2β (x− 1)
)

247

which gives the analytical solution (assuming that u = 0, ∂xu = 0, as x→ ±∞)248

u(x, t) = 3
2sech2

(
1
2

√
1

2β

(
x− 1− t

2

))
.249

We solve on x ∈ [0, 3] with periodic boundary conditions; this mimics solving on the real line. We compute the L2 error250

‖u− uh‖2 for FEM discretized solutions uh using 200, 400, 600, 800, 1000, and 2000 mesh nodes, after running 100 timesteps251

with ∆t = 10−3. The resultant errors are shown in Figure S1a and give error O(h2), as expected with P1 elements.252

B. Simulation study. We now present the consistency of the prior for the simulation study. In this case we take the same253

settings as in the main text: α = 1, β = 0.01, c = 0, and investigate the effect of reducing the ξθ scale parameter τn ≡ τ for254

equal `n ≡ `. These parameters are assumed constant for all n. Results are shown in Figure S1b, computed using the EnKF255

method, and demonstrate that (a) uncertainty grows as the simulation carries on; and (b) the reduction of the scale parameter256

τ results in the uncertainty bands contracting about the FEM solution. The prior mean converges to the FEM solution as τ is257

decreased. However there is some damping for larger τ values. We posit that damping is due to the dispersive behaviour of258

KdV. By perturbing solutions we cause the ensemble members to drift apart as the simulation runs.259

C. Experimental data. We set the noise variance after Fourier filtering the experimental data at the first wave-gauge, attenuating260

to the first 100 frequencies only. Estimation of this variance gives the time-averaged constant variance σ2
n ≈ 1.3588× 10−8. In261

order to estimate the other hyperparameters we use a projection method to address potential small data problems. At each262

timestep, we have three measurements in space, which is less than ideal when trying to learn hyperparameters. To inflate the263

dataset we project forward using a least-squares projection:264

yni = an + bnun(xi),265
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(b) Cubic KdV prior consistency plots.

which requires estimating the an, bn at each iteration. This gives the best least-squares linear projection from the current266

prediction to the data, to give us a predicted dataset ỹn via using the linear shift:267

ỹn = an + bnun.268

Using this method we can extend our dataset to now be as large as our FEM solution grid. In the paper we project to a
grid of 100 points, uniformly spaced across the solution grid. This is only for the parameter estimation step. We do not use
these values as the data in the analysis/conditioning step of the Kalman filter; we just use this to estimate the parameters, to
improve the conditioning of the problem. We use the same weakly informative priors

τn ∼ N+(1, 12), `n ∼ N+(1, 12).

6. Further examples269

In this section we demonstrate the application of the method on a set of PDEs. We use two well-known systems: the270

Kuramoto-Sivashinsky equation and the 2D Burgers’ equation. The general theme of this section is that we generate some271

mismatched data and then condition on it after jittering it with synthetic Gaussian observational error. Different to KdV, we272

discretize all equations with Fenics (12) and use the EKF in both examples. Scripts to run these examples are included in the273

accompanying GitHub repository, available at https://github.com/connor-duffin/statkdv-paper.274

A. Kuramoto-Sivashinsky. The Kuramoto-Sivashinsky (KS) equation is a chaotic, biharmonic PDE that is used to model275

pattern formation in a variety of physical contexts (13). In this paper we consider the 1D KS equation, which is given by:276 
ut + uux + νuxx + uxxxx = 0,
u := u(x, t), x ∈ [0, 32π], t ∈ [0, 100],
u(0, t) = u(32π, t).

[5]277

We discretize using P1 trial and test functions with 512 elements in space, and an implicit Euler timestepping scheme (∆t = 0.02).
To deal with the fourth order system we split into a system of coupled PDEs (similar to KdV), to give the semi-discrete
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(time-discretized) equations

〈un − un−1, v〉+ ∆t〈ununx , v〉 −∆tν〈unx , vx〉 −∆t〈wnx , vx〉 = 0,
−〈unx , vx〉 − 〈wn, v〉 = 0,

for test functions v ∈ V .278

We generate data with an under-damped model, with ν = 0.95. StatFEM conditions on 52 observations per timestep, which279

have simulated Gaussian error, ηn ∼ N (0, 0.052). For the statFEM model, we assume the standard base model280

ut + uux + uxx + uxxxx + ξθ = 0, ξθ ∼ GP(0, Cθ),281

in which mismatch is induced by different dissipation magnitudes (0.95 to 1). As before, set the covariance of ξθ to
E [ξθ(x, t)ξθ(x′, t′)] = kθ(x, x′) · δ(t, t′), with kθ given by a squared exponential covariance function now with parameters
θn = (τn, `n) and σn estimated at each timestep n. The data generating process is given by yn = Hun + ηn; the data are
generated according to the KS model and a measurement error. The initial conditions are set from running the data-generating
process (i.e. Eq. (5) for ν = 0.95), initialized with u(x, 0) = sin(x/16), for 2000 timesteps to skip over transient behaviour. In
this case to compute the covariance matrix G(θn) we approximate

G(θn)ij =
∫

Ω
ψi(x)

∫
Ω
kθ(x, x′)ψj(x′) dx′ dx

≈
∑
m

∫
Ω
ψi(x)

∑
n

∫
Ω
ψm(x)kθ(xm, xn)ψn(x′)ψj(x′) dx′ dx

≈
∑
m

∫
Ω
ψi(x)ψm(x)

∑
n

∫
Ω
kθ(xm, xn)ψn(x′)ψj(x′) dx′ dx

=
∑
m

Mim

∑
n

K(θn)mnMnj ,

so G(θn) = MK(θn)M> for mass matrix M and covariance matrix K(θn)ij = kθ(xi, xj) for FEM node locations xi, xj .282

First, we analyse the discretization error estimates for the EKF prior mean. In this case KS is non-integrable (14), so we283

use a refined FEM solution with 4096 mesh nodes as the reference solution, and compute the L2 error estimates ‖u− uh‖2 for284

FEM solutions uh with {32, 64, 128, 256, 512} mesh nodes. We compute 100 timesteps with ∆t = 10−3 and then evaluate the285

L2 error norm in each case. The results are shown in Figure S2a and show error O(h2) as with KdV.286

To compute the filtering distribution p(un | y1:n, θ1:n, σ1:n,Λ) we use a modified version of the EKF algorithm, with
the priors given in Eq. (4). This modification makes use of the eigendecomposition of the covariance matrices Cn|n and
G(θn) and is called the low rank EKF in (15). For the cost of a truncated eigendecomposition this avoids inverting the
Jacobian many times. We use this approximation when computing the prediction covariances Ĉn|n−1 and Ĝ(θn) which are
(Jn)−1Jn−1Cn|n−1(Jn−1)>(Jn)−> and (Jn)−1G(θn)(Jn)−> respectively. Taking an eigendecomposition results in products of
the form

(Jn)−1QΛQ>(Jn)−> = (Jn)−1QΛ
(
(Jn)−1Q

)>
which, if the first k eigenvalue/vector pairs are computed, results in having to invert Jn k times. So if k �M this can save287

some compute time. For this example we use the first 50 eigenvalue/vector pairs.288

Results are shown in Figure S2. Figure S2b shows the posterior profiles for four times across the simulation. The initial289

conditions are the same and the posterior corrects for the difference between the data and the prior. The prior and posterior290

means, shown across the entire simulation grid in Figure S2c show completely different behaviour. This is likely due to KS being291

chaotic; small differences in the simulation early on are magnified by the end time. The estimated mismatch hyperparameters292

are shown in Figure S2d. The scale and length parameters each appear to reach stable estimates, which coincide with the prior293

mean. The noise (which has prior mean 0) is approximately identified at each iteration.294

B. Burgers’ equation. Burgers’ equation is a nonlinear PDE that describes the balance of nonlinear steepening and viscous295

damping. The equation is often taken as a stepping-stone to the full simulation of the Navier-Stokes equations as it retains296

nonlinearity and viscous effects but is able to be solved in 1D (where the full Navier-Stokes requires at least 2D). In this297

subsection we study the 2D Burgers’ equation given by298 

ut + uux + vuy = 1
Re∇

2u,

vt + uvx + vvy = 1
Re∇

2v,

u := u(x, t), (x, y) ∈ [0, 2]× [0, 2], t ∈ [0, 5],
u(0, y, t) = u(2, y, t), u(x, 0, t) = u(x, 2, t),
v(0, y, t) = v(2, y, t), v(x, 0, t) = v(x, 2, t),
u(x, y, 0) = v(x, y, 0) = sin(π(x+ y)).

[6]299
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We discretize using P1 trial and test functions and Crank-Nicolson in time. The semi-discretized version of Eq. (6) (discretized
in time) is

〈un − un−1, w1〉+ ∆t〈un+1/2un+1/2
x , w1〉+ ∆t〈vn+1/2un+1/2

y , w1〉+ ∆t
1

Re 〈∇u
n+1/2,∇wn+1/2

1 〉 = 0

〈vn − vn−1, w2〉+ ∆t〈un+1/2un+1/2
x , w2〉+ ∆t〈vn+1/2un+1/2

y , w2〉+ ∆t
1

Re 〈∇u
n+1/2,∇wn+1/2

2 〉 = 0,

for testing functions w1, w2, with periodic boundary conditions.300

Data yn are generated by solving Eq. (6) with Reynolds number Re = 150. The statFEM conditions on 102 observations
per timestep, which are jittered with simulated observational error ηn ∼ N (0, 0.012). Data is observed on the velocity field
u only, and the observation locations are shown on the mesh in Figure S3a. Note that in application more careful design of
experiments may be necessary in order to choose these observation locations, especially for complex domains and/or more
nonlinear regimes. Due to damping noise becomes more apparent as the simulation runs. The base model is taken to be Eq. (6)
with the added unknown forcing on the evolution equation for u only

ut + uux + vuy = 1
Re∇

2u+ ξθ,

vt + uvx + vvy = 1
Re∇

2v.

Mismatch is induced by setting Re = 100 which in practice may occur because of discrepancy between measurements and301

modelling assumptions. The covariance of ξθ is given by E [ξθ(x, t)ξθ(x′, t′)] = kθ(x, x′) · δ(t, t′), with kθ given by a squared302

exponential covariance function with parameters θn = (τn, `n). In this example we set `n = 1 to avoid recomputing G(θn) in303

each iteration, which is computed in the same way as in the KS example (i.e. using the mass matrix G(θn) = MK(θn)M>).304

The assumed data generating process is305

yn = H
(

un
vn

)
+ ηn [7]306

and data are assumed to be generated according to the Burgers equation plus some measurement error.307

In implementation we compute the posterior using a regular mesh with 64× 64 elements in space (shown in Figure S3a)308

and timestep ∆t = 0.01. The L2 discretization error for the initial conditions is shown in Figure S3b, estimated using309

gridsizes of nx = ny ∈ {16, 32, 64, 128, 256} nodes (in each dimension). As with the previous examples we find that errors310

are O(h2), where h is in this case the size of the individual elements. We use the initial condition as computing a highly311

refined solution becomes expensive due to the increasing number of mesh nodes in the solution. To compute the filtering312

distribution p(un | y1:n, θ1:n, σ1:n,Λ) we use the low-rank approximation as in the KS example, this time using the highest313

k = 128 eigenvector/eigenvalue pairs.314

Results are shown in Figure S4. Note that in this section we only plot the u component, as this is the field on which the315

data is observed. The data generating process (Figure S4a) and posterior means (Figure S4b) show visual agreement, and the316

posterior variances (Figure S4c) indicate that uncertainty is greatest about the regions where the classical shocks develop (i.e.317

the regions of highest gradient in the solution surface) as well as the bottom right-hand corner which has the greatest distance318

from the nearest observation location. As the simulation runs these localized regions of highest uncertainty dissipate as a result319

of the viscous damping in the model due to the 1
Re∇

2u term.320

The posterior surfaces shown in Figure S4d show the posterior means and the observed data points. The posterior mean321

shows agreement with the observed data. The normalized relative L2 error ‖ū−uDGP‖2/‖uDGP‖2 is also plotted in Figure S4e,322

for the prior mean and the posterior mean (this is approximated using FEM coefficients). The errors initially grow rapidly323

and then stabilise with time. Rapid initial increase in error is the same for the prior and posterior and after the filtering324

warm-up period — in which the noise is also overestimated (see Figure S4f) — the posterior error becomes lower than the325

prior and appears to increase at a lower rate. Increasing error is to be expected as we are not updating the model coefficients,326

only the numerical solution. Hence there will always be systematic differences between the data generating process and the327

posterior which conditioning on data can only partly account for. We conjecture this results in consistently increasing errors.328

Possible future work could investigate ways to estimate coefficients during the filtering procedure thus eliminating this source329

of misspecification.330

Finally the parameter estimates are shown in Figure S4f. The true value of the noise is shown as a dashed orange band.331

After some warm-up time the parameters reach stable estimates with σn being slightly overestimated from the data. The332

estimates of the mismatch scale τn are more variable (similar to what is seen in the KdV examples) implying that the prediction333

step of the model varies in it’s ability to replicate the data.334
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(a) KS L2 error estimates.
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(b) Posterior mean and 95% credible intervals, prior mean, and observed data, for four evenly space times across the simulation.

(c) Space-time view of prior and posterior means across the simulation grid. Conditioning on data gives a (visually) very different system
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(d) Estimated covariance hyperparameters (τn, `n, σn) for all times.

Fig. S2. KS equation posterior results.

12 of 15 Connor Duffin, Edward Cripps, Thomas Stemler and Mark Girolami



(a) Observation locations (orange) and FEM mesh (blue) for the Burgers example.

(b) L2 convergence rate computed for the 2D Burgers equation (u component only).

Fig. S3. 2D Burgers simulation: settings and setup.
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(a) Burgers DGP means for component u across all times.

(b) Burgers posterior means for component u across all times.

(c) Burgers posterior variances for component u on the mesh (using EKF).

(d) Burgers equation surfaces for component u (shown as a blue surface) and observed data (orange points).
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(e) Relative L2 error between the prior/posterior mean and the known data
generating process (on the u component only).

(f) Burgers parameter estimates. The dashed orange line shows the true value
of the noise which appears slightly overestimated at each time. We conjecture
this may be due to identifiability problems with the stochastic forcing magnitude.

Fig. S4. 2D Burgers equation results using the EKF.
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