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Table S1. Summary of astrocyte-specific RNA-sequencing data for validated experimental perturbations (related to Figure 1).

- 5 -
Experlme_ntal Groups Accession Age Numper Validation References
perturbations number of mice

NCAR 1 month 4
R6/2 4
. NCAR 4
R6/2 mice R6/2 2 months )
Huntington’s NCAR 4 x (Diaz-Castro et al.,
disease R6/2 GSE124846 | 3 months 7 IHC 2019)
WT 4
Q175 mice QL75 2 monthe 4
WT 12 4
Q175 months 4
Ablat_lon of medium Vehicle 9 weeks 4 HHC Figure S2 in current
spiny neurons QA GSE143475 4 paper
. . Vehicle 4 “ . Figure S2 in current
Neuroinflammation 9 weeks Behavior
LPS 4 paper
Pathology A_blatlc_)n of Vehicle GSE153791 | 9 weeks 4 HHC Figure S2 in current
dopaminergic neurons MPTP 4 paper
Obsessive-compulsive WT 4 Fiqure S2 in current
disorder-like mouse SAPAP3 KO GSE153791 | 5 months 4 #IHC, *Behavior g
paper
model
Kir4'1ﬂox/flox + 4
N . Control AAV “ Figure S2 in current
K* current reduction Kird 110910 1 Cre GSE143475 | 9 weeks ) IHC oaper
lonic AAV
signaling Control AAV 4 “IHC, "Ca?" imaging,
Ca?* signaling CalEx AAY GSE114757 | 9 weeks ) “vehavior (Yuetal., 2018)
attenuation WT 4 D e
IP.R2 KO 9 weeks ] Ca** imaging (Yuetal., 2018)
hM3Dq + Vehicle | GSE143475 4 (Chai et al., 2017)
GPCR Gq activation 9 weeks #IHC, "Ca?" imaging | Figure S2 in current
. ! hM3Dg + CNO 4 aper
signaling - - Pap
Gi activation hM4Di + Vehicle GSE119058 | 9 weeks 4




hM4Di + CNO

*IHC, "Ca**
imaging, “behavior

(Chai et al., 2017;
Nagai et al., 2019)
Figure S2 in current

paper

Gs activation

rM3Ds + Vehicle

rM3Ds + CNO

GSE143475

9 weeks

#IHC, "Ca?" imaging

(Chai et al., 2017)
Figure S2 in current

paper

Abbreviations: NCAR — Non-carrier; WT — Wild-type; QA — Quinolinic acid; MPTP — 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine); KO —

Knockout; IHC — Immunohistochemistry

8§ Data deposited in the Gene Expression Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/geo) * Validation previously published by us.

# Validation data reported in current paper
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Figure S1: Astrocyte-enriched genes are highly expressed in striatal IP RNA samples across
14 experimental perturbations (EPs) (related to Figure 1). (A) Schematic of experimental
design and RNA extraction procedure. RiboTag AAV was microinjected into dorsal striatum 3
weeks before RNA extraction. Astrocyte RNA was immunoprecipitated using specific anti-HA
antibodies. Input samples contain RNA from all cell types in the striatum while IP samples contain
RNA from astrocytes. (B) The heatmap showing relative expression levels of top 200 striatal
astrocyte-enriched genes in both input and IP samples of 14 EPs. (C) The heatmap showing relative
expression levels of top 200 striatal astrocyte-depleted genes in both input and IP samples. (D)
The heatmap showing FPKM levels of marker genes for astrocytes, neurons, oligodendrocytes,
microglia and endothelial cells in corresponding control IP samples of 14 EPs.
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Figure S2: Validation of EPs with immunohistochemistry and behavior (related to Figure 1).
(A) Schematic of experimental design of medium spiny neuron (MSN) ablation with Quinolinic
acid (QA). RiboTag AAV was microinjected into dorsal striatum 3 weeks before RNA extraction.
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QA (30 nM) or vehicle was microinjected 1 week before RNA extraction. (B) Representative
immunohistochemistry (IHC) images of the dorsal striatum showing reduction in
immunoreactivity of DARPP-32 for MSNs but not S100B for astrocytes. (C) Schematic of
experimental design to induce neuroinflammation with LPS. RiboTag AAV was microinjected
into dorsal striatum 3 weeks before RNA extraction. LPS or vehicle was administered through i.p.
injection 24 hours before RNA extraction. (D) Both body weight and sucrose preference ratio were
significantly decreased 24 hours after LPS injection. Data: mean £ SEM (n = 4 mice). (E)
Schematic of experimental design of dopaminergic neuron ablation with MPTP. RiboTag AAV
was microinjected into dorsal striatum 3 weeks before RNA extraction. MPTP (20 mg/kg body
weight) or vehicle was administered through i.p. injection every 2h for a total of 4 doses one week
before RNA extraction. (F) Representative IHC images showing reduced expression of tyrosine
hydroxylase in the dorsolateral striatum by MPTP, indicating the loss of dopaminergic input. (G)
Schematic of experimental design to exact RNA from striatal astrocytes in SAPAP3 KOs and WT
littermate controls by delivering RiboTag AAV into the dorsal striatum 3 weeks before RNA
extraction. (H) Representative IHC images showing reduced expression of SAPAP3 in the
dorsolateral striatum of SAPAP3 KO. (1) The duration of self-grooming (left) was significantly
longer in SAPAP3 KO compared with WT littermates, while the number of grooming bouts was
not different (right). (J) Schematic of experimental design to reduced Kir4.1 expression. RiboTag
AAV and AAV GfaABC;D-Cre or tdTomato was microinjected into dorsal striatum 3 weeks
before RNA extraction. (K) Representative IHC images showing that Kir4.1 was expressed in
dorsal striatal astrocytes in the absence of Cre (indicated by an arrow), but was absent in astrocytes
in the presence of Cre (indicated by an open arrow). (L) Schematic of experimental design of
DREADD activation. AAVs encoding RiboTag and DREADD were microinjected into dorsal
striatum 3 weeks before RNA extraction. CNO (1 mg/kg body weight) was administered through
I.p. injection 2-6 hours before RNA extraction. (M) c-Fos expression increases in striatal astrocytes
expressing hM3Dq 2- and 6-hour after CNO injection. (N) c-Fos expression increases in striatal
astrocytes expressing hM4Di and rM3Ds 2-hour after CNO injection.
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Figure S3: Striatal astrocytes exhibit context-specific gene expression changes under various EPs (related to Figure 1). (A)
Principal component analysis plot of IP DEGs (FPKM > 1, FDR < 0.05) from three EPs of GPCR activation, including hM3Dq, hM4Di
and rM3Ds. (B) Venn diagram showing the numbers of DEGs (FPKM > 1, FDR < 0.05) in the IP samples shared by three EPs of GPCR
activation. (C) UpSet plot showing numbers of unique DEGs (FPKM > 1, FDR < 0.05) shared by 14 EPs. There were zero DEGs shared
by more than 10 EPs and therefore nothing is listed in the plot for that.
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Figure S4: Unique DEGs, canonical pathways and upstream regulators across different EPs
(related to Figure 1). (A) Heatmaps of the top 20 unique DEGs for each EP. Two EPs including
Q175-2m and SAPAP3 KO did not have any unique DEGs and therefore were not listed. (B) Top
3 unique canonical pathways of striatal astrocytes, identified by Ingenuity Pathway Analysis
(IPA), for each EP (P < 0.05). SAPAP3 KO did not have any unique canonical pathways and
therefore was not listed. (C) Top 10 unique upstream regulators that were significantly associated
with each intervention (P < 0.05). Shapes represent molecule type and colors indicate regulators
either activated (red) or inhibited (blue) based on z-scores. Three EPs including Q175-2m, MPTP
and SAPAP3 KO did not have any unique DEGs and therefore were not listed. (D) HTT was the



only common upstream regulator that significantly associated with all EPs (P <0.05). HTT showed
diverse changes across all EPs that were reflected by z-scores (blue indicates inhibition while red
indicates activation of HTT).
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Figure S5: Single cell RNA-sequencing (sScCRNA-seq) of adult mouse striatum (related to
Figure 2). (A) Schematic of experimental procedure for scRNA-seg. Single cells were dissociated
from the striatum of adult mice (8-9 weeks old) and were processed with 10X Genomics platform.
(B) t-distributed stochastic neighbor embedding (t-SNE) plot of 20912 striatal cells grouped by
expression similarity identified 11 major cell populations in the mouse striatum. (C) Violin plot
showing relative expression levels of cell type marker genes for 11 transcriptomic clusters
identified in striatal SSCRNA-seq. (D) t-SNE plot of 3244 striatal astrocytes identified 5 astrocyte
subpopulations. (E) Astrocyte gene Gfap had relatively low expression levels across striatal

astrocytes and therefore was not identified as a marker gene for any astrocyte subpopulations.
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Figure S6: Gi-GPCR pathway activation in striatal astrocytes increased Thbsl mRNA
expression in HD mice (related to Figures 4 and 5). (A) Schematic of experimental design. AAV
was microinjected into the dorsal striatum when mice were 4 weeks old and CNO was injected
every 2 days from 6 weeks old for 3-4 weeks before experimental assessments. (B) Sholl analysis
of MSN morphology revealed no significant difference of branching patterns among indicated four
experimental groups (n = 6-7 MSNs from 4 mice per group). (C) The R6/2 + AAV group showed
the reduction in size of the striatum and the increase in size of the lateral ventricle (LV) compared
to the NCAR + AAYV group (P = 0.04). Astrocyte Gi-GPCR activation did not alter the tissue
degeneration (P > 0.99). Stereological analysis for tissue volume (see STAR Methods) further
confirmed the results by estimating the volume of the striatum (7.9 £ 0.4 in NCAR + AAV; 7.0 +
0.1in NCAR + hM4Di; 5.1 + 0.4 in R6/2 + AAV; 4.7 + 0.2 in R6/2 + hM4Di [mm?]) and LV (0.8
+0.2in NCAR + AAV; 1.0+ 0.1 in NCAR + hM4Di; 1.3+ 0.1 in R6/2 + AAV; 1.2+ 0.2 in R6/2
+ hM4Di [mm?)). (D) The R6/2 + AAV group showed increased density and decreased size of
NeuN positive neurons when compared to the NCAR + AAV group (16 FOVs from 4 mice per
group, P < 0.0054) and these changes were not affected by hM4Di stimulation in R6/2 mice (P >
0.99). (E) Mean body weights of mice. R6/2 mice showed the expected reduction in body weight
with ageing. hM4Di activation in dorsal striatal astrocytes did not affect body weights in R6/2 (P
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= 0.14, two-way ANOVA repeated measures, 19 mice for R6/2 + AAV, 20 mice for R6/2 +
hM4Di) or NCAR mice (P = 0.13, two-way ANOVA repeated measures, 19 mice for NCAR +
AAV, 19 mice for NCAR + hM4Di). (F) RNAscope based fluorescent in situ hybridization
assessment of Thbs1 mRNA expression in the dorsal striatum of the three experimental groups (n
= 20-24 astrocytes from 4 mice per group). IHC for virally delivered Lck-GFP in astrocytes was
performed to demarcate astrocytes that received viruses. Significant upregulation of Thbs1 mMRNA
was observed in the R6/2 + hM4Di group. Scale bars: 1 mm in C, 20 um in D and 1 um in E. Data
are shown as mean + SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Full details of
n numbers, precise P values, statistical tests and the raw values are reported in Excel files S3 and
S4.
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