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Supplementary Fig. 1: The loss of DIl1 does not influence tumor onset in the MMTV-
Wnt1 model. a Schematic shows the strategy to generate MMTV-Wnt1; DII1K® female
C57BL/6 mice. b The representative whole mount alum carmine-stained images showed
the hyperplasia stages of MMTV-Wnt1 in indicated DII1 genotypes (n=2 mammary glands
per genotype at the age of eight weeks). ¢ Kinetics of mammary tumor onset in MMTV-
Wnt1 females of indicated DII1 genotypes. Wnt1-DII1WT (n=10) and Wnt1-DII1¢KO (n=22).
The tumors were considered positive when the tumor was 3x3 mm in dimension. P value
was calculated using the two-tailed Log-Rank test (¢). Scale bars, 500 um (b). Data were
obtained from two (b) or seven (c) independent experiments. Source data are provided

as a source data file.
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Supplementary Fig. 2: PyMT-DII1™¢" and PyMT-DII1®FP reporter mice show an
increased number of DII1* cells in tumors during luminal tumor development. a, b
Representative immunofluorescence (IF) images of the hyperplasia and tumor of PyMT-
DII1™Ch mice show basal K5, luminal K8 and mCherry (DII1) expressions (n=3 hyperplasia
or tumors per group). mCherry antibody was used to detect DII1™C* cells. White arrows
indicate K5'DII1* cells. ¢ qPCR analyses show that DII1* (GFP*) cells express a
significantly higher level of DIIT mRNA compared to DII1- (GFP-) cells. Hyperplastic
mammary glands and tumors were enzymatically digested and sorted for lineage negative
(CD45CD31'TER119°) DII1* or DII1- cells by GFP expression to quantify DI/IT mRNA
levels (n=4 hyperplasia and n=10 tumor samples). DII1- (GFP-) cells were considered fold

change 1. d, f Representative immunofluorescence (IF) images of the normal mammary



gland, hyperplasia, and tumor of PyMT-DII1¢™® mice show increased number of DII1* cells
with tumor development. GFP antibody was used to detect DIl1¢ "+ expression. The DII1*
cells (GFP) reside in the basal layer (K14") of the normal mammary gland, which changes
during tumor progression and co-localize with luminal cells (K8*) in hyperplasia and tumor
(n=3 mammary gland or tumors per group). White arrows indicate K14*DII1* cells. a, b, d
White arrows indicate cells double positive for basal markers and DII1. a, b, d, f Please
see more representative images in the supplementary figure 11. e The quantification of
flow cytometry data of Lin" tumor cells show increasing DII1* cells by GFP expression in
PyMT-DII1¢"® mice from normal to Hyperplasia (Hyp) and tumor (T) stages (e n=10
normal, n=3 hyperplasia, n=3 early tumors and n=6 late tumors). ¢ P values were
calculated using two-tailed Student’s f-test by comparing individual groups. e P values
were calculated using One-way ANOVA with Tukey’s multiple comparisons post hoc
test. c,e Data are presented as the mean £+ SEM. Scale bars, 40 ym (a,b,d,f). Source

data are provided as a source data file.
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Supplementary Fig. 3: Flow cytometry data show total tumor cell population in
hyperplasia and in tumor stage. a,b Flow cytometry profile of Lin~ cells (a) or Lin- DII1*
cells (b) from PyMT-DII1€FP hyperplasia and tumor show basal and luminal population
during luminal tumor progression. As hyperplasia progresses to tumor, more luminal
cells are observed in the tumors. n=3 PyMT-DII1¢FP hyperplasia (at age of 8-weeks)

and tumors. Seven independent experiments were performed to obtain the represented

flow figures.
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Supplementary Fig. 4: DII1 is strongly expressed in metastatic lung tumor cells
compared to primary mammary tumor. a,b Representative tumor H&Es show tumor
morphology and IF images show expression of DII1 in the primary tumors of PyMT-
DII1™Ch (a) and PyMT-DII1¢FP mice (b). ¢,d Representative H&Es depict lung nodule
morphology and IF images show expression of DIlI1 in metastatic lung nodules of PyMT-
DII1™Ch (¢) and PyMT-DII1¢FP mice (d). mCherry antibody was used to detect DII1mCh*
cells in tumor or lung nodules of PyMT-DII1™C" mice. GFP antibody was used to detect
DII1CGFP* cells in tumor or lung nodules of PyMT-DII1¢FPmice. e,f The scatter plots show
quantification of DIl1 H-score in tumor and lung nodules of PyMT-DII1™¢h (e) and PyMT-
DII1CFP (f). The H-score represents the DII1 (mCherry/GFP) intensity (scale 0-3)
multiplied with abundance of DII1* cells (scale 0-100). e,f The dots in scatter plots

represent n=11 FOV/group from four tumors and four lung nodules each group. For IF,



the formalin-fixed tumors and lungs were stained with the mCherry and GFP antibodies
to detect DII1* tumor cells. Scale bars, 60 um. Data present seven (a-d) independent
experiments. Data are presented as the mean £+ SEM. Seven independent
experiments were performed to obtain the represented IF and H&E figures. e,f P
values were calculated using two-tailed unpaired Student’s t-test. Source data are

provided as a source data file.
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Supplementary Fig. 5: RNA-seq and ATAC-seq suggest that DII1* tumor cells are
quiescent and express pro-tumoral signatures. a Schematic diagram represents the
experimental strategy to perform RNA-seq and ATAC-seq using DII1*- tumor cells from
PyMT-DII1™C" and PyMT-DII1¢FP tumor. b The heat map shows the enrichment of
quiescence signatures (Chang Cycling gene signature from GSEA C2 set) in DII1* tumor
cells compared with DII1- tumor cells isolated from PyMT-DII1mCh or PyMT-DII1¢FP tumors.
c,d, e GSEAs of RNA-seq demonstrate decreased cycling genes or increased hypoxia
and Notch pathway signatures in Lin~ DII1* tumor cells compared to DII1- tumor cells
isolated from PyMT-DII1™C" (red) and PyMT-DII1C"P (green) tumors, respectively. f 10-
metastasis gene classifier was identified using stringent cut off of +5.5 fold change with a

p-value less than 0.05 by combining PyMT-DII1™C" and PyMT-DII1C€"P reporter mice’s



RNA-seq data. g The pie charts show the chromatin accessibility in DII1* and DII1- tumor
cells, indicating no dramatic differences. h EnrichR software was used to show
enrichment of core 23 UP genes of GSEA (from Fig. 4e) for Notch and NF-kB pathway
from combined ATAC-seq and RNA-seq analyses. PyMT-DII1™c" model was used for
both RNA-seq and ATAC-seq whereas PyMT-DII1¢FP was used only for RNA-seq (n=2
samples for DII1* and n=2 samples for DII1- Lin" tumor was used from PyMT-DII1mCh
tumors for RNA-seq; n=2 samples for DII1* and n=2 samples for DII1- Lin- tumor cells was
used from PyMT-DII16 tumors for RNA-seq; and n=4 DII1- and n=3 DII1* Lin- tumor cells

isolated from PyMT-DII1mC" tumors for ATAC-seq).
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Supplementary Fig. 6: Patient data show upregulation of multiple NF-kB signatures
in DII1Mgh patient tumors. a GSEA depicts high enrichment of DII1* tumor cells
signatures from PyMTmehe™ to patient tumors (Luminal A and B) with high DLL1
expression. b-d GSEAs show various increased NF-kB signatures in Luminal A and B
patient tumors after stratifying them on DLL1 levels. n=1140 patient tumors. The patient

data was obtained from METABRIC dataset'2.
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Supplementary Fig. 7: DII1* tumor cells are less-proliferating and chemotherapy-
resistant. a Schematic shows the experimental plan to perform in vitro drug-sensitive
assay with DII1* and DII1- tumors using 100ng/mL dose of Doxorubicin. b MTT assay
results show the doxorubicin-resistant characteristics of PyMT-DII1* tumor cells
compared with PyMT-DII1- cells. Sorted DII1* and DII1- tumor cells were seeded in 96-
well plate (n=9 wells each) for MTT assay. ¢ The single color and merged IF images show
the expression of DII1 (red) and EdU* proliferating cells (green) in PyMT-DII1* tumors
upon treatment of saline or doxorubicin. mCherry antibody was used to detect DII1mCh+
cells. The number of double positive (DII1* and EdU*) cells were counted in the right. The
dots in scatter plot represents the multiple field of views (indicated in image), which is

obtained from n=3 tumors per group. Scale bars, 40 um. Data are presented as the



mean £ SEM. P values were calculated using two-tailed unpaired Student’s t-test. FOV

is field of view. Source data are provided as a source data file.
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Supplementary Fig. 8: DII1* tumor cells escape apoptosis. a,b Cell cycle analyses of
PyMT-DII1* tumor cells indicate a significant increase in the Sub-G1 population of DII1-
tumor cells (blue line) compared with DII1* tumor cells (red line) upon doxorubicin
treatment. The DII1* and DII1- tumor cells were separated based on the mCherry
expression and percentages of apoptotic (Sub-G1) tumor cells were quantified in b. n=3
tumors for each group were analyzed for cell cycle by flow cytometry. ¢,d The
representative IF images depict the yH2AX* DNA damage in PyMT-DII1* (¢) and PyMT-
DIl1- (d) tumors upon saline or doxorubicin treatments, which are quantified in e. The
formalin-fixed tumors specimens were stained with the mCherry antibody to detect DII1*
tumor cells. The dots in scatter plot represent multiple field of views (indicated in figure)
from n=3 tumors/group and the experiment was repeated three independent times. b,e P
values were calculated using One-way ANOVA with Tukey’s multiple-comparisons post
hoc test. b,e Data are presented as the mean + SEM. FOV is field of view. Scale bars,

40 um (c, d). Source data are provided as a source data file.
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Supplementary Fig. 9: DIl1-blocking antibody inhibits metastasis of PyMT-DII1™m¢h
bearing mice. a We transplanted sorted PyMT-DII1* tumor cells into the mammary fat
pad (MFP) of syngeneic C57BL/6 mice. The schematic diagram shows the experimental
plan of in vivo treatment of DII1* tumors with and without DII1 blocking antibody (18mg/kg
thrice a week) and doxorubicin (Dox, 1mg/kg twice a week). Control mice were treated
with Saline. b Representative H&E and IF images show DII1 (mCherry) positive lung
metastatic nodules in tumor-bearing mice from transplanted PyMT-DII1* tumor cells (data

combined from two independent experiments, n=5 Ctrl, n=5 aDII1 ab, n=6 Dox and n=5



aDIl1 ab + Dox). mCherry antibody was used to detect DII1™C"* cells. b Inset shows

zoomed in area of lung metastasis. Scale bars, 20 um (b).
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Supplementary Fig. 10: DIll1-blocking antibody has no dramatic side effects on
mice health. We transplanted sorted PyMT-DII1* tumor cells into the mammary fat pad
(MFP) of syngeneic C57BL/6 mice. We treated PyMT-DII1* tumors with and without DII1
blocking antibody (18mg/kg thrice a week) and doxorubicin (1mg/kg twice a week).
Control mice were treated with Saline. a Whole-body weight of mice with the treatment

shows no significant toxicity after the indicated treatments. n=2 Ctrl, n=2 aDII1 ab, n=3

Dox and n=2 aDlII1 ab + Dox mice and each mouse had two contralateral mammary gland



tumors. b,c Representative flow cytometry analysis (b) shows the effectiveness of DIlI1-
blocking antibody treatment by depletion of marginal B-cell population of the spleen,
which is quantified in ¢. Marginal B-cells decrease in spleen of treated mice (n=3 spleens
for ctrl, n=6 spleens for aDII1 ab treated groups (n=3 alone aDII1 ab and n=3 spleens for
aDIl1+Dox). d We transplanted sorted PyMT-DII1* tumor cells into the mammary fat pad
(MFP) of syngeneic C57BL/6 mice. The schematic diagram shows the experimental plan
of in vivo treatment of DII1* tumors with and without DII1 blocking antibody (18mg/kg thrice
a week), doxorubicin (1mg/kg twice a week) and IMD (0.5mg/kg once a week). Control
mice were treated with Saline. e Whole-body weight of mice with the treatment shows no
significant toxicity after the indicated treatments. n=3 Dox, n=2 aDII1 ab+Dox, n=2 aDII1
ab+IMD, n=3 aDII1 ab+Dox+IMD mice and each mouse had two contralateral mammary
gland tumors. P values were calculated using two-way ANOVA with Bonferroni post-test
adjustment (a,e) and two-tailed unpaired Student’s t-test (c). a,c,e Data are presented

as the mean £ SEM. Source data are provided as a source data file.
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Supplementary Fig. 11: Representative IF images from Figure 2d and e. d White arrows
indicate co-localization of basal marker K14 and DII1. e White arrows indicate the co-

localization of DII1 and K8 (n=3 tumors per group). Scale bars, 60 um.
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Supplementary Fig. 11: Representative IF images from Supplementary Figure 2d and f.

K14 and DII1. Scale bars,

White arrows indicate double positive cells for basal marker

60 um.
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Supplementary Fig. 11: Representative IF images from Figure 3f (n=3 tumors per

group). Scale bars, 60 um.
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Supplementary Fig. 11: Representative IF images from Supplementary Fig. 4a-d. n>3

tumors or lung nodules per panel. Scale bars, 60 um.
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Supplementary Fig. 11: Representative IF images from Figure 5e (n=3 tumors per
group). The white arrows indicate proliferating DII1* EAU* tumor cells upon doxorubicin

treatment. Scale bars, 60 pym.
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Supplementary Fig. 11: Representative IF images from Figure 5g,h (n=4 tumors per

group). Scale bars, 60 um.
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Supplementary Fig. 11: Representative IF images from Supplementary Figure 8c-d (n=3

tumors per group). Scale bars, 40 um.
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Supplementary Fig. 11: Representative IHC images from Figure 6f (n=3 tumors per

group). The black arrows indicate nuclear translocation of NF-kB. Scale bars, 60 um.



Source file for western blot from Fig.1b.
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Full scan western blot images related to the figure 1b.

B-Actin
Abcam,
Cat # ab8227



Supplementary Table 1: Antibody used for flow cytometry

Antibody Fluorochrome | Dilution | Catalog # Company
CD24 PE 1:100 553262 BD Biosciences
CD24 BVv421 1:100 562563 BD Biosciences
CD29 FITC 1:100 MCA2298 | Serotec/Bio-Rad
CD31 Biotin 1:100 558737 BD Biosciences
CD45 Biotin 1:100 553078 BD Biosciences

Ter-119 Biotin 1:100 553672 BD Biosciences

Streptavidin PE-Cy7 1:150 SA1012 | Invitrogen
CD19 Bv785 1:100 115543 | BioLegend
CD45R/B220 APC 1:100 103212 | BioLegend
CD93 (AA4.1) PE-Cy7 1:100 136506 | BioLegend
CD23 PE 1:100 553139 BD Biosciences
CD21/35 APC-Cy7 1:100 123418 | BioLegend

Supplementary Table 2: Antibody used for IF and IHC

Antibodies IF IHC Company and catalog number
K14 (rabbit) 1:100 - BioLegend, Cat # 905304
K14 (chicken) 1:100 - BioLegend, Cat# 906001
K14 (new rabbit) 1:75 - Sinobiological, Cat# 100129-RP02
K5 (rabbit) 1:40 - Abcam, Cat# ab52635
K8 1:100 - Developmental Studies Hybridoma Bank, TROMA-1s
GFP 1:200 - Abcam, Cat # ab13970
mCherry (rabbit) 1:100 - Abcam, Cat # ab167453
mCherry (mouse) 1:100 - Abcam, Cat # ab125096
yH2AX 1:100 - Abcam, Cat # ab26350
NF-kB (RelA) - 1:200 Cell Signaling, Cat# 8242
dsRed 1:100 - Living Colors, Cat# 632392




Supplementary Table 3: Antibody used for western blot

Antibodies Western Company and catalog number
blot
DI 1:1000 Abcam, Cat # ab84620
B-Actin 1:10,000 Abcam, Cat # ab8227

Supplementary Table 4: Primers used for qRT-PCR

Gene Species Forward Reverse
Dil1 Mouse | GCGAGCTGCACGGACCTTGA | GCCCAAGGGGCAATGGCAGG
Gapdh Mouse CCCCAATGTGTCCGTCGTG GCCTGCTTCACCACCTTCT
Supplementary Table 5: Reagent and Resource
Reagent/Kit Source Identifier
Tamoxifen Sigma-Aldrich Cat# T5648
IMD Tocris Cat# 2611
Purelink RNA mini kit Thermofisher Cat#12183018A
Rabbit Anti-caspase 3, Active BD Biosciences Cat#550480
Click-iT Plus EdU Alexa Fluor 594 Thermo Fisher Cat#C10639
Scientific
Click-iT™ Plus TUNEL Assay for In Situ | Thermo Fisher Cat#C10617
Apoptosis Detection Kit, Alexa Fluor 488 | Scientific
dye
MTT Reagent Sigma-Aldrich Cat#M5655
B27 Supplement (50X), Serum-free Thermo Fisher Cat#17504044
Scientific
Recombinant Human Epidermal Growth | Novoprotein Cat#C029
Factor/EGF
Recombinant Human Fibroblast Growth | Novoprotein Cat#C046
Factor 2/FGF-2
1 Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours
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