Effects of social distancing on the spreading of COVID-19 inferred from mobile phone data Hamid Khataee¹, Istvan Scheuring^{2,3}, Andras Czirok^{4,5}, and Zoltan Neufeld^{1,*} ¹School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia ²Evolutionary Systems Research Group, Centre for Ecological Research, Tihany, 8237, Hungary ³MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Eotvos University, Budapest, Hungary ⁴Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary ⁵Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA *Corresponding author: z.neufeld@uq.edu.au December 2, 2020 ## 1 Supplemental Material Table S1: Calendar dates associated with the daily deaths and mobility data. | Country | Time 0 | $t_{ m NL}$ | $oldsymbol{t}_{ ext{eff}}$ | |----------------------|----------|-------------|----------------------------| | ITA | March 3 | March 12 | March 3 | | ESP | March 11 | March 14 | March 11 | | FRA | March 12 | March 17 | March 13 | | GBR | March 16 | March 23 | March 15 | | GER | March 20 | March 23 | March 12 | | BEL | March 22 | March 17 | March 11 | | NLD | March 18 | March 23 | March 11 | | SWL | March 21 | March 13 | March 11 | | SWE | March 27 | - | March 10 | Time 0: the day when a country first reported ≥ 5 daily deaths. $t_{\rm NL}$: national lock-down date. $t_{\rm eff}$: effective lock-down date. Table S2: Parameters from fitting Equation (1), to the number of daily deaths data during the exponential growth and exponential decay phases. Parameter values correspond to mean \pm SE. | Country | D_{0_1} | $lpha_1$ | D_{0_2} | α_2 | |---------|------------------|------------------|-----------------------|--------------------| | ITA | 9.934 ± 0.86 | 0.25 ± 0.008 | 2207.08 ± 75.03 | -0.032 ± 0.001 | | ESP | 9.818 ± 0.79 | 0.25 ± 0.006 | 2987.16 ± 321.018 | -0.046 ± 0.003 | | FRA | 6.95 ± 0.50 | 0.22 ± 0.006 | 6970.80 ± 388.52 | -0.058 ± 0.001 | | GBR | 8.59 ± 0.81 | 0.22 ± 0.006 | 2739.04 ± 89.85 | -0.030 ± 0.001 | | GER | 7.32 ± 0.47 | 0.20 ± 0.006 | 1089.01 ± 48.01 | -0.046 ± 0.001 | | BEL | 9.97 ± 0.61 | 0.20 ± 0.006 | 1433.01 ± 69.99 | -0.056 ± 0.001 | | NLD | 7.28 ± 0.31 | 0.22 ± 0.004 | 851.46 ± 49.79 | -0.052 ± 0.001 | | SWL | 5.25 ± 0.46 | 0.19 ± 0.010 | 321.90 ± 25.24 | -0.064 ± 0.002 | | SWE | 10.53 ± 0.61 | 0.14 ± 0.006 | 151.46 ± 11.16 | -0.018 ± 0.001 | Table S3: Parameters from fitting Equation (3) to the mobility data over a period of 90 days starting from 13-January-2020. Parameter values correspond to mean \pm SE. | Country | M_1 | t_1 | M_2 | t_2 | |---------|-------------------|-------------------|------------------|-------------------| | ITA | 116.07 ± 1.74 | -11.00 ± 1.03 | 14.45 ± 2.08 | 11.01 ± 1.06 | | ESP | 123.87 ± 1.94 | -2.75 ± 0.72 | 10.80 ± 2.77 | 3.51 ± 0.69 | | FRA | 101.22 ± 1.24 | -1.69 ± 0.62 | 16.27 ± 1.87 | 4.63 ± 0.62 | | GBR | 115.37 ± 1.51 | -6.84 ± 1.09 | 36.64 ± 2.51 | 5.20 ± 1.05 | | GER | 112.40 ± 1.30 | -13.44 ± 1.05 | 46.14 ± 1.96 | -1.21 ± 1.12 | | BEL | 126.14 ± 1.74 | -13.81 ± 0.93 | 39.36 ± 2.52 | -6.37 ± 0.91 | | NLD | 112.78 ± 1.22 | -11.78 ± 0.87 | 39.86 ± 1.78 | -1.40 ± 0.87 | | SWL | 108.10 ± 1.00 | -15.25 ± 0.80 | 44.72 ± 1.46 | -3.28 ± 0.87 | | SWE | 112.53 ± 0.95 | -21.00 ± 1.18 | 70.60 ± 1.33 | -12.06 ± 1.19 | M_1 : average mobility level before social distancing. t_1 : when the mobility started to decrease due to social distancing. M_2 : average mobility after the social distancing. t_2 : end of the transition period of social distancing.