


Supplementary Figure 1. Lack of effect for IEM on NMDAR-mediated currents. a, IEM-1460 (30  $\mu$ M) was applied to slices while recording synaptic currents (inset) in the presence of picrotoxin (50  $\mu$ M) and NBQX (10  $\mu$ M) at a holding potential of -40 mV (mean  $\pm$  SEM, n = 7 neurons from 6 animals for IEM and 8 neurons from 6 animals for vehicle control). Subsequent application of D-AP5 (50  $\mu$ M) confirmed that the EPSCs were mediated by NMDARs. b, No significant difference was found after 20 min of vehicle control vs. IEM-1460 application ( $t_{13}$  = 0.9158, p = 0.3764, two-sided unpaired Student's t-test). c-d, Representative traces for currents evoked by single-pulse and TBS (i.e. 25 stimuli) for vehicle (c) and IEM-1460 (d) treated slices. Thin lines, original traces; thick lines, low-pass filtered at 200 Hz. e-g, Quantification for total charge transfer during single-pulse evoked currents ( $t_{26}$  = 0.2191, p = 0.8283, two-sided unpaired Student's t-test) (e), TBS-evoked currents ( $t_{26}$  = 0.7341, p = 0.4694, two-sided unpaired Student's t-test) (f), and the ratio of these two measurements ( $t_{26}$  = 0.5637, p = 0.5778, two-sided unpaired Student's t-test) (g) for vehicle (n = 14 neurons from 8 animals) and IEM-1460 (n = 14 neurons from 8 animals) treated groups. Data are presented as mean  $\pm$  SEM. Source data are provided as a Source Data file.

Supplementary Table 1. Summary of EPSC properties for the various experimental protocols and conditions.

| Protocol                      | γ (pS)          |                     | EPSC (%)     | $\tau_{rise}$ (ms) |                 | $	au_{ m decay}$ (ms) |                     | N     |
|-------------------------------|-----------------|---------------------|--------------|--------------------|-----------------|-----------------------|---------------------|-------|
| Compressed TBS                | $5.09 \pm 0.32$ | $5.34 \pm 0.37$     | 212 ± 11 *** | $1.23 \pm\ 0.06$   | $1.20 \pm 0.07$ | $7.17 \pm 0.19$       | $7.07 \pm 0.23$     | 22/15 |
| Spaced TBS                    | $6.91 \pm 0.44$ | $8.40 \pm 0.44$ **  | 177 ± 9 ***  | $1.16 \pm 0.06$    | $1.15 \pm 0.05$ | $7.09 \pm 0.19$       | $6.75 \pm 0.20$ **  | 23/17 |
| wTBS with rolipram            | $4.86 \pm 0.43$ | $8.02 \pm 0.58$ *** | 234 ± 14 *** | $1.22 \pm 0.06$    | $1.16 \pm 0.05$ | $7.19 \pm 0.20$       | $6.68 \pm 0.15$ *** | 21/15 |
| wTBS with PKA Cα              | $5.15 \pm 0.51$ | $7.79 \pm 0.80$ *** | 276 ± 19 *** | $1.02 \pm 0.06$    | $1.02 \pm 0.04$ | $6.75 \pm 0.22$       | $6.41 \pm 0.23$ *   | 17/13 |
| wTBS with PKA $C\alpha$ + IEM | $4.29 \pm 0.51$ | $4.32 \pm 0.54$     | 202 ± 16 *** | $1.00 \pm 0.07$    | $0.99 \pm 0.07$ | $6.73 \pm 0.25$       | $6.70 \pm 0.26$     | 16/13 |
| HI-CaMKII                     | $4.57 \pm .053$ | $4.57 \pm 0.52$     | 112 ± 7      | $1.01 \pm 0.06$    | $1.01 \pm 0.07$ | $6.99 \pm 0.34$       | $6.96 \pm 0.25$     | 14/11 |
| CaMKII                        | $4.71 \pm 0.57$ | $4.32 \pm .046$     | 169 ± 15 *** | $0.95 \pm 0.05$    | $0.93 \pm 0.04$ | $6.82 \pm 0.30$       | $6.75 \pm 0.29$     | 15/12 |
| CaMKII + PKA Cα               | $4.64 \pm 0.39$ | $6.48 \pm 0.42$ *** | 178 ± 10 *** | $1.05 \pm 0.07$    | $1.03 \pm 0.08$ | $7.06 \pm 0.26$       | $6.69 \pm 0.19$ *   | 18/15 |
| $CaMKII + PKA C\alpha + IEM$  | $4.26 \pm 0.33$ | $4.13 \pm 0.40$     | 128 ± 9 *    | $1.01 \pm 0.04$    | $1.00 \pm 0.04$ | $6.91 \pm 0.20$       | $6.87 \pm 0.22$     | 20/15 |
| HI-CaMKII + PKA $C\alpha$     | $4.24 \pm 0.35$ | $4.22 \pm 0.40$     | 112 ± 9      | $1.01 \pm 0.03$    | $0.97 \pm 0.03$ | $7.07 \pm 0.27$       | $7.05 \pm 0.26$     | 16/14 |
| CaMKII + IEM                  | $4.07 \pm 0.39$ | $4.04 \pm 0.66$     | 165 ± 17 **  | $0.97 \pm 0.03$    | $0.98 \pm 0.03$ | $6.75 \pm 0.22$       | $6.78 \pm 0.34$     | 8/8   |

<sup>\*</sup>p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 for baseline vs. LTP in two-sided paired Student's t-test.