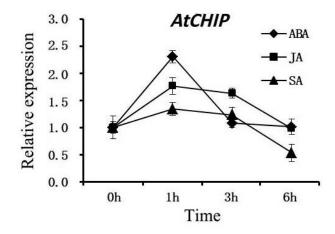
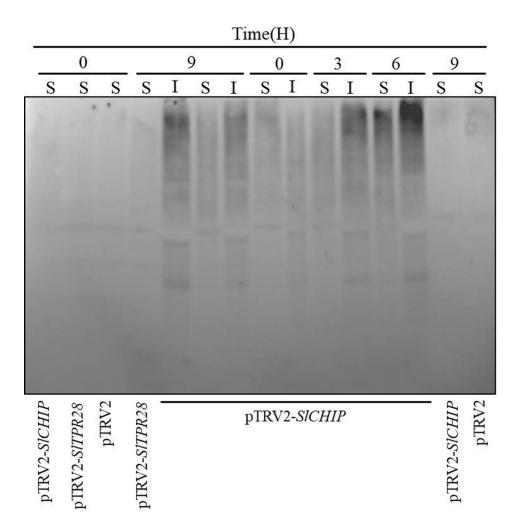
Functional Analysis of Tomato CHIP Ubiquitin E3 Ligase in Heat Tolerance

Yan Zhang^{a,*}, Xiaodong Lai^a, Siqing Yang^a, Huan Ren^a, Jingya Yuan^a, Huanchun Jin^a, Chengchen Shi^a, Zhibing Lai^b, Gengshou Xia^a

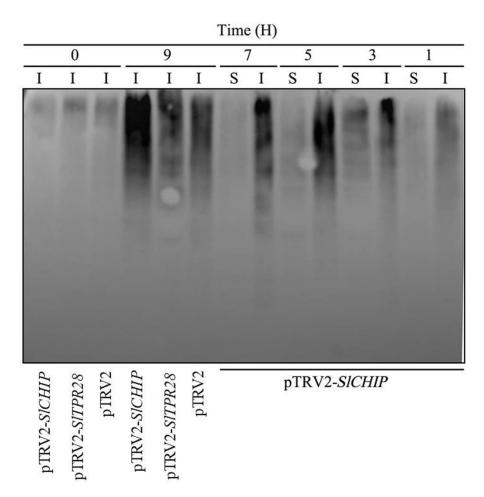
Includes


Supplementary Figure 1. Expression pattern of *AtCHIP* in response to exogenous SA, JA and ABA.

Supplementary Figure 2. Ubiquitinated protein levels of soluble and insoluble proteins from *SICHIP-*, *SITPR28*-silenced and mock plants before and after heat stress.


Supplementary Figure 3. Increased insoluble ubiquitinated proteins in the *SlCHIP*-silenced plants exposed to heat stress.

Supplementary Table 1. List of primers used in this study.


Supplementary Table 2. Accession numbers or transcript names of CHIP homologs from 18 animal and plant species.

Supplementary Figure 1. Expression of *AtCHIP* in response to exogenous SA, JA and ABA. Four-week-old Arabidopsis Col-0 plants were treated with 20 μ M SA, 100 μ M methyl jasmonate (MeJA) and 20 μ M ABA. At least 3 leaves from 3 individual plants for each sample were collected at indicated hours after treatment. Error bars indicate SE (n = 3). The experiment was repeated three times with similar results.

Supplementary Figure 2. Ubiquitinated protein levels of soluble and insoluble proteins from *SICHIP-, SITPR28-silenced and mock plants before and after heat stress.* The first supernatants as soluble protein and the last pellets as insoluble protein were subjected to SDS-PAGES and probed with anti-ubiquitin monoclonal antibody. The experiment was repeated three times with similar results. Samples from *SICHIP-silenced plants after heat treatment for 3*and 6-hours were also collected and ubiquitinated levels of soluble and insoluble proteins from these samples were checked. S, soluble. I, insoluble.

Supplementary Figure 3. Increased insoluble ubiquitinated proteins in the *SlCHIP*-silenced **plants exposed to heat stress.** The first supernatants as soluble protein and the last pellets as insoluble protein were subjected to SDS-PAGES and probed with anti-ubiquitin monoclonal antibody. The experiment was repeated three times with similar results. Samples from *SlCHIP* silenced plants after indicated hours of heat treatment were also collected and ubiquitinated levels of soluble and insoluble proteins from these samples were checked. S, soluble. I, insoluble.

Primers	Sequences (5'-3')	Size (bp)	Purpose
Cloning			
SICHIP-C-F	ATGGCACCAATCGTGGGTTCAAAG	831	To gain 831 bp CDS of SICHIP for construct
SICHIP-C-R	CTATATCCTATATGCCCAGCCAT		pMD18-T- SICHIP1.
SITPR28-C-F	ATGGAGCTCGCCTTGGGGGGCCAT	957	To gain 957 bp CDS of SlTPR28 for construct
SITPR28-C-R	CTATTCTTGCTTGAATACACGCG		pMD18-T- SICHIP2.
VIGS			
SICHIP-V-F	GG <u>GGTACC(Kpn</u> I)TTCTGCTCCTTCCGCAC	286	To gain 286 bp fragment of SICHIP mRNA for
SICHIP-V-R	CC <u>CTCGAG</u> (XhoI)AGCGCCAAACCGATTCT		construct pTRV2-SICHIP1.
SITPR28-V-F	GC TCTAGA(XbaI)ATACGAGGATGCCTTGG	364	To gain 364 bp fragment of SITPR28 CDS for
SITPR28-V-R	C GAGCTC(SacI)AGCTGGAGCGTACTTTT		construct pTRV2-SITPR28
Transgenic			
SICHIP-T-F	ATGGATCC(BamHI)ATGGCACCAATCGTGGGTTC	847	To gain 831 bp CDS of SICHIP for construct
SICHIP-T-R	ATCTCGAG(XhoI)TATCCTATATGCCCAGCCATG		pFGC5941-SICHIP-3HA.
qRT-PCR			
SICHIP-Q-F	TACTTTGTGCCCTAATGTTCCGATA	159	To test SICHIP transcript level in VIGS plants
SICHIP-Q-R	TGTAGCAATGCAAGACCAAGATAAT		or after treatment with SA, JA and ABA.
SITPR28-Q-F	ACCCATCAAACGCCACTCTTTACAG	171	To test SITPR28 transcript level in VIGS plants
SITPR28-Q-R	CATCCTCGTATCGTTCCATAGCCTC		or after treatment with SA, JA and ABA.
SIACTIN7-Q-	TGAGCTTCGAGTTGCTCCTGA	144	To be used as reference gene.
SIACTIN7-Q-	AGCACAGCCTGGATAGCAACA		
AtCHIP-Q-F	TTTGGTGCTGCCATTGATGC	175	To test AtCHIP transcript level after treatment
AtCHIP-Q-R	GCATGTAGTGTGCCTTGACG		with SA, JA and ABA.
AtACTIN2-F	GCTGTTGACTACGAGCAGGA	143	To be used as reference gene.
AtACTIN2-R	ACAAACGAGGGCTGGAACAA		

Supplementary Table 1. List of primers used in this study.

Supplementary Table 2.	Accession numbers (No.) or transcript names of CHIP homologs						
from 16 animal and plant species.							

Species	CHIP homolog	g No. or Name	Species	CHIP homolog	No. or Name
Animals					
Homo sapiens	HsCHIP	AAD33400	Danio rerio	DrCHIP	NP_955968
Caenorhabditis elegans	CeCHIP	NP_491781	Drosophila busckii	DbCHIP	XP_017839474
Rattus norvegicus	RnCHIP	NP_001020796	Xenopus tropicalis	XtCHIP	NP_001072347
Plants					
Arabidopsis thaliana	AtCHIP	AT3G07370.1	Glycine max	GmCHIP1	Glyma.03G088400.1
Chlamydomonas reinhardtii	CrCHIP	Cre11.g479650.t1.2	Glycine max	GmCHIP2	Glyma.U008400.1
Brachypodium distachyon	BdCHIP1	Bradi3g13620.1	Oropetium thomaeum	OtCHIP	Oropetium_20150105_15229
Brachypodium distachyon	BdCHIP2	Bradi2g39800.1	Oryza sativa	OsCHIP	LOC_Os05g01460.1
Physcomitrium patens	PpCHIP1	Pp3c14_2850V3.7	Selaginella moellendorffii	SmCHIP	Selaginella74711
Physcomitrium patens	PpCHIP2	Pp3c10_2570V3.5	Solanum lycopersicum	SICHIP	Solyc06g083150.2.1
Zea mays	ZmCHIP1	Zm00008a023978_T01	Zea mays	ZmCHIP2	Zm00008a023494_T01