1	Supplementary Information for				
2	Crystal structure of steroid reductase SRD5A reveals conserved				
3	steroid reduction mechanism				
4	Yufei Han ^{1†} , Qian Zhuang ^{2†} , Bo Sun ^{3†} , Wenping Lv ^{4†} , Sheng Wang ^{5†} , Qingjie Xiao ⁶ , Bin Pang ¹ ,				
5	Youli Zhou ¹ , Fuxing Wang ¹ , Pengliang Chi ⁶ , Qisheng Wang ³ , Zhen Li ⁷ , Lizhe Zhu ⁴ , Fuping Li ⁸ ,				
6	Dong Deng6*, Ying-Chih Chiang1*, Zhenfei Li2*, Ruobing Ren1*				
7					
8	¹ Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese				
9	University of Hong Kong, Shenzhen, Guangdong 518172, China				
10	² State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center				
11	for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese				
12	Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China				
13	³ Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese				
14	Academy of Sciences, Shanghai 201204, China				
15	⁴ Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese				
16	University of Hong Kong, Shenzhen, Guangdong 518172, China				
17	⁵ Tencent AI lab, Shenzhen, Guangdong 518000, China				
18	⁶ Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and				
19	Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan				
20	University, Chengdu 610041, China				
21	⁷ School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong				
22	518172, China				
23	⁸ Human Sperm Bank, Key Laboratory of Birth Defects and Related Disease of Women and				
24	Children of MOE, West China Second Hospital, Sichuan University, Chengdu 610041, China				
25					
26	* To whom correspondence should be addressed. Email: <u>renruobing@cuhk.edu.cn</u> ,				
27	zhenfei.li@sibcb.ac.cn, chiangyc@cuhk.edu.cn, and dengd@scu.edu.cn				
28	† These authors contribute equally				
29	1				
	l				

- 1 This PDF File contains:
- 2 Supplementary Figures 1-10
- 3 Supplementary Tables 1-4

Supplementary Fig. 1 | Purification, crystallization and structural determination
of PbSRD5A. a, The representative size exclusion chromatography of PbSRD5A and
SDS-PAGE gel stained by Coomassie Brilliant Blue R-250. b, The enzyme activity of

re-suspended cell membrane after 1st round of ultracentrifugation; (3) solubilized 1 solution in 1% DDM; (4) supernatant after 2nd round of ultracentrifugation, (5) protein 2 eluted from Ni-column, and (6) purified protein after size-exclusion chromatography. 3 HPLC was used to detect the 5a-DHP% converted from progesterone, using the same 4 units of protein. Equally protein was quantified by calculating the grey level of western 5 blot. The activities were calculated as: *Calculated activity = detected activity / (Sample* 6 volumes in an assay system × grey value / Volume loaded on western blot), and 7 normalized by sample (6). Data are mean±s.d. derived from technically independent 8 9 experiments in duplicate. Each experiment was reproduced three times on separate occasions with similar results. c, Photograph of PbSRD5A crystals in lipidic cubic 10 phase under visible (upper) and UV light (lower). d, The initial searching model of 11 12 PbSRD5A for molecular replacement is shown as green cartoon. e, The $2F_0$ - F_c electron density map of PbSRD5A (cyan mesh) is contoured at 1.2σ . **f**, The b factor of PbSRD5A 13 is colored by rainbow. Red and blue represent the highest and lowest b factor values, 14 respectively. g, Topology of PbSRD5A. The seven transmembrane segments are 15 divided into TM1 (lightblue), TM2-4 (green), and TM5-7 (yellow). The extracellular 16 17 and intracellular short alpha helices (ECH and ICH) are colored wheat. The short antiparallel beta strands are colored blue. 18

Supplementary Fig. 2 | Structural alignment of PbSRD5A and MaSR1. a, The 2 superposition of TM2-7 of PbSRD5A and TM5-10 of MaSR1 is generated using cealign 3 in pymol. TM2-7 of PbSRD5A and TM5-10 of MaSR1 (PDB code: 4QUV) are colored 4 marine and yellow, respectively. TM1 of PbSRD5A and TM1-4 of MaSR1 are colored 5 white. Two perpendicular views are shown. TM2-7 of PbSRD5A and TM5-10 of 6 MaSR1 are superimposed with the r.m.s.d. of 3.60 Å over Ca of 184 residues. b, TM1 7 of PbSRD5A and TM1-4 of MaSR1 are colored marine and yellow, respectively. TM2-8 7 of PbSRD5A and TM5-10 of MaSR1 are colored white. Two TM1s adopt distinct 9 conformations and TM2-4 of MaSR1 is missing in PbSRD5A. 10

Supplementary Fig. 3 | Crystal packing and oligomerization state examination of 2 **PbSRD5A.** a, Two perpendicular views of the crystal packing of PbSRD5A in the space 3 group of C2221. b, One PbSRD5A molecule interacts with three adjacent molecules in 4 the crystal. The interface I and II are highlighted in cyan shadow and interface III is in 5 6 orange. c, The hydrophobic residues involved in interface III are shown as yellow and green sticks. d, The estimated molecular weights were calculated by AUC analysis. 7 8 Ranges of PbSRD5A and MvINS are shown in palegreen. X-axis values are the putative 9 oligomerization states.

2 Supplementary Fig. 4 | a, Residues that directly form hydrogen bonds with NADPH are shown in stick-ball model. The bonds of residues and NADPH are colored in yellow 3 and cyan, respectively. The atoms are colored by elements (black for carbon, red for 4 oxygen, purple for nitrogen, and yellow for phosphorus). The diagram is generated by 5 LigPlot⁺¹. **b**, The hydrogen bond distances between atoms in PbSRD5A residues and 6 NADPH are measured by PISA². The residues shown in panel \mathbf{a} are colored in brown. 7 Other hydrogen bonds only found by PISA are colored in black. c, The indirect 8 interactions between PbSRD5A and NADPH were listed as two categories. The 9 hydrophobic interactions and water mediated polar interactions are listed in the left and 10 right panels, respectively. These interactions are analyzed by LigPlot $+^1$. 11

Supplementary Fig. 5 | PbSRD5A accommodates one MAG molecule in crystal
structure. a, Monoolein fits into the density map shown in Fig. 2b. b, Coordination of
monoolein in PbSRD5A. The residues that interact with monoolein with hydrophobic
effect, such as F17, S21 T24, L25, Y32, A49, W50, T109, A110, A113 and F116, are
shown as green sticks. Q53, shown as yellow sticks, forms hydrogen bond (green dash)
with the hydroxyl group of monoolein.

pi-2	
PbSRD5AMDPDFLYRWALIGLAAFGAFSFATLFFVPAPYGRHQRGGWGPTVPTRLAWIAQELPAPLVFALVFAR-GEHADR-LVPLL	78
HSSRD541 MATATGVAEERIJ.AAI.AYI.OCAVGCAVFARNROTNSVYGRHAI.PSHRI.RVPARAAWVVOEI.PSI.AI.PI.VOYASESAPRI.RSAPNCT	86
	00
HSSRD3A2MQVQCQ25FVLAGSATLVALGALALIVA-RPSGTGMTESLKPAATRLEARAAWILQELPSTAVPAGILARQPL5-LFGPPGTV	82
β3-4	_
	4
PbSRD5A LLGLWQLHYLQRTFVFPLLMRVGAKRTPLVTALLAFVFNCVNGAANAYAITHGALRHTEAWLADPRFAIGALLFLGGWALNLHSDAIL	166
HSSRD5A1 LLAMFLVHYGHRCLIYPFLMR-GGKPMPLLACTMAIMFCTCNGYLOSRYLSHCAV-YADDWVTDPRFLIGFGLWLTGMLINIHSDHIL	172
LOSD 542 II CI FCVUV FUDTEVVSI IND -C-DDYDATI II DCTAFCTCNCVI OCYVI IYCAF-VDDCVYTDIDESI CVFI FTI CMCINI USDVII	167
	1107
	÷
	050
PbSRD5A RRLRAPGETRYE1PRGAYRLVSCPNYLGE1VEWCGWALATWYYAGAVFAFFTFANLFPRALAHHRWYRERFPDYPRERKAVIPFVV	253
HsSRD5A1 RNLRKPGDTGYKIPRGGLFEYVTAANYFGE IMEWCGYALASWSVQGAAFAFFTFCFLSGRAKEHHEWYLRKFEEYPKFRKIIIPFLF	259
H\$SRD542 BOLRKPGETSYRTPOGGLFTYVSGANFLGETTEWTGYALATWSLPALAFAFFSLCFTGLRAFHHBRFYLKMFEDYPKSRKALTPFTF	254

2 Supplementary Fig. 6 | Sequence alignment of PbSRD5A with HsSRD5A1 and -2.

- 3 Secondary structural elements of PbSRD5A are indicated above the sequence alignment.
- 4 Invariant and highly conserved amino acids are shaded in rose red and grey, respectively.
- 5 The residues identified for NADPH binding are highlighted at the bottom by red (polar
- 6 interactions) and green triangles (hydrophobic effects), respectively.
- 7

2 Supplementary Fig. 7 | Structural comparison and substrate docking of SRD5As.

a, The superposition of PbSRD5A (gray), HsSRD5A1 (palegreen) and HsSRD5A2 3 (lightblue) is shown as cylindrical cartoon. The arrows indicate the conformational 4 5 difference of TM1s in SRD5As by two perpendicular views. b, The structure of AKR1D1-progesterone (PDB code: 3COT). The semi-transparent electrostatic surface 6 of HsSRD5A2 is shown. c, The docking pose of progesterone in PbSRD5A docking 7 model. d, The coordination of conserved Q-E-Y motif with progesterone in PbSRD5A 8 docking model. e, The docking pose of progesterone in HsSRD5A1 docking model. f, 9 10 The coordination of conserved Q-E-Y motif in HsSRD5A1 docking model. In (b)-(f), substrates are shown as yellow stick. NADPH is colored cyan. Two perpendicular views 11 are shown. 12

13

2 Supplementary Fig. 8 | The expression level of HsSRD5A2 mutants in HEK293

- 3 cells. a, The western blot for WT, Q56A, Q56L, Q56R, E57L, E57Q, Y91F, Y91D and
- 4 EV in Fig. 3f. **b**, The western blot for WT, D164A, R171A, N193S, E197L, E197D,
- 5 R227A, R227Q, H231A, Y235A, Y235F and EV in Fig. 4b.
- 6

Supplementary Fig. 9 | Mapping of the conserved residues of steroid 5-alpha
reductases to the structural model of HsSRD5A2. Sequence alignment was made for
150 steroid 5-alpha reductases and putative homologues. The conserved residues were
mapped to the structural model of HsSRD5A2 using ConSurf^{3,4}. Invariant residues in
NADPH binding and catalytic site residues are show in stick-ball model in the inset.

Supplementary Fig. 10 | The extra space in substrate binding pocket of HsSRD5A2
is limited to accommodate water molecule in the presence of substrate. a, An
oxygen atom is used as a probe to search the volume of free space around E57 (radius
of 15Å to the carbon atom of the carboxyl group of E57) at the optimal binding pose.
The free space is shown in white spheres. Testosterone (cyan), NADPH (cyan), and E57
(yellow) are shown in stick mode. HsSRD5A2 is shown in cartoon mode. b, A

8 correlation analysis of the free space volume around E57 after testosterone is docked

- 9 and the predicted binding affinity of testosterone.
- 10

1 Supplementary Tables 1-4

Samples	(1)	(2)	(3)	(4)	(5)	(6)
Purification volume	50	40	55	50	16	2.5
(mL)						
Assay volumes	0.30	0.24	0.33	0.30	0.96	0.15
(µL)						
Total protein	-	-	-	857.50	1.60	0.15
(mg)						
Total activity	6.85×10 ⁻⁶	5.34×10 ⁻⁶	5.93×10 ⁻⁶	4.82×10 ⁻⁶	8.75×10 ⁻⁷	5.27×10 ⁻⁷
(µmol·min ⁻¹)						
Specific activity	-	-	-	5.67×10-9	5.47×10 ⁻⁷	3.51×10 ⁻⁶
(µmol·mg ⁻¹ ·min ⁻¹)						
Volume on western	4.50	3.60	4.95	4.50	3.60	1.13
blot (µL)						
Grey value	1.06	1.38	1.07	1.09	1.25	1.00
Detected activity*	3.02	2.54	2.77	2.24	2.28	1.00
(normalized)						
Calculated activity#	5.70	3.68	5.18	4.11	0.91	1.00
(normalized)						

2

Supplementary Table 1 | Purification and enzyme activity examination table. The 3 enzyme activity of PbSRD5A during purification. The samples include: (1) whole cell 4 crude extract; (2) re-suspended cell membrane after 1st round of ultracentrifugation; (3) 5 solubilized solution in 1% DDM; (4) supernatant after 2nd round of ultracentrifugation, 6 (5) protein eluted from Ni-column, and (6) purified protein after size-exclusion 7 chromatography. HPLC was used to detect the 5a-DHP% converted from progesterone, 8 using the same units of protein. Equally protein was quantified by calculating the grey 9 level of western blot. The activities were calculated as: *Total activity = Total product /* 10 Reaction time, Specific activity = Total product / (Total protein \times Reaction time); 11 Calculated activity = Detected activity / (Sample volumes in an assay system \times grey 12 value / Volume loaded on western blot), and normalized by sample #6. 13

	PbSRD5A	
Data collection		
Space group	C2221	
Cell dimensions		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	52.19 104.26 123.05	
α, β, γ (°)	90 90 90	
Resolution (Å)	19.36-2.00 (2.05-2.00) *	
$R_{\rm sym}$ or $R_{\rm merge}$	0.098 (0.84)	
$I / \sigma I$	12.80 (2.30)	
Completeness (%)	99.60 (99.30)	
Redundancy	6.60 (6.70)	
Refinement		
Resolution (Å)	19.36-2.00	
No. reflections	22971	
$R_{ m work}$ / $R_{ m free}$	19.50/23.27	
No. atoms		
Protein	2008	
Ligand/ion	200	
Water	90	
B-factors		
Protein	34.44	
Ligand/ion	49.18	
Water	41.2	
R.m.s. deviations		
Bond lengths (Å)	0.01	
Bond angles (°)	1.45	

^{1 *}Values in parentheses are for highest-resolution shell.

Supplementary Table 2 | Statistics of data collection and refinement for native 3 PbSRD5A. One crystal was used for structure determination. Values in parentheses are 4 for the highest resolution shell. Rmerge= $\Sigma h \Sigma i |Ih,i-Ih| / \Sigma h \Sigma i Ih,i$, where Ih is the mean 5 intensity of the i observations of symmetry related reflections of h. $R=\Sigma|Fobs-$ 6 Fcalc $|\Sigma$ Fobs, where Fcalc is the calculated protein structure factor from the atomic 7 model (Rfree was calculated with 8.71% of the reflections selected). a is reflections 8 used for R and Rfree at low resolution bin. b is reflections used for R and Rfree at high 9 resolution bin. 10

²

Category	HsSRD5A2	HsSRD5A1	PbSRD5A
	N160D	N165	N159
NADPH binding residue mutations	D 164V	D169	D163
	R 171S	R176	R170
	N193S	N198	N192
	E197D	E202	E196
	R 227Q	R232	R226
	H231R	H236	H230
	Y 235F	Y240	Y234
	Q56R	Q59	Q53
Catalytic site mutations	E 57Q	E60	E54
	Y 91D	Y95	Y87
	A207D	A212	A206
	S210F	S215	T209
	P212R	Q217	A211
	Q126R	Q131	N124
Structural destabilizing	E200K	E205	E199
mutations	P181L	P186	P180
	G183S	G188	G182
	S245Y	F250	E244
	R246Q/W	R251	R245
	L20P	V23	S21
	L55Q/P	V58	A52
Helix breaking mutations	H162P	H167	H161
	L224P	L229	L223
	H230P	E235	H230
	G34R/W	G40	G33
	P59R	P62	P56
	G85D	A89	G81
Small to bulky residue	G115D	A120	A113
(Destabilizing mutations)	G 123R	G128	G121
	G158R	L163	A157
	G196S	G201	G195
	G203S	G208	G202

1 Supplementary Table 3 | Disease related loss-of-function mutations in HsSRD5A2.

Disease related loss-of-function mutations in HsSRD5A2 and the corresponding
residues in HsSRD5A1 and PbSRD5A are listed. The invariant residues and highly
conserved residues between HsSRD5A2 and PbSRD5A are colored in red and purple,
respectively.

Name	Forward primer (5'-3')	Reverse primer (5'-3')	
	GATGCTGGCAGCGGCCATA	ACCGCATGCCTCGACCTCG	
PbSRD5A WT insert	TGGACCCGGATTTCCTGTA	AGCTAAACCACAAACGGAA	
	TCGTT	TAACCGC	
	TGGCTGGGCGCTGGCACTG	TGCAGTGCCAGCGCCCAGC	
PUSKDJA N159A	CA	CA	
	CACAGCGTTGCGATCCTGC	AGGATCGCAACGCTGTGCA	
POSKDJA DIOSV	GT	GGT	
	TCGTCTGAGCGCGCCGGG	TTTCACCCGGCGCGCTCAG	
FUSKD3A K1705	TGAAA	ACGA	
	TTAGCTGCCCGGCATACC	CAGGTATGCCGGGCAGCT	
POSKDJA N192A	TG	AA	
	TGGGCCTGATCGTTGAGT	ACCACTCAACGATCAGGC	
POSKD5A E196L	GGT	CCA	
	CTGTTTCCGCAAGCGCTG	CGCCAGCGCTTGCGGAAA	
POSRDSA R226Q	GCG	CAG	
	GACGATAAGCTTATGCAG	TCATCTTTTAAGAATTCTG	
HsSRD5A2 WT	GTTC	CAG	
	CCGCGCCGCCTGGTTCCT	CCGCGAAGGAAGGCAGCT	
HsSRD5A2 Q56A	GGCAGAGCTGCCTTCCTT	CTGCCAGGAACCAGGCGG	
-	CGCGG	CGCGG	
	CCGCGCCGCCTGGTTCCT	CCGCGAAGGAAGGCAGCT	
HsSRD5A2 Q56L	GCTGGAGCTGCCTTCCTT	CCAGCAGGAACCAGGCGG	
	CGCGG	CGCGG	
	CCGCGCCGCCTGGTTCCT	CCGCGAAGGAAGGCAGCT	
HsSRD5A2 Q56R	GCGAGAGCTGCCTTCCTT	CTCGCAGGAACCAGGCGG	
	CGCGG	CGCGG	
	CGCCGCCTGGTTCCTGCA	GCACCGCGAAGGAAGGCA	
HsSRD5A2 E57L	GTTACTGCCTTCCTTCGC	GTAACTGCAGGAACCAGG	
	GGTGC	CGGCG	
	CGCCGCCTGGTTCCTGCA	GCACCGCGAAGGAAGGCA	
HsSRD5A2 E57Q	GCAGCTGCCTTCCTTCGC	GCTGCTGCAGGAACCAGG	
	GGTGC	CGGCG	
	GGGCCTCTTCTGCGTACA	ACACAAATGTCCTGTGGA	
HsSRD5A2 Y91F	TTTCTTCCACAGGACATT	AGAAATGTACGCAGAAGA	
	TGTGT	GGCCC	
	GGGCCTCTTCTGCGTACA	ACACAAATGTCCTGTGGA	
HsSRD5A2 Y91D	TGACTTCCACAGGACATT	AGTCATGTACGCAGAAGA	
	TGTGT	GGCCC	
	GGGAATAAACATTCATAG	TGAGCTGGCGCAATATAT	
HsSRD5A2 D164A	TGCCTATATATTGCGCCA	AGGCACTATGAATGTTTAT	
	GCTCA	TCCC	
	CTATATATTGCGCCAGCT	AGCTGATTTCTCCAGGCTT	
HsSRD5A2 R171A	CGCAAAGCCTGGAGAAA	TGCGAGCTGGCGCAATAT	
	TCAGCT	ATAG	
	17		

	TACGTATGTTTCTGGAGC	CAATGATCTCACCGAGGA
HsSRD5A2 N193S	CAGTTTCCTCGGTGAGAT	AACTGGCTCCAGAAACAT
	CATTG	ACGTA
	TGGAGCCAATTTCCTCGG	AGCCGATCCATTCAATGA
HsSRD5A2 E197L	TTTAATCATTGAATGGAT	TTAAACCGAGGAAATTGG
	CGGCT	CTCCA
	TGGAGCCAATTTCCTCGG	AGCCGATCCATTCAATGA
HsSRD5A2 E197D	TGACATCATTGAATGGAT	TGTCACCGAGGAAATTGG
	CGGCT	CTCCA
	ACTTTGTTTCCTTGGGCTG	ACCTATGGTGGTGAAAAG
HsSRD5A2 R227Q	GCTGCTTTTCACCACCAT	CTTGCAGCCCAAGGAAAC
	AGGT	AAAGT
	TGGGCTGCGAGCTTTTCA	TCTTGAGGTAGAACCTAT
HsSRD5A2 H231A	CGCTCATAGGTTCTACCT	GAGCGTGAAAAGCTCGCA
	CAAGA	GCCCA
	TTTTCACCACCATAGGTT	AGTCCTCAAACATCTTGA
HsSRD5A2 Y235A	CGCACTCAAGATGTTTGA	GTGCGAACCTATGGTGGT
	GGACT	GAAAA
	TTTTCACCACCATAGGTT	AGTCCTCAAACATCTTGA
HsSRD5A2 Y235F	CTTCCTCAAGATGTTTGA	GGAAGAACCTATGGTGGT
	GGACT	GAAAA

- 1 Supplementary Table 4 | List of primer sequences used in cloning and enzymatic
- 2 assay.

1 Supplementary references:

- Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate
 schematic diagrams of protein-ligand interactions. *Protein engineering* 8, 127-134,
 doi:10.1093/protein/8.2.127 (1995).
- 5 2 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state.
 Journal of molecular biology **372**, 774-797, doi:10.1016/j.jmb.2007.05.022 (2007).
- Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
 evolutionary conservation in macromolecules. *Nucleic acids research* 44, W344-350,
 doi:10.1093/nar/gkw408 (2016).
- 104Landau, M. *et al.* ConSurf 2005: the projection of evolutionary conservation scores of11residues on protein structures. *Nucleic acids research* **33**, W299-302,
- 12 doi:10.1093/nar/gki370 (2005).
- 13