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Supplementary Note 1: Comparison of visibility graphs with same number of nodes with 
rotational distance. 
To compare two visibility graphs with the same number of nodes, we computed the smallest Euclidean 
distance between the corresponding weighted adjacency matrices upon rotation. To this end, one of the 
adjacency matrices is fixed and the other is circularly permuted. This is achieved by setting the last row 
and column of the adjacency matrix to be the first row and column in the circularly rotated matrix and 
decreasing the remaining respective row- and column-indices by one (Supplementary Fig. 2a). After this 
circular permutation, the Euclidean distance between the two matrices is calculated. The smallest 
distance over all circular permutations yields the distance between the two visibility graphs, and 
corresponds to the best overlay of the graphs. 
 
We use the proposed rotational distance to compare the visibility graphs for a set of synthetic shapes 
with same number of nodes (see Table 1). The resulting distance matrix is used for hierarchical 
complete-linkage clustering and shows that the shapes are grouped accurately into rectangular, 
triangular, and circular shapes (Supplementary Fig. 2b). In addition, we apply the rotational distance to 
the set of synthetic shapes with different number of nodes using the node reduction method based on 
modularity clustering (see below). Here, the clustering of the shapes is still fairly accurate, although 
there seems to be a size-dependent clustering of the triangles (Supplementary Fig. 2c). 
 
 
Supplementary Note 2: Comparison of visibility graphs based on a node-reducing method using 
modularity clustering. 
While the comparison of visibility graphs using the Laplacian eigenvalues is independent on whether 
the number of nodes are equal or different between two graphs, the rotational distance and the Fourier 
transform can only be applied for comparison of graphs with the same number of nodes. Therefore, to 
compare two graphs of different order (i.e. number of nodes), we implemented an algorithm that reduces 
the number of nodes to that of the compared graphs with the smaller order. The algorithm is based on 
modularity clustering and includes the following steps (Supplementary Fig. 4): Given two graphs, we 
identify which graph has the larger number of nodes and reduce this graph to the order of the smaller 
graph (Supplementary Fig. 3a). We reduce the number of nodes by partitioning the larger graph into as 
many network clusters (intuitively, subgraphs which are more densely connected within than to the rest 
of the network) as there are nodes in the smaller graph. To do the partitioning we rely on the modularity, 
as a network cluster quality index1. Since optimizing modularity is an NP-hard problem, here we use 
greedy approximation algorithm widely used in the network research community2, which also allows us 
to control the number of clusters. Initially, each node is assigned to a cluster (Supplementary Fig. 4b). 
In the next step, new clusters are created by assigning two consecutive nodes to the same cluster and 
calculating the modularity. The consecutiveness property needs to be respected, since the reduced graph 
should maintain the properties of the original visibility graph. Here, all possible combinations of two 
consecutive merged nodes are created and the combination with the maximum modularity is selected 
(Supplementary Fig. 4c-d). The nodes which belong to the same cluster are merged and represented by 
a single new node, whose position is determined by the geometric median of the merged nodes, which 
minimizes the sum of distances to all node positions (Supplementary Fig. 4e). The merging of nodes is 
repeated until the larger graph has the same number of nodes as the smaller graph (Supplementary Fig. 
4f). 
 
 
Supplementary Note 3: Shape comparison using the Fourier transform. 
We use the Fourier transform on the set of synthetic shapes with both equal and different number of 
nodes, and compare the performance of the visibility graphs approach. To this end, we employ the 
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classical contour representation of the distances of the points on the contour from the centroid of the 
shape. The resulting profile is used as input to the discrete Fourier transforms. Finally, we compare the 
descriptors of shape resulting from the Fourier transform by using the Euclidean distance and the 
correlation distance. To apply the shape comparison using the Fourier transform on shapes with different 
number of nodes, we use the node reducing approach based on modularity clustering to create shapes 
with equal number of nodes. The resulting distance matrix between all pairwise shape comparisons is 
used for hierarchical complete-linkage clustering, as shown in Supplementary Fig. 5. Surprisingly, this 
representation provides a clustering of poor quality, in which rectangular shapes are clustered with 
triangular shapes and circular shapes are clustered with rectangular shapes (Supplementary Fig. 5b-e). 
 
 
Supplementary Note 4: Homogeneity of the derived clusterings of shapes. 
To compare the quality of clusters derived from the different comparison methods, we calculate the 
Biological Homogeneity Index (BHI), which provides a measure of homogeneity of the determined 
clusters3. Let ℬ(i) and ℬ(j) be functional classes containing shape i and j, respectively. We assign the 
indicator function Ι(ℬ(i)=	ℬ(j)) the value 1 if ℬ(i) and ℬ(j) match. Thus, for a given statistical clustering 
partition Ck, the BHI is defined as: 

𝐵𝐻𝐼	 = 	 +
,
∑ +

./(./0+)
∑ Ι(𝐵(𝑖) = 𝐵(𝑗))34567/

,
89+ 	,                                      (1) 

where K is the number of clusters and nk is the number of annotated shapes in a cluster. A value of 1 for 
the BHI denotes perfect clustering, in which all shapes assigned to a cluster belong to the same group 
(provided as a priori knowledge). Smaller values for the BHI denote larger departure from homogeneity 
and point at issues of the resulting clusterings. To do so, we use the dendrogram derived from the shape 
comparisons and cut them into three clusters by using the dendrogram distance, since we compare three 
different shape types. To prevent clusters with a single shape, we merged single shape clusters with the 
closest cluster according to the dendrogram distance. The rotational distance and the Fourier transform 
cannot be used to compare shapes with different number of nodes, so we used the node-reducing 
approach based on modularity clustering to create shapes with equal number of nodes. As shown in 
Supplementary Table 1, the values for the BHI for the different algorithms for comparison of visibility 
graphs outperform the Fourier transform approaches. 
 
 
Supplementary Note 5: Visibility graph centralities to infer local features of pavement cells. 
To show that the closeness centrality is the best graph property to identify lobes as local features of 
pavement cells, we select and compare the performance of other centrality measures. Let 𝑢, 𝑣, 𝑡 ∈ 𝑉 be 
nodes in an undirected graph 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉| vertices and 𝑚 = |𝐸| edges.  We define deg	(𝑣) 
as the degree of node 𝑣 and 𝑑(𝑢, 𝑣) as the length of shortest path connecting nodes 𝑣 and 𝑢. Let 𝜎(𝑣, 𝑢) 
be the number of shortest path and 𝜎J(𝑢, 𝑡) the number of shortest paths connecting nodes 𝑢 and 𝑡 
through node 𝑣. The adjacency matrix is denoted by 𝐴 =	 (𝑎J,M) where 𝑎J,M = 1 if an edge connects 
nodes 𝑣 and 𝑢, and 𝑎J,M = 0 otherwise. The effective resistance between the nodes 𝑣 and 𝑢 corresponds 
to the term 𝑝MJ(𝑣) − 𝑝MJ(𝑢) and  𝜏MS(𝑣) is defined as the information throughput of node 𝑣 4. Lastly, 
we denote 𝜆 as the eigenvalue and 𝜃M,S(𝑣) as the overall commodity sent from node 𝑢 to 𝑡 and forwarded 
by node 𝑣 (11). Following this notation, the used centralities are defined as shown in Supplementary 
Table 4. 
 
We use the extracted visibility graphs of the pavement cell gold standard and calculate all of the above-
mentioned centralities. To detect lobes, we identify the local minima of the centralities and computed 
the RMSE to measure the difference to the mean of manually detected lobes. The closeness centrality 
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shows the lowest RMSE, closely followed by the local reaching centrality which is very similar to the 
closeness centrality (Supplementary Fig. 11). 
 
 
Supplementary Note 6: Optimal distance between visibility graph nodes. 
To find the optimal distance between visibility graph nodes, we extract the visibility graphs of the 
pavement cell gold standard using various pixel distances. The selected cells of the gold standard are 
derived from three different images, from which one image (clasp-1, 𝑟𝑒𝑠YZ[\] = 0.1528	 bc

]d
) has a 

different image resolution than the other two (Col-0/oryzalin-treated, 𝑟𝑒𝑠7eZ0f/ehij[Z3. = 0.221	 bc
]d

). 

Lobes are detected by identifying the local minima of the closeness centrality for each visibility graph 
and are afterwards compared to the mean of manually detected lobes by calculating the root mean square 
error (RMSE). For each pixel distance, we compute the mean RMSE and identified the minimum of the 
means for the cells of the two different image resolutions. The lowest mean RMSE is detected for a 
distance of seven pixel (Col-0/oryzalin-treated) and 10 pixel (clasp-1) between visibility graph nodes 
(see Supplementary Fig. 17). Given the image resolution, we can calculate the optimal distance, or node 
coverage, as: 
 

𝑛𝑜𝑑𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 	 +
hn\eZMS3e.∗]3dnZ	p3\S[.Yn

	.                                            (2) 

 
Using the detected pixel distance minima and the two different image resolutions, we obtain a node 
coverage of 0.65 .epn

bc
 for both images, thus defining the optimal pixel distance that is used for the 

visibility graph creation of our approach. 
 
 
Supplementary Note 7: Prediction of plant clades from PCs. 
We create the visibility graphs of 6359 selected, adaxial pavement cells from 213 different plant species 
using the data set of Vöfely et al.5. From the created visibility graphs, we select ten graphs per species 
and label them according to their plant clade affiliation (eudicots, monocots, ferns, angiosperms, 
gymnosperms). The distance matrix of the selected graphs is computed and displayed by using PCA 
(Supplementary Fig. 22). Here, the ferns (blue) are easily distinguishable from the other four clades, 
while the centroids of eudicots (green), monocots (pink) and angiosperms (light blue) are clustered 
closely together. 
 
 
Supplementary Note 8: Accuracy of the pre-processing and segmentation pipeline. 
The quality of our segmentation pipeline is evaluated by calculating the pixel accuracy, a common 
validation metric for binary classification, which is calculated as: 

PA = rstru
rstrutvstvu

 ,                                                                  (3) 
where TP = True Positive (i.e. pixels correctly detected as pavement cells), TN = True Negative (i.e. 
pixels correctly detected as background), FP = False Positive (i.e. pixels wrongly detected as pavement 
cells) and FN = False Negative (i.e. pixels wrongly detected as background). 
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Supplementary Figure 1: Different types of visibility graphs. The visibility graph represents a set of objects 
along with a visibility relation between them. One type of visibility graph is formed on the vertices of multiple 
polygons; it is applied in robotics, where it can be used to find the shortest path among polygonal obstacles. In 
another type of visibility graphs the nodes correspond to the amplitude (i.e. value) at time points and edges are 
placed between nodes if they can see each other, and this type of visibility graphs has been used to deduce 
properties of time series. In addition, visibility graphs can be used for shape decomposition by placing nodes along 
a piecewise linear approximation of a shape. The here proposed approach GraVis places nodes along the shape 
contour and connects nodes which are visible to each other. 

 

 
Supplementary Figure 2: Rotational permutation of a graph. (a) To circularly permute a graph, the 
corresponding adjacency matrix is used. The first row and column of the matrix are rotated to the end of the matrix, 
decreasing the row- and column- indices by one. (b) Shapes are compared by calculating the rotational distance 
between their corresponding visibility graphs. The resulting distance matrix is used for hiererchical complete-
linkage clusterting of a set of synthetic shapes with same number of nodes, on which the rotational distance can 
be readily applied. (c) Clustering of shapes with different number of nodes that were reduced to the same size 
using modularity clustering. The shapes were separated into three distinct clusters, indicated by different shades 
of gray. The clusters are determined by using the dendrogram distance, whereby to prevent single shape clusters, 
we merge clusters with single shapes to the next close cluster.  
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Supplementary Figure 3: Comparison of weighted visibility graphs. Two visibility graphs are compared based 
on their Laplacian eigenvalues from the weighted adjacency matrices. (a) Clustering dendrogram obtained for a 
set of synthetic shapes with the same number of nodes and (b) variable number of nodes. The poor clustering 
shows that the usage of the weighted adjacency matrices is not suitable for graph comparison. 

 
Supplementary Figure 4: Comparison of visibility graphs based on a node-reducing method using 
modularity clustering. (a) Given two graphs, the graph with the larger number of nodes is identified to be reduced 
to the order of the smaller graph. The number of nodes in the larger graph are reduced by partitioning the graph 
into as many network clusters as there are nodes in the smaller graphs, whereby we rely on modularity as a network 
cluster quality index. (b) Initially, the nodes of the larger graph are each assigned to a cluster. (c) New clusters are 
created by assigning two consecutive nodes to the same cluster. All possible combinations of two consecutive 
merged nodes are created. The combination with the maximum modularity is selected. (d)This reduction method 
is applied until the final number of clusters equals the order of the smaller graph. (e) Nodes which belong to the 
same cluster are represented by a single new node, which position is determined by the geometric median of the 
merged nodes. (f) The smaller graph and the reduced larger graph can be used for comparison approaches that 
require the same number of nodes for two graphs. 
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Supplementary Figure 5: Comparison of synthetic shapes using the Fourier transform. (a) Two shapes are 
compared based on their Fourier transforms obtained from their one-dimensional contour which is calculated by 
the difference of the shape centroid and its coordinates. The difference between two Fourier transforms is 
determined by the Euclidean distance or the correlation distance. (b, c) Resulting clustering dendrogram for a set 
of synthetic, simple triangular, rectangular and circular shapes with equal number of coordinates using (b) the 
Euclidean distance and (c) the correlation distance. (d, e) Resulting clustering dendrogram for shapes with different 
number of nodes, reduced with modularity clustering using (d) the Euclidean distance and (e) the correlation 
distance. The shapes were separated into three distinct clusters, indicated by different shades of gray. The clusters 
are determined by using the dendrogram distance, whereby to prevent single shape clusters, we merge clusters 
with single shapes to the next close cluster. 
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Supplementary Figure 6: Comparison of visibility graphs with different node densities. (a-i) The visibility 
graphs of a set of synthetic shapes with the same number of nodes (20) were reduced stepwise by one node and 
used to calculate the distance matrix to use for hierarchical clustering. To measure the quality of the clustering, 
the BHI was calculated for the resulting clusters (see Supplementary Fig. 7). 
 

 
Supplementary Figure 7: Sensitivity of the number of nodes on the performance of shape comparison. 
Visibility graphs with equal number of nodes were compared against each other for the synthetic shapes. The 
number of nodes were decreased in a stepwise fashion using the node-reducing method. The distance matrix was 
calculated for the resulting graphs and used for hierarchical clustering whose quality we quantified with the BHI 
(blue). The highest average BHI was calculated with graphs that have a distance between of 10-14 pixels between 
nodes (gray). Boxplots are shown with median (horizontal line), 25th and 75th percentiles (box edges) and 1.5-fold 
of the interquartile range (whiskers). 
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Supplementary Figure 8: Comparison of visibility graphs of pavement cells using different approaches. The 
visibility graphs of a set of 12 pavement cells from three different genotypes are created and used for shape 
comparison using (a) the Laplacian eigenvalues (GraVis). Additionally, we use (b) the Laplacian eigenvalues on 
the reduced set, for which we also use (c) the rotational distance and (d, e) the Fourier transform by calculating 
(d) the Euclidean distance and (e) the correlation distance. Pavement cells are selected from Col-0 (gray), CA-
ROP2 (blue) and lue1 (teal). (f) The number of clusters is determined based on the relative completeness values 
of the corresponding visibility graphs to account for the shape complexity. The pavement cells are assigned to 
clusters based on whether the completeness values lay in the lower, middle or top third (different shades of gray). 

 
 
 

1 2

3

0.8

0.6

0.4

0.2

0.0

D
ist

an
ce

a

1 2

3

Cluster 1

Cluster 2

Cluster 3

f
1.0

0.8

0.6

0.4

0.2

0.0

Re
la

tiv
e 

co
m

pl
et

en
es

s

0.12

0.08

0.04

0.0

D
ist

an
ce

1
2

3

4000

3000

2000

1000

0

1
2

3

60

40

20

0

D
ist

an
ce

e

c

b

d

1

2

3

0.6

0.4

0.2

0.0

D
ist

an
ce

D
ist

an
ce



 10 

 

 
 

PC
2 

(2
3.

5%
)

PC1 (67.3%)
-4000 0 4000 8000 12000

0

2000

3000

PC1 (51.1%)
PC

2 
(2

5.
9%

)

0.20

0.10

0.00

-0.10
-0.1 0.0 0.1 0.2

1000

-1000

PC
2 

(3
1.

4%
)

PC1 (59.4%)
-10000 0 10000 20000 30000

-5000

0

5000

10000

PC1 (53.2%)

PC
2 

(2
8.

0%
)

0.20

0.10

0.00

-0.10-0.2 0.0 0.2 0.4

-100000

PC
2 

(1
5.

3%
)

PC1 (74.0%)
-50000 0 50000 100000 150000

-20000

0

20000

40000

PC1 (54.1%)

PC
2 

(2
8.

0%
)

0.2

0.1

0.0

-0.1

-0.2 0.0 0.2 0.4

Fourier Transform (Euclidean distance) Fourier Transform (correlation distance)a b

c d

e f



 11 

Supplementary Figure 9: Fourier transform approach for analysis of shapes from different domains. The 
distances between visibility graphs is calculated based on the Fourier transform using (a, c, e) the Euclidean 
distance or (b, d, f) the correlation distance. The principal component analysis of shapes from three different 
domains are shown: (a, b) sand grains, (c, d) fish shapes and (e, f) leaf shapes. 

 

 
Supplementary Figure 10: Correlations between the relative completeness and other shape metrics. The 
visibility graphs for the cells in Fig. 4 are used to determine the Pearson correlation coefficient between their 
relative completeness and (a) the circularity, whereby (b) depicts the cells with a low circularity and a high relative 
completeness (blue circles in (a)). Further Pearson correlation coefficients are determined between the relative 
completeness and (c) the number of lobes without junctions, and (d) the number of lobes with junctions. The 
number of cells, correlation value, and the associated significance (independent two-sample t-test, two-sided p-
value) are included in the respective figure panels. 
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Supplementary Figure 11: RMSE of detected pavement cell lobes for different centralities. The RMSE is 
calculated from the number of lobes detected using different centralities of the visibility graphs (n=30 independent 
cells of the gold standard) and the mean of manually annotated nodes. Boxplots are shown with median (horizontal 
line), 25th and 75th percentiles (box edges) and 1.5-fold of the interquartile range (whiskers). 

Supplementary Figure 12: Visual output for GraVis depicting positions of lobes, necks and tri-cellular 
junctions. For each cell, the positions of local shape features are shown by circles. Tri-cellular junctions are shown 
in gray, necks in orange and lobes in blue. Overlapping gray and blue circles indicate positions where a junction 
was detected as a lobe. 
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Supplementary Figure 13: Bee swarms of manually detected lobes by 20 experts. The number of detected 
lobes (without tri-cellular junctions) for the 30 cells of the gold standard that were selected from three different 
conditions (Col-0: gray, clasp-1: yellow, oryzalin: black) are shown as bee swarms. The position of tri-cellular 
junctions is indicated by green circles. 
 

 
Supplementary Figure 14: Consensus of manually detected lobes by 20 experts. Three cells for each condition 
are selected from the gold standard to visualize the consensus among the experts regarding the positions of lobes 
(blue) and tri-cellular junctions (gray). The consensus of experts is indicated by the hue of the colored circles. 
Light circles indicate a low percentage of consensus (true lobes: light blue, tri-cellular junctions: light gray), while 
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dark circles indicate a high percentage of consensus among the experts (true lobe: dark blue, tri-cellular junctions: 
dark gray). 

Supplementary Figure 15: Comparison of visibility graph with other contending approaches to count the 
number of lobes including tri-cellular junctions in leaf pavement cells. The quantitative comparison is based 
on a gold standard that includes n=30 independent Arabidopsis pavement cells obtained from each of the three 
scenarios: (a, e) wild type (n=10 cells), (b, f) clasp-1 mutant (n=10 cells), and (c, g) oryzalin treatment (n=10 
cells), all with lobes manually annotated by 20 experts. The dotted line denotes the mean of the gold standard, i.e. 
manual detection by 20 experts, for the respective scenario. Shown is the comparison using (a-d) default 
parameters and (e-h) tuned parameters to detect the number of lobes including tri-cellular junctions. The dotted 
line denotes the mean of the gold standard, i.e., manual detection by 20 experts, for the respective scenario. (d) 
GraVis performs as good as LobeFinder based on the residual mean square error (RMSE) using default parameters, 
while GraVis performs as good as the other contenders using (h) tuned parameters. The percentage of recovered 
tri-cellular junctions for the different tools is shown for (i) default and (j) tuned parameters. P-values were 
determined with a two-sided two sample t-test and were Benjamini-Hochberg adjusted.  Boxplots are shown with 
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median (horizontal line), mean (gray square), 25th and 75th percentiles (box edges) and 1.5-fold of the interquartile 
range (whiskers). (e) Percentage of recovered tri-cellular junctions for tools which provide positional information 
of detected lobes (all tools except LOCO-EFA). 

 

 
Supplementary Figure 16: Comparison of the performance of lobe detection of different tools. The 
performance of different lobe detection tools is compared to the median of a gold standard that includes 30 
Arabidopsis pavement cells obtained from three scenarios (wild type, clasp-1 mutant, oryzalin treatment). GraVis 
outperforms all three contenders based on the residual mean square error (RMSE) for both (a) lobes excluding tri-
cellular junctions and (b) lobes including tri-cellular junctions. Boxplots are shown with median (horizontal line), 
mean (gray square), 25th and 75th percentiles (box edges) and 1.5-fold of the interquartile range (whiskers).  

 

Supplementary Figure 17: Determining the optimal pixel distance for visibility graph node placement. 
(a)The visibility graphs of the 30 cells from the gold standard are created using different pixel distances between 
nodes. The mean RMSE is computed for each pixel distance ranging from 2 to 39 pixels. (b) The minimum of all 
mean RMSE is then detected for cells from two different image resolutions. 
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Supplementary Figure 18: Parameter tuning of lobe detection tools based on a gold standard. To find the 
optimal parameters for the lobe detection tools GraVis, PaCeQuant and LOCO-EFA, the cells of the gold standard 
are randomly split into a training and test set. Lobes are detected for the training set by using different parameters 
or parameter combinations. The performance of the thus resulting detected lobes is compared by computing the 
root mean square error (RMSE) based on the manually detected lobes by 20 experts. The parameter or parameter 
combination resulting in the lowest RMSE is then used for the lobe detection of the test set, where the performance 
is evaluated by calculating the RMSE. This procedure is repeated 20 to 30 times and the parameter setting with 
the overall lowest RMSE is chosen for the comparison of lobe detection tools after tuning (see Supplementary Fig. 
19). For GraVis, the node distance was tuned, while for LOCO-EFA the threshold between consecutive modes are 
tuned to determine the number of detected lobes. In PaCeQuant, all combinations of the three different parameters 
(Gaussian 𝜎 in curvature analysis, minimal length of a protrusion section and the minimal length of an indentation 
section) were tuned. 

 
Supplementary Figure 19: Recovery of tri-cellular junctions for each cell of the gold standard. The 
percentage and variance of manually detected tri-cellular junctions for each cell of the gold standard is shown. The 
n=20 independent experts were provided only with the pavement cell contours for the manual detection and did 
not have any information about cell wall segments with neighboring cells, thus leading to variances in the detection 
of all tri-cellular junctions by the experts. Data are presented as mean values +/- standard deviation. 
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Supplementary Figure 20: Number of nodes among pavement cells of different genetic lines. The set of 80 
pavement cells from different genetic lines are used to display the number of nodes of the corresponding visibility 
graphs. To account for different sizes of pavement cells, the number of nodes is shown in terms of the length of 
the extracted cell contour (in µm). Boxplots are shown with median (horizontal line), 25th and 75th percentiles (box 
edges) and 1.5-fold of the interquartile range (whiskers). 
 

Supplementary Figure 21: Clustering graph of different genetically modified lines. The number of detected 
lobes for each genotype is used to do test the difference between pairwise means (Supplementary Table 6, two-
sided Dunn’s post-hoc test, Benjamini-Hochberg corrected). Genotypes that show no significant difference in 
means are connected by an edge (p > 0.05), ultimately displaying clusters of genotypes with similar phenotypes. 
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Supplementary Figure 22: PCA of visibility graphs from different plant clades. The distance matrix of 
visibility graphs from manually segmented pavement cells of 213 different plant species is calculated5. The five 
major clades of the plant species are shown in a (a) 2D and (b) 3D PCA plot with their corresponding centroid: 
eudicots (green), monocots (pink), ferns (blue), gymnosperms (purple) and angiosperms (light blue).  
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Supplementary Figure 23: Violin plots of selected shape features for pavement cells of different plant clades. 
The selected cells of 213 different plant species are used to display the distribution of the (a) solidity, (b) the aspect 
ratio, (c) the number of lobes per cell and (d) the relative completeness. The five major clades of the plant species 
are shown with their corresponding centroid: eudicots (green), monocots (pink), ferns (blue), gymnosperms 
(purple) and angiosperms (light blue). The lines in the violin plots indicate the median of the data. The one-sided 
Kruskal-Wallis test was used to test whether there is a difference in means between the clades for the shown shape 
features.  

Supplementary Figure 24: Selected images for the calculation of the pixel accuracy after image 
segmentation. (a-c) Three image sections of epidermal pavement cells are selected for manual segmentation and 
pre-processing using GraVis. Whole cells are manually segmented from the image sections (red), as GraVis 
removes cut cells during the pre-processing. 

 
Supplementary Table 1: Quality of clusters derived from the comparison of a synthetic set of shapes using 
different shape comparison methods. 

Method Number of  
Nodes 

BHI 
Cluster 1 Cluster 2 Cluster 3 Mean 

Laplacian Equal 1.0 1.0 1.0 1.0 
Different 1.0 0.45 1.0 0.82 

Different (reduced) 0.47 1.0 1.0 0.82 
Rotational Equal 0.52 1.0 1.0 0.84 

Different (reduced) 0.56 1.0 1.0 0.85 
FT (Euclidean 
distance) 

Equal 0.33 0.29 0.27 0.3 
Different (reduced) 1.0 0.6 0.31 0.64 

FT (correlation 
distance) 

Equal 0.45 0.47 1.0 0.64 
Different (reduced) 0.32 0.4 0.52 0.42 

The Biological Homogeneity Index (BHI) is calculated using the clusters shown in Supplementary Fig. 2 and 5. 
The BHI show that the Laplacian eigenvalues, as implemented in GraVis, cluster the synthetic shapes perfectly if 
all shapes have the same number of nodes. Nevertheless, the Laplacian eigenvalues also perform very well for the 
synthetic shapes with different number of nodes and the reduced set of nodes, similar to the rotational distance. In 
contrast, the Fourier transform using either the Euclidean or correlation distance performs worst. 

 
Supplementary Table 2: Quality of clusters derived from the comparison of 12 pavement cells using 
different shape comparison methods. 

Method BHI 
Cluster 1 Cluster 2 Cluster 3 Mean 

Laplacian 1.0 1.0 0.43 0.81 
Laplacian (reduced graph) 0.6 0.33 1.0 0.64 
Rotational 0.5 0.67 1.0 0.50 
FT (Euclidean distance) 0.17 0.0 0.4 0.19 
FT (correlation distance) 0.5 0.5 1.0 0.67 

a b c
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The Biological Homogeneity Index (BHI) is calculated using the clusters shown in Supplementary Fig. 8f. The 
BHI values show that the Laplacian approach used by GraVis is best to cluster the shapes of pavement cells into 
distinct groups, followed by the Fourier transform approach using the correlation distance. 

 
Supplementary Table 3: Details of visibility graphs for different domains. 

Sand grains Fish Leaves 
𝑛 𝑚 𝑛 𝑚 𝑛 𝑚 
15 
30 
41 
25 
20 
42 
39 
28 
30 
14 
34 
43 
29 
74 
41 
39 
36 
33 
27 
30 
25 
18 
19 
21 

100 
405 
649 
287 
186 
766 
683 
376 
434 
88 
512 
706 
377 
2032 
780 
735 
561 
499 
305 
388 
275 
146 
150 
206 

 

211 
186 
253 
172 
178 
184 
118 
100 
160 
197 
120 
103 
146 
171 
184 
160 
184 
169 
150 
159 

7871 
8307 
7238 
6078 
7668 
10902 
2732 
3342 
6960 
6686 
2836 
2720 
4810 
4412 
7592 
5582 
8354 
5510 
3992 
7062 

 

304 
231 
169 
83 
297 
124 
95 
105 
106 
172 
52 
199 
144 
113 
147 
81 
97 
125 
207 
175 

20168 
18470 
10087 
2983 
10970 
5581 
3536 
3118 
3692 
6594 
363 
9615 
8887 
4247 
8381 
2308 
4006 
5860 
12323 
13400 

We select shapes from three different domains (sand grains, fish, leaves) and create the corresponding visibility 
graphs. For each graph, the number of edges, |𝐸| = 𝑚  and nodes, |𝑉| = 𝑛 are provided. 

 
Supplementary Table 4: Definitions of graph centralities used for analysis of local shape features of 
pavement cells. 

Centrality measure Definition Reference 

Degree 

 

𝐶x(𝑣) = 	
deg	(v)
𝑛 − 1

 
 

Freeman, 19796 

Eigenvector 

 

𝐶z(𝑣) = 	
1
𝜆
{𝑎J,M𝐶z(𝑢)
M6|

 

 

Bonacich, 19877 

Closeness 

 

𝐶7(𝑣) = 	
𝑛 − 1

∑ 𝑑(𝑢, 𝑣)M∈|
 

 

Sabidussi, 19668 

Information 
 

𝐶}(𝑣) = 	
𝑛 − 1

∑ 𝑝MJ(𝑣) − 𝑝MJ(𝑢)M∈|
 

Stephenson & Zelen, 
19899 
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Betweenness 

 

𝐶~(𝑣) =
2

(𝑛 − 1)(𝑛 − 2)
{

𝜎J(𝑠, 𝑡)
𝜎(𝑠, 𝑡)

\,S∈|

 

 

Freeman, 197710 

Current flow 
betweenness 

 

𝐶7v~(𝑣) = 	
2

(𝑛 − 1)(𝑛 − 2)
{ 𝜏\S(𝑣)
\,S∈|

 

 

Newman, 200511 

Load 
𝐶�(𝑣) = 	

2
(𝑛 − 1)(𝑛 − 2)

{ 𝜃\,S(𝑣)
\,S∈|

 

 
Goh, 200112 

Harmonic 

 

𝐶�(𝑣) = 	
∑ 1

𝑑(𝑢, 𝑣)M∈|

𝑛 − 1
 

 

Marchiori & Latora, 
200013 

Local reaching 

 

𝐶�(𝑣) = 	
1

𝑛 − 1
{

1
𝑑(𝑢, 𝑣)

M∈|

 

 

Mones, 201214 

  
Each listed centrality measure was used to identify lobes of the 30 manually annotated graphs of the gold standard.  

 
Supplementary Table 5: Comparison of the performance of lobe detection of different tools.   

Tool Without tri-cellular junctions 
RMSE using GS mean 
(default) 

RMSE using GS median RMSE using GS mean 
(tuned) 

mean var mean var mean var 
GraVis 0.87 0.70 0.90 0.85 1.76 1.89 
PaCeQuant 4.50 7.74 4.67 8.26 1.05 0.71 
LobeFinder 3.73 4.09 3.83 4.56 3.73 4.09 
p-value 10-9 10-8 10-8 10-7 10-8 10-5 

 With tri-cellular junctions 
RMSE using GS mean 
(default) 

RMSE using GS median RMSE using GS mean 
(tuned) 

mean var mean var mean var 
GraVis 1.19 0.79 1.17 0.78 1.50 1.09 
PaCeQuant 5.11 9.16 5.09 9.15 1.47 1.20 
LobeFinder 2.06 3.30 2.05 3.27 2.06 3.30 
LOCO-EFA 4.72 9.57 4.71 9.57 1.76 1.30 
p-value 10-8 10-9 10-9 10-10 0.69 0.005 

The performance of different lobe detection tools is compared by computing the root mean square error (RMSE) 
based on the manually detected lobes by 20 experts. The comparison is done with and without including tri-cellular 
junctions. Furthermore, the RMSE is calculated based on either the mean of manually detected lobes using default 
or tuned parameters, or the median of manually detected lobes using default parameters. The difference in means 
between the tools is tested using the one-sided Kruskal-Wallis test, while the difference in variance between the 
tools is tested using the one-sided Bartlett’s test. 
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Supplementary Table 6: Adjusted p-values of the pairwise differences for each pair of genetically modified 
lines. 
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- 1
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CA-ROP2 10-20 10-9 0.2 10-10 10-7 10-3 0.01 10-10 10-3 10-14 

Col-0  10-4 10-15 10-3 10-5 10-9 10-11 10-3 10-10 0.15 

DN-ROP2   10-5 0.71 0.54 0.02 10-3 0.61 10-3 0.07 

RIC1-OX    10-6 10-4 0.05 0.23 10-7 0.16 10-10 

Ws     0.32 10-3 10-4 0.88 10-4 0.15 

clasp-1      0.09 0.01 0.25 0.02 0.01 

dek1-4       0.47 10-3 0.61 10-5 

lue1        10-4 0.83 10-7 

ric1-1         10-4 0.2 

rop4-1          10-6 

The number of lobes for the different pavement cell genotypes in Fig. 7c are used to do a pairwise comparison 
using the two-sided Dunn’s post-hoc test with Benjamini-Hochberg correction. Non-significant adjusted p-values 
(p-value > 0.05) are highlighted in gray and are used to create a graph displaying clusters of genotypes with similar 
phenotypes (Supplementary Fig. 21). 
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Supplementary Table 7: Adjusted p-values of the pairwise differences for each pair of clades. 
Solidity 

 Ferns Gymnosperms EDA lineages Eudicots 
Gymnosperms 10-82    
EDA lineages 10-37 0.84   
Eudicots 10-274 10-6 10-3  
Monocots 10-276 10-29 10-16 10-25 

Aspect ratio 
 Ferns Gymnosperms EDA lineages Eudicots 
Gymnosperms 10-56    
EDA lineages 10-12 10-61   
Eudicots 10-59 10-199 0.77  
Monocots 10-11 10-21 10-27 10-111 

Number of lobes per cell 
 Ferns Gymnosperms EDA lineages Eudicots 
Gymnosperms 10-296    
EDA lineages 10-29 10-37   
Eudicots 10-173 10-94 0.17  
Monocots 10-255 10-11 10-18 10-53 

Completeness 
 Ferns Gymnosperms EDA lineages Eudicots 
Gymnosperms 10-56    
EDA lineages 10-53 10-5   
Eudicots 0.0 10-32 10-3  
Monocots 10-160 10-13 0.52 10-4 

The shape metrics listed in Supplementary Fig. 23 are used to do a pairwise comparison using the two-sided 
Dunn’s post-hoc test between the different clades for the solidity, aspect ratio, number of lobes per cell and relative 
completeness. Non-significant adjusted p-values (p-value < 0.01, Bemjamini-Hochberg correction) are highlighted 
in gray. 

 
Supplementary Table 8: Pixel accuracy of three manual segmented pavement cell images. 

Image TP TN FP FN Pixel accuracy (%) 
a 1493 133222 392 4588 96.4 
b 1016 54432 114 2670 95.2 
c 874 31680 64 2230 93.4 

 95.0 
Three different wild-type images (Supplementary Fig. 24) are selected for manual segmentation of pavement cells 
and for pre-processing with GraVis. The manual segmented cells are used as ground truth for the calculation of 
the pixel accuracy of the segmented cells by GraVis. The average pixel accuracy is 95%. 
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