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Supplementary Note 1 Preliminaries and Defini-
tions

Gapped and gapless are rigorously defined as follows:

Supplementary Definition 1.1 (Gapped, from | ). We say that
HAL) of Hamiltonians is gapped if there is a constant v > 0 and a system
size Lo € N such that for all L > Ly, )\min(HA(L)) 1s non-degenerate and
AMHAMD)) >~ In this case, we say that the spectral gap is at least .

Supplementary Definition 1.2 (Gapless, from | ). We say that
HAWL) s gapless if there is a constant ¢ > 0 such that for all € > 0 there is
an Lo € N so that for all L > Ly any point in [Amin(HME), A\pin (HAD) 4 ¢]
is within distance € from spec HAML) |

As noted in [ |, gapped is not defined as the negation of gapless;
there are systems that fall into neither class, such as systems with closing
gap or degenerate ground states. However, the stronger definitions allow us
to avoid any potentially ambiguous cases.

Supplementary Definition 1.3 (Continuous family of Hamiltonians). We
say that a Hamiltonian H(p) = > h;(p) depending on a parameter ¢ € R,
made up of a sum over local terms hj(yp) each acting on a local Hilbert
space H, is continuous if each hj(yp) : R — B(H) is a continuous function.
We say that a family of Hamiltonians {H;(p)}icr for some indez set I is a
continuous family if each H;(p) is continuous.

Supplementary Note 2 Modified Quantum Phase
Estimation

Here we discuss the modified version of quantum phase estimation which will
be encoded in the Hamiltonian as discussed in the main body of the paper.
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The role of the quantum phase estimation (QPE) is simply to output ¢ in
binary on the tape so that it can later be used as the input to a universal
quantum TM. The idea will be to take a given unitary with eigenvalue e’™%
and its associated eigenvector, and then use QPE to provide an estimate of
o with the greatest precision possible. The precision of the QPE procedure
will be limited by two factors: imperfect gates and the fact the binary length
of ¢ may be longer than the available track length | .

We first review the QPE used in the related works of | | and
[ | before explaining how our QPE procedure is different and why
it needs to be so. We characterise the amount of error the modified QPE
procedure introduces which will play an important part in the construction
of the Hamiltonian in later parts of the construction.

2.1 The State of the Art

In | ], the QPE on a unitary U, with eigenvalue ™ can output the
binary form of ¢ exactly: this is due to the fact that, in their construction,
the QTM has access to a perfect gate set that is sufficient to expand exactly
lp| digits—in particular, the standard QPE algorithm requires performing
small controlled rotation gates R,, with angles 22" for n =1,..., ||, and
since |p| is explicitly encoded in the local terms of the Hamiltonian, this
circuit can be performed.

Furthermore, in | | the QPE procedure can also be performed
perfectly by the same method. In addition one can detect when the binary
expansion of ¢ is too long for the tape available to the QTM and penalize
said segment lengths accordingly—the Marker Hamiltonian then has as a
ground state which is a partition of the 1D spin chain into segments of length
just long enough to perform QPE on ¢ and for the dovetailed TM to halt—if
it halts.

In our new construction the situation is fundamentally different. Since
the local terms of our Hamiltonian H*(¢) do not explicitly depend on ||
anymore, we cannot provide the QPE with a set of rotation gates sufficient
to perform an exact quantum Fourier transform (QFT). This means that we
cannot guarantee the parameter we are estimating has a binary expansion
short enough to be written on the tape available.

We therefore have to change the construction in two key ways. First, our
encoding of ¢ will be in unary instead of binary. Since this is a undecidability
result we are not constrained by poly-time reductions—or indeed any finite
computational resources; any runtime overhead is acceptable. Secondly,
we will perform some gates in the QPE only approximately. The gate
approximation uses standard gate synthesis algorithms from Solovay-Kitaev
[ ], where we gear the precision of the algorithm such that it suffices
to obtain a large enough certainty on the first j digits of ¢, given our tape
has said length. The error resulting from truncating ¢ to j digit is more



involved, as QPE yields a superposition of states close in value to ¢, which
can for example mean that it rounds an expansion like 0.00001111 to 0.00010.
We will circumvent this issue by choosing an encoding which lets us easily
discover and penalize a too-short expansion, similar to the one in [ |-

2.2 Notation

Throughout we will denote the binary expansion of a number z as Z, and
the first j digits of such an expansion as Z...;. A questionmark ? will denote
a digit that can either be a 0 or a 1. The j* digit of Z will then be z;. For a
given number z, we define clz z to be the count of leading zeros until the first
1 within z—where we set clz(0 = co. Similarly, we define the string pfxx to

Within this section, we will further denote by U, a local unitary operator
with eigenvalue ¢”™#, and will refer to ¢ as the phase to be extracted.

Finally, let M be a universal reversible classical TM that takes its input
in unary, i.e. as a string 00...0100...; everything past the first leading one
will be ignored; we lift M to a quantum TM by standard procedures | ].

In the following analysis we first start with an encoding scheme and
analyse how the approximate QPE behaves on it; we finally show that each
encoded parameter ¢ admits a small e-ball around it where the system
behaves in an identical fashion, making the behaviour of gapped vs. gapless
robust and showing that our family of Hamiltonians is undecidable on a non-
zero-measure set over the entire parameter range ¢ € [0, 1]. We do not make
a claim of knowing how the construction behaves for any choice of parameter.
That is, given a particular value of ¢, even if the halting behaviour of M on
input clz ¢ were known, this would not always be sufficient to determine the
behaviour of the Hamiltonian at this point.

2.3 Exact QPE with Truncated Expansion

We deal with the expansion error of our phase estimation first. As already
mentioned, we need to choose an encoding that lets us detect and penalize
expansion failure.

Supplementary Definition 2.1 (Unary Encoding). Let n € N be the input
we wish to encode. Then

©=¢(n):=0.000---0100--- =277,
n—1 digits

As mentioned, it is unclear a priori how much overlap the post-QPE state
has with binary strings that encode the same number in unary (i.e. the string
with the same number of leading 0 digits). The benefit of using the above
encoding is that phase estimation tends to round numbers that are too short



to be expanded in full. Since we are encoding small numbers (assuming a
little Endian bit order), this rounding will produce a large overlap with the
all-zero state |0). If we then penalize this outcome—e.g. by defining the
dovetailed TM to move right forever on a zero input, which means it does
not halt—we can ensure that the tape length will be extended until the input
can be read in full, at which point there is no further expansion error to deal
with.

As a first step we analyse the approximate quantum phase estimation
procedure and compare the associated error with the perfect case, meaning
that for now we give the QTM access to the same operations as in | ]
and | ], which includes access to the unitary U, and rotation gates
R, = ((1) 2iﬁ2(1\¢\ ) which suffice to perform phase estimation exactly. We
then do the QPE algorithm identically to that laid out in | |; as this
is the standard QPE algorithm from | ], we phrase the following lemma
in a generic way.

Supplementary Lemma 2.2. Let ¢(n) € R be a unary encoding ofn € N as
per supplementary definition 2.1. On t qubits of precision, QPFE is performed
on the unitary U, encoding p(n) and its associated eigenstate defined in
supplementary definition 2.1; denote the QPE output by |x). Then either:

1. t> |, and |x) = |@),

2.t <|pl|, and
_ 1
X)= D Brlw) with |Bo]> 3.

x€{0,1}*

Proof. The first case is clear—we have a perfect gate set and sufficient tape,
hence QPE is performed exactly | ].
For the second case where t < || the 3, are given in | , eq. 5.25],

8, = 1 1—exp(2mi(2tp — (b+x)))

T2t —exp(2mi(p — (b+ x)/2t))’ (1)

where b is the best t bit approximation to ¢ less than ¢, i.e. 0 < p—27th < 271,
Since we are using a unary encoding, as per supplementary definition 2.1, it
is always the case that b = 0, and therefore

1 1 —exp(2mi(2t7 — )
bo =507 exp(2mi(2- — 2/2%))



Considering the case x = b gives:

1|1 — exp(2mi2t=9)|
2t |1 — exp(2mi2=9)|
B lsin(w?‘“)

2 sin(m279)

J (@2 1

= ot g2-a 2

1Bol =

Going from the second last to last line we have used that z/2 < sin(z) < x
for z € [0,7/2). O

Supplementary Corollary 2.3. Take some n € N and ¢(n) as defined in
supplementary definition 2.1. Running the same quantum phase estimation
QTM as in [ | to precision m bits yields an output state |x) given
in supplementary lemma 2.2, such that either

1. m >mn and |x) = [¢(n)), or
2. m <nand|(x|0)| >1/2.

What if ¢(n) is not exactly given by the encoding in supplementary
definition 2.17 It is clear that |x) is still a superposition of bit strings |z),
weighted by 3, as in supplementary eq. (1). But our encoding allows us to
derive a variant for supplementary corollary 2.3 that applies to an interval
around the correctly-encoded inputs. Here we prove that we still have a large
overlap with the all zero if the phase ¢ is not expanded fully.

Supplementary Corollary 2.4. Let n € N, and ¢(n) as in supplemen-
tary definition 2.1. Take a perturbed phase ¢ € [p(n),o(n) + 2777 for
some £ € N, £ > 1. Running the same quantum phase estimation QTM
as in [ | to precision m bits yields an output state |x) given in
supplementary lemma 2.2, such that either

1.m 21 and | {x|¢(n))| =1 -27" or
2. m<mn, and | (x|0)]| > 1/4.

Proof. We start with the first case. Take (3, from supplementary eq. (1).
Assume for now that m = n; for increasing m the overlap with ¢(n) can only
increase. It is clear that the best m bit approximation to ¢’ less than ¢’ is
given by b = 2™p(n) (as the first n digits of both are identical, and ¢}, ; =0
by assumption). Then

1 |1 —exp(2mi(2™¢" —b))| 1 sin(72™€)

= =" J>1-97"¢
1Pol = 5 11— exp(2mi(¢’ — b/2™))| — 2™ sin(me) — ’

where € = ¢/ — b/2™ and the last inequality follows from sin(z)/x > 1 —x
for x € [0,1].



The second claim follows analogously: here again b = 0, and at most
2my’ € [0,3/4); the final bound is obtained by applying x/4 < sin(z) < z
for z € [0,37/4), via

1 sin(mw2™¢’)

O
2m  sin(mwy’)

1
> —.
— 4

2.4 Solovay-Kitaev Modification to Phase Estimation

The second step in our QPE analysis is to approximate the small rotation
gates that were previously allowed in supplementary corollary 2.3. We
construct a QTM which only uses a standard gate set and U, for some
@ = p(n) = 27", to run Quantum Phase Estimation (QPE) on U, and
output a state which is very close in fidelity to the expansion of ¢ if done
without error (i.e. if all gates were exact).

First note that all steps of the QPE procedure as described in [ ]
can be done exactly up to applying the phase gradient and locating the
least significant bit—i.e. up until Section 3.6. However, after this, controlled
rotation gates of the form R, = 2" for 1 < n < |@| = 1, need to be
applied to perform the inverse QFT. In | ], this was done by further
giving the QTM access to the gate 272", To circumvent this necessity, we
approximate small rotation gates using the Solovay-Kitaev algorithm.

2.4.1 Solovay-Kitaev QTM

First we introduce the standard statement for the existence of a TM which

outputs a high precision approximation to the gate R,, = 272 " using the
Solovay-Kitaev algorithm.
Supplementary Lemma 2.5 (SK Machine | ). There exists a clas-

sical TM which, given an integer k and mazimum error €, outputs an ap-
prozimation Ry, to the gate Ry € SU(2) such that |Ry — Ry|| < e. The TM
runs in time and space O(log® (1/€)) for some 3.97 < ¢1 < 4.

Part way through the quantum phase estimation procedure, we need
to apply the inverse QFT. However, we do not have access to gates of the
form 272" and our entire QTM will be limited to space L. As a result,
whenever the procedure requires a 272 "-gate or a power of such a gate, we
run the Solovay-Kitaev algorithm to generate an approximation. As there is
O(n?) many gates to be approximated overall, the procedure will have to be
repeated this many times.

However, since we are performing the QPE on a finite length tape, we only
have L qubits onto which we can write out the output of the Solovay-Kitaev
algorithm; this limits the precision we can achieve using this technique.



Inverting the space bound in supplementary lemma 2.5 with respect to
the error €, the best approximation obtainable is thus

HRk _ Rk” S e O(Ll/cl) S 2702[/1/‘317 (2)

where we wrote the constant in the exponent as cy. Both Solovay-Kitaev
constants ¢; and co can be written down explicitly.

2.4.2 Approximation Error for Output State

The gates used in the inverse QFT in the previous section were only performed
up to a finite precision and hence there will be an error associated with the
output state relative to the case with perfect gates. We will see that the
output is then a state that is exponentially close to what would be expected
in the case with perfect gates.

Let R,, be the approximation to the rotation gate R, = 272" such that
IR, — Ry|| < €, where € = 9—eaLt/el ig given by the Solovay-Kitaev theorem,
supplementary eq. (2) and supplementary lemma 2.5.

Supplementary Lemma 2.6. Let Uqpr be the unitary describing the
implementation of QPE by a QTM on m qubits with each gate performed
exactly. Let ﬁQpE be the unitary describing the same QPE algorithm on m
qubits, but where Solovay-Kitaev is used to approximate the rotation gates
R, to precision €; all other gates are implemented exactly. Then the total
error of the approzimate QPE is

2 2
~ m m c
[are — Uare] < e = et ®)
Proof. The first part of the phase estimation procedure—the phase gradient
operations Upg—can be done exactly in both the approximate and exact
cases. If QPE is performed to m qudits, we see that there are m?/2 applica-
tions of R, gates during the inverse QFT procedure. As Ugpr = UgFTUpg,
the claim follows from applying the triangle inequality m?/2 times. O

2.5 Total Quantum Phase Estimation Error

We have seen previously that there will be errors from both the fact that
the parameter ¢ may have a binary expansion longer than the tape length
available, and from the Solovay-Kitaev (S-K) algorithm we use to approximate
and apply the rotation gates. Here we combine the two errors and upper
bound the total deviation introduced. We continue using m to denote the
number of binary digits that ¢ is expanded to, and L is the full tape length.

We emphasize that the two are not necessarily identical, as we can always
cordon off a section of the tape to restrict the QPE to only work to within a
more limited precision—i.e. we can execute the QPE TM on a subsegment



of size m < L as in supplementary corollary 2.3, and approximate the latter
with Solovay-Kitaev that itself can make use of the full tape space available,
i.e. L. For now we treat L and m as independent quantities, regardless of
how they are implemented, and we will choose their specific relation in due
course.

Supplementary Lemma 2.7. Letn € N and ©(n) € R as in supplementary
definition 2.1, and take Uqpg as the Solovay-Kitaev QPE unitary with output
|X). Then either

1. m =n and | (X|¢(n))| = 1—06(L,m), or
2. m<mnand|(x|0)]| >1/2—4(L,m).
Here )
5(L, m) < %2—02[11/61 )
Proof. Immediate from supplementary lemma 2.6, supplementary eq. (2),
and supplementary corollary 2.3. O

As before, we add an approximate variant for the case where ¢’ # ().

Supplementary Lemma 2.8. Let n € N, and ¢(n) as in supplementary
definition 2.1. Take a perturbed phase ¢’ € [p(n), p(n) +2717Y) for £ € N,
£ > 1, and consider the same setup as in supplementary lemma 2.7. Then
either

1. m>nand | {(x|le(n)|>1- 2t 5(L,m), or

2. m<mn, and | (x|0)| >1/4 — (L, m).

Proof. Analogously to supplementary lemma 2.7, but using supplementary
corollary 2.4. O

The bound in terms of §(L,m) is only useful for large L, in which case
it is easy to see that since m < L, § — 0 for L — 0. Since we need ¢ to
be small in due course, we capture a more precise bound in the following
remark.

Supplementary Remark 2.9. For any 6y > 0 there exists an Lo =
Lo(er,c2,00) such that 6(L,m) < &g for all L > Lo, where 6(L,m) is defined
in supplementary lemma 2.7, and c1,cy are the Solovay-Kitaev constants
from supplementary eq. (2).

Proof. Clear. O



instance n

g — . ] .
= ] ancillas QPE universal
% —1 all0? [ ™M —————
T o halted?
‘O>anc_]327r _ng R7§—|out>

Supplementary Figure 1: QPE and universal TM circuit. The construction
uses one flag ancilla |0),,. to verify that as many ancillas as necessary for
the successive computation are correctly-initialized ancillas (e.g. |0)), and
if not rotating the single guaranteed |0), . flag by 7/3. On some ancillas,
the problem instance [ is written out. Another rotation by /3 is applied
depending on whether the dovetailed universal TM M halts on n or not
within the number of steps allowed by the clock driving its execution, which
in turn is limited by the tape length.

Supplementary Note 3 QPE and Universal QTM
Hamiltonian

In this section we examine how to encode the quantum Turing machine
performing quantum phase estimation described in supplementary note 2 (and
briefly overviewed in section 4.2 of the main article) into a Hamiltonian on a
spin chain of length L, such that the ground state energy of the Hamiltonian
is non-negative if and only if a dovetailed universal Turing machine M halts
on input ¢(n) and within tape length L. We further prove that this ground
state energy remains non-negative (or negative, respectively) if instead of
©(n) we are given a slightly perturbed phase ¢’ € [p(n), @(n) +2777), given
£ > 1 is large enough. This section makes rigorous the results at the end of
section 4.2 of the main article.

We note that the circuit-to-Hamiltonin mapping used in this work will
be a variation of that in [ ], which is itself a modification of the
construction in [ 1. [ ] is a particularly important work to to the field
of Hamiltonian complexity as it demonstrates how a computation can be

encoded in a 1D, nearest neighbour, translationally invariant Hamiltonian.

This is particularily suprising as it shows the simplest class of Hamiltonians
(in terms of dimensionality and interaction type) have hard to compute
low-energy properties. Furthermore, classically this class of Hamiltonians is
computationally tractable.

With the aim of proving the above statements about the ground state
energy, we first amend the computation slightly. In | |, the authors
used Gottesman and Irani’s history state construction for a Turing machine
with an initially empty tape | ]. To ensure a correctly initialised tape,

anc



the authors use an initialization sweep; essentially a single sweep over the
entire tape with a special head symbol, under which one can penalize a tape
in the wrong state.

Instead of using an initialization sweep, we make do with a single ancilla
(denoted with subscript “anc” in the following) which is initialized to |0),,,
and verify on a circuit level that all the other ancillas are correctly initialized.
In order to achieve this, we first execute a single Ry, 3 rotation on [0),,.
to initialize it to a Roq/3(0),,-Totated state. Next, we execute a controlled
R _ /3 rotation in the opposite direction on |) ane» Where the controls are
on all the ancillas we wish to ensure are in the right state. If and only
if all of the controlling ancillas are in state |1)—which we can check e.g.
with a multi-anticontrolled operation—will we perform a rotation by R_r /3.
After the controlled rotation, we apply X flips to all the ancillas we wish to
initialize to |0).

This ancilla will carry another role: in case the dovetailed universal TM
M from supplementary note 2 halts, we transition to a finalisation routine
that performs another R_; /3 rotation on it. The net effect of this circuit is
that, after the entire computation ends, the ancilla is in state |out), . with
overlap

0 if all ancillas are correctly initialized and M halted, or

<1|0ut>anc = {\/5

5 otherwise.

(4)
This idea in the context of circuit-to-Hamiltonian mappings was introduced
in | |; for completeness we give an overall circuit diagram of the entire
computation to be mapped to a Hamiltonian in supplementary fig. 1. We
remark that breaking down a multi-controlled quantum gate into a local gate
set is a standard procedure described e.g. in | ).

We formalise the above procedure in the following lemma:

Supplementary Lemma 3.1. Consider an initial state
[60) = 0ane (1" + V1= 02]6))  where |¢) 1 [1)%".

Assume the Turing machine M halts with probability ¢ when acting on an
initial state |0), _|1)®¥. Then, the final output state of the computation |y
satisfies

anc

B~ w

(Wr| [[1)1ape ® 1] [r) = 5 (1 = 0%¢) .

10



Proof. By explicit calculation, we have

|1/)0> 217/3 R27r/3 ’0>anc ( >®L + v 1—a? ’¢>>

CE{*W/S

aRﬂ'/3 ‘0 anc + mR%r/S ’0 ‘¢
% aRﬂ/?} ‘O>anc (6 |¢halt + \/: |¢n0n—halt )
+ v 1- a2R27r/3 ‘O>anc (6/ |¢halt> + v 1—¢€? |¢non—halt>>

cR_,
— ae|0) [thhare) + av/1 - 2R /3 10) [¥non—halt)

+ 6/\/W:Rﬂ'/?) |0>anc M’halt) + \/1 — € \/1 - a2R27r/3 ’0>anc ‘anonfhalt>
= |¢7) -

Using

2w /3

|0) |i> cos( ) \O>+sm< ) 1) and |0) »R—> cos (g) |0)— sm( ) 1)
this means that

(Wl (1)L e © 1] fr) = sin? (3 ) (1 - o%€). =

3.1 Feynman-Kitaev Hamiltonian

Given our quantum Turing machine from supplementary note 2 augmented
with a single necessary “good” ancilla |0), . as just described, we apply
the Gottesman and Irani construction from [ ] to translate our desired
computation in the ground state of a one-dimensional, nearest neighbour,
translationally invariant Hamiltonian with open boundary conditions. We
summarize the core ideas to set up the notation used in this section, but
refer the reader to | ; ; | for details.

Supplementary Definition 3.2 (History state). A history state |¥) €
He®@Hq is a quantum state of the form

T
= jf St g (5)
t=1

where {|1) ,...,|T)} is an orthonormal basis for He, and [¢;) = [T'_, U; |vo)
for some initial state |1pg) € Hq and set of unitaries U; € B(Hq).

Hc 1s called the clock register and Hq is called the computational register.
If Uy is the unitary transformation corresponding the t™ step of a quantum
computation—which in our case is not a gate in the circuit model, but a QTM
transition—then |1y) is the state of the computation after t steps. We say
that the history state |¥) encodes the evolution of the quantum computation.

11



As discussed in supplementary note 2.5, the QPE Turing machine we
devised has two meta parameters L and m. On a spin chain of length L,
instead of expanding L — 3 digits of ¢ as is the case in | |, we allow
the expansion to happen on a smaller sub-segment of length m of the chain.
This can be done dynamically, i.e. by adding a Turing machine before the
QPE invocation which sections off a part m = m(L) of the tape and places
a distinct symbol (ID there. Since it is obvious how to do this we will not go
into detail here, and remark that in the final construction we will choose
m = L — 3: an explicit construction for such a Turing machine is given
in| , Lem. 15]. The QPE and dovetailed universal TM—augmented
by the single-ancilla construction described at the start of this section—we
will jointly call M’ = M'(L,m), i.e. such that there is L tape available; we
emphasize that M’(L,m) has an identical set of symbols and internal states
for all L and m.

In all of the following we will analyse the spectrum of the history state
Hamiltonian within a “good” type of subspace, by which we mean a tape
bounded by special endpoint states < and . This subspace will, analogous
to the 2D undecidability construction, be called bracketed states; on an
overall local Hilbert space H = H, ® Hy, such that |<), |>) € Hy, we set

Spr(m) = Q) @ H' @ [>) . (6)

Since no transition rule for the history state Hamiltonian ever moves these
boundary markers, the overall Hamiltonian we construct will be block-
diagonal with respect to signatures determined by the brackets. A standard
argument then shows that within this bracketed subspace, the history state
Hamiltonian encoding the QPE Turing machine behaves as designed, and
we can analyse the spectrum therein by analysing the encoded computation.
Outside of the bracketed subspace, a variant of the Clairvoyance lemma
allows us to always lower-bound the energy, such that it does not interfere
with the rest of the construction.

In order to make all of this precise, we first define the full QPE history
state Hamiltonian in the following theorem, which is adapted from [ ,
Th. 10].

Theorem 3.3 (QPE history state Hamiltonian). Let L,m € N, 0 < m <
L — 3. Let there exist a Hermitian operator h € B(C? @ C%), where the local
Hilbert space contains special marker states |<) and |>) that define the
bracketed subspace Spy as in supplementary eq. (6), such that

1. h>0,

2. d depends (at most polynomially) on the alphabet size and number of
internal states of M,

3. h=A+e™NB 4 e mMBT where

12



e B ¢ B(CY®C?) independent of n and with coefficients in Z, and

e A c B(C*®CY) is Hermitian, independent of 1, and with coeffi-
cients in Z + Z/\/2;

Furthermore, a spin chain of length L with local dimension d, the translationally-
invariant nearest-neighbour Hamiltonian Hgrwm (L) := Zf:_ll h(+D) has the
following properties.

4. Hqorm(L) is frustration-free, and

5. the unique ground state of Hqrm(L)|s,,(m) i a computational history
state as in supplementary definition 3.2 encoding the evolution of
M (L, m).
The history state satisfies
6. T = Q(poly(L)2%) time-steps, in either the halting or non-halting case;

7. If M runs out of tape within a time T less than the number of possible
TM steps allowed by the history state clock, the computational history
state only encodes the evolution of M’ up to time T.

8. In either the halting or non-halting case, the remaining time steps of
the evolution encoded in the history state leave the computational tape
for M" unaltered, and instead the QTM runs an arbitary computation
on a waste tape as described in [ /.

Proof. Almost all of the above follows from | , Th. 10]. Ttem 3
differs only in that we have removed any dependence on ™2l que to the
new modified transition rules, as we now approximate the necessary rotations
using the Solovay-Kitaev theorem (see supplementary note 2). O

3.1.1 Clock Construction

The history state Hamiltonian described above encodes an evolution of a
computation for T'(L) steps, where T'(L) does not depend on the computation
itself. This ensures that the history state will be a superposition over T'(L)
time steps independent on whether M’ halts on the tape of length L — 2 and
with cordonned-off subsection m. As mentioned previously, in the case of
the computation halting, this is done by forcing the QTM head to switch
to an additional “waste tape” where an arbitrary computation is performed
until the clock finishes.

Supplementary Theorem 3.3 uses the clock construction designed in
[ , sec. 4.2, 4.3, 4.4]. Bounds on the clock runtime are readily
obtained: if T'(L) denotes the runtime of the clock on a tape of length L, we
have

Q (L") < T(L) < O (L& log(L)) (7)

for some constant £ € N.

13



3.1.2 QTM and Clock Combined

Supplementary Theorem 3.3 combines the QTM and clock such that the
QTM head only makes a transition when the oscillator from the clock part

of the history state passes over the QTM head. Details can be found in
[ , sec. 4.6.1].

3.2 The Initialisation and Non-Halting Penalty

We now want to introduce a penalty term which will penalise computations
that have not halted and not been initialised correctly.

Initialisation Penalty. In order to ensure that the single ancilla we require
is correctly initialized, we introduce a projector that penalizes [¢), . in any
state but |0),, . at the start of the computation. This can be done by a term
of the form |0)(0]c ® (1 — |1)(1])anc, which is local if and only if we can locally
detect the initial clock state |0) above the single ancilla on the tape. As
per the constructions in | ; ], this state can indeed be locally
detected.

Finalisation Penalty. The final penalty follows precisely the same pattern:
we add a local projector of the form |T)XT|c ® (1 — |1)(1|)anc, and ensure
that the final clock state |T") can be recognized locally above where |out), .
sits. To realise this, we note that the ancilla bit is located at the end of
string of qudits encoding the TM tape. The final clock state can then be
locally determined by a nearest-neighbour, translationally invariant term
that recognises the final clock state by looking at the pair of qudits at the
end of the chain. Again, this is done in | ; ].

Penalty Term Construction. The amplitude of the output ancilla [¢), .
depends on correct initialization of the ancillas for the QTM, as well as on
the halting amplitude, and is given in supplementary eq. (4). To penalize the
overlap (1|¢),, .—which corresponds to wrong initialization, or halting—we
add the following nearest neighbour term to the Hamiltonian:

t
B = | W©,.... ) W®....8|  © @1} ® L.
As just mentioned, the input penalty term hz(»i;:)_l can similarly be written
as a nearest-neighbour projector onto a clock state at ¢ = 0. Thus, on the
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entire chain we have the penalty terms

L—1
H™ = 3 h7), (8)
=1
L—-1
ou out
HEW =3 h{). (9)
=1

Supplementary Definition 3.4. We denote the QPE+QTM history state
Hamiltonian including the in- and output penalties from supplementary eq. (8)
with Heomp (L, ¢) := HqorMm(L, @) + H() 4 flout)

3.3 Ground State Energy in Halting and Non-Halting Case

The ground state energy of Heomp depends on how much penalty is picked
up throughout the computation. Known techniques like Kitaev’s geometrical
lemma | ; ] for a lower bound and a simple triangle inequality
for the upper bound can be used to show that

(73 ) < Awin (B e0) <O (1) (10

for a non-halting instance n € N. However, both the upper and lower bounds
here are not tight enough for our purposes.

In order to obtain tighter bounds, we realize that our history state
construction has a linear clock (i.e. one that never branches and simply runs
from t = 0 to t = T'); in this case, tight bounds on the overall energy effect
of the penalty terms already exist; we refer the reader to | ; ;

] for an extended analysis. For the sake of completeness and brevity,
we quote some of the definitions and lemmas from prior literature in the
appendix and reference them in the following.

Supplementary Lemma 3.5. In case n € N correspond to a non-halting in-
stance, the lowest eigenvalue of Heomp satisfies Amin(Heomp(¢(1))) = Q(T—2).

Proof. In supplementary lemma 8.3, we prove Hcomp is a standard-form
Hamiltonian as per supplementary definition 8.2, and so as per the Clair-
voyance Lemma | , Lem. 5.6] we know that Hcomp breaks down into
three subspaces. The subspaces of types 1 and 2 are trivially shown to have
ground state energies Q(T~2).

Within the third subspace, which we label .S, there are no illegal terms and
only the in- and output penalties H™ + H") from supplementary eq. (8)
have to be considered. By supplementary lemma 8.6 the clock evolution
within this subspace is linear—meaning there is never any branching—and
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hence Heompl|s is equivalent to Kitaev’s original circuit-to-Hamiltonian con-
struction. This means that the Hamiltonian therein is of the form

Hcomp|S = Hprop + ’0><O’C & H(in) + ’T><T|C & H(Out)

where Hp,op ~ A®1 for a path graph Laplacian A, and 1)/ (ut) gre the
in- and output penalties inflicted at time 0 and 7'; this Hamiltonian is then
explicitly of the family of Hamiltonians studied in [ ]. In particular,
by | , Th. 7], Hamiltonians of this form have ground state energy
Amin(Heomp|s) = Q(T~2). Thus all three of the subspaces have a minimum
eigenvalue of the form Q(7~2), and since they are invariant subspaces, we see
that the overall minimum eigenvalue must be Amin(Heomp) = (T -2, O

Supplementary Lemma 3.6 (Theorem 6.1 from | ). Let H(p) €
B(CH®L be a standard form Hamiltonian encoding a QTM with runtime
T (L), with in- and output penalty terms H()/(0u) Lot there exist a compu-
tational path with no illegal states such that the final state of the computation
is |r) and such that the output penalty term satisfies

(T| (| HE™ |7} |T) < e.

Then the ground state enerqgy is bounded by

0 < Amin (H(p)) < € (1 — cos <2<T - ;init) - 1)) =0 (%) ,

where Tinyy = O(log(T)) is the time frame within which the input penalty
term H) applies to the history state.

With this machinery developed, we can derive the following lemma for
the specific Hamiltonian Hcomp at hand.

Theorem 3.7. Take Heomp to encode a phase ¢ € [p(n),o(n) + 275,
with ¢(n), as per supplementary definition 2.1, and let §(L,m) be as in
supplementary lemma 2.7. Then for

1. m <n we have

Amin(Heomp) = Q [T72] .

2. m >n and @(n) corresponds to a non-halting instance, then

Amin(Heomp) = Q [T72] .

3. m >mn and p(n) corresponds to a halting instance, then

Amhxrimnm>::<){(2-54-5(L,nn)2,;2].
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Proof. Combing supplementary lemma 2.8 with supplementary lemma 3.1
we derive upper and lower bounds on the magnitude of the amplitudes that
a given instance has on a non-halting state. Together with supplementary
lemma 3.5 this gives us the lower bounds for points 1 and 2. To get the
upper bound in 3, by supplementary lemma 2.8 and supplementary eq. (4),
the output penalty is bounded as

(O o) < sin () (27 + o(2,m)

Since no other term contributes a positive energy, the ground state of Heomp
can be upper-bounded with supplementary lemma 3.6 as

_ 2
Amin(Hcomp) =0 <(2 Z i 5(L’m)) ) . ]

T2

Supplementary Note 4 Checkerboard and TM Tiling

In the previous section we saw that the energy penalty from encoding a
halting/non-halting computation in a Gottesman-Irani type Hamiltonian
decreases as ~ 1/T? (see supplementary theorem 3.7). To find a way to boost
this energy penalty such that it is no-longer dependent on T', we combine
the Gottesman-Irani Hamiltonian with a classical Hamiltonian. Later we
will partition the local Hilbert space into a classical part and quantum part
H.® Hg4, and choose interactions between the two parts of the Hilbert space
to such that ground states of the Gottesman-Irani Hamiltonian are forced to
be present at certain points in the tiling. We also encode a classical TM in
the classical Hamiltonian, which will later be used to correct for errors in
the approximate quantum phase estimation encoded in the Gottesman-Irani
Hamiltonian.

4.1 Tiling to Hamiltonian Mapping

Given a fixed set of Wang tiles on a 2D lattice, we can map the corresponding
tiling pattern to a classical translationally invariant, nearest neighbour
Hamiltonian over spins on the same lattice. This is used to great effect
in [ ; | and shown rigorously in lemma 1 and corollary 2 of
[ ], where the authors also explain how to allow weighted tile sets.
In the latter it is explained how to favour a certain tile by giving a bonus to
it, or by giving an especially-strong penalty to a specific combination of tiles.
For the sake of completeness, we will summarize the essence of the result
below.

Let T be a set of Wang tiles. For an edge e in the interaction graph
denote with K C T x T the subset of tiles that are allowed to be placed
next to each other along edge e, and a function w : K — R assigns a weight
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to a neighbouring tile pair. Then the corresponding local term is simply a
weighted projector

he =" (1—w(t) )] @ |ta)ta]). (11)

(t1,t2)=teK

The overall Hamiltonian will then be a sum of these terms, i.e. H=)__h°,
and its ground state is the highest-score tiling possible on the interaction
graph. In the most simple case where w = 1 this simply means that the
ground state will have zero energy if there exists a tiling without a single
mismatch anywhere that tiles the lattice. Its degeneracy will depend on how
many tiling choices without any mismatching edges are possible.

It is obvious that when the original tiling constraints on the interaction
graph were translationally-invariant, then so is the constructed Hamiltonian;
furthermore, the local dimension of that Hamiltonian will equal the number
of tiles that we need to allow per site.

In case we need to have more than one tile set on the same lattice, we
can simply introduce lattice layers:

Supplementary Remark 4.1 (Tiling Layers | ). For multiple tile sets
Ti,..., Ty, there exists a meta tileset T with a set of meta-tiling rules, such
that the meta-tiling rules are only satisfied iff the tiling rule for each element
of the tuple is satisfied. The corresponding Hamiltonian is defined on the
tensor product of the individual Hilbert spaces. Tile constraints may also be
placed between layers.

Proof. Given a lattice, we represent the meta-tile set as an ¢-tuple associated
with each site. Each element represents a layer in the tiling. Tiling rules for
the k*® layer are enforced between the k*" elements of tuples on neighbour-
ing sites. Tiling rules between layers can be prevented from occurring by
disallowing certain tuples from appearing. O

4.2 Checkerboard Tiling

In this section, we define a tile set that periodically tiles the infinite plane.
The underlying pattern we wish to create is that of a square lattice, where
each grid cell within the pattern has the same side length, much like the
boundaries on a checkerboard. The tiling will not be unique; in fact, there
will be a countably infinite number of variants of the tiling which satisfy the
tiling rules, corresponding to the pattern’s periodicity. This non-uniquess
is intended: the corresponding tiling Hamiltonian will have a degenerate
ground state, the interplay of the other Hamiltonians’ energy eigenstates
that are conditioned on this underlying lattice pattern will then single out a
unique ground state.

We constructively define this checkerboard tiling in this section. In order
to explain and rigorously how the highest net-bonus tiling ,
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we break the proof up into two parts; in the first part, we will create a
checkerboard pattern of various square sizes, but such that the offset from
the lower left corner in the lattice is left unconstrained. In the second part,
we will lift this degeneracy.

Supplementary Proposition 4.2 (Unconstrained Checkerboard Tiling).
We define the tileset T1 to contain the following edge-colored tiles:

comer edges £ ) {1 () ()
wierior: (0} (03 (00 (D) ) ()

The rules for these tiles—by convention—are such that edges have to match
up. Then all valid tilings for a lattice A will either:

1. have no corner tile present, or

2. have corner tiles present as shown in supplementary fig. 3, i.e. such that
they are part of a checkerboard pattern of squares, where the squares’
side length—and the offset of the left- and bottommost corner tile—is
unconstrained.

Proof. Fig. 3 forms a valid tiling by inspection. What is left to prove is that
given we demand at least one corner tile to be present this is the only tiling
pattern possible.

To this end, we first note that the tiles directly adjacent to the corner
tile are necessarily of the following configuration:

We then note that the only way for multiple of these corner tiles to join
up is via blue horizontal links (called configuration As), red vertical ones
(configuration As), or diagonal purple ones (configuration A;); we show
sections of these links Ay, As and Ag in supplementary fig. 2.

This reduces the problem to finding valid geometric patterns of horizontal
blue, vertical red and diagonal purple lines, which are only ever allowed to
intersect jointly together; the resulting pattern is a grid of squares laid out
by the red and blue edge tiles, where the fact that each enclosed area is a
square is enforced by the purple diagonals. If the square size is bigger than
the lattice A, this means that only a single corner tile is present; otherwise
there is multiple ones, as shown in supplementary fig. 3. Naturally, offset
and square sizes remain unconstrained; the claim follows. ]
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Supplementary Figure 3: Section of the checkerboard tiling Hamiltonian’s
ground state.

We emphasize that the tileset 7 in supplementary proposition 4.2 does
have valid tilings that are e.g. all-grey- or all-black-edged areas, or those
where only a purple diagonal with grey on one side, and black on the other
side is present, as shown in supplementary fig. 2. For this reason, and in
order to lift the offset degeneracy still present, we add extra constraints to
the tileset.

In order to single out all those patterns that commence with a full square
in the lower left corner of the lattice region, we employ Gottesman and
Irani’s boundary trick which exploits the fact that on any hyperlattice there
is always a very specific mismatch between the number of vertices and the
number of edges. In our case it reads as follows.

Supplementary Proposition 4.3 (Constrained Checkerboard Tiling).
Take the tileset T from supplementary proposition j.2 with the same edge-
matching tiling rules, and define a new tileset T' with the following additional
bonuses and penalties:

1. any interior tile gets a bonus of —1 if it appears to the top, and a bonus
of —1 if it appears to the right of another tile, and

2. any interior tile gets an unconditional penalty of 2.
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Then the highest score tilings possible with T' on a square lattice A are the
checkerboard patterns shown in supplementary fig. 3, but such that a corner
tile lies in the lower left of the lattice. All other tilings have net score > 1.

Proof. The only effect of the extra bonus and penalty terms are that the grey
interior tiles can no longer appear on the left or bottom lattice boundaries;
edge tiles have to be placed there. This, in turn, means that the only zero
penalty configuration for the lower left corner is to place a corner tile there,
meaning that the only net zero penalty configurations have at least one
corner tile present. The rest of the claim then follows from supplementary
proposition 4.2. [

With the tileset 7' defined such that the highest net-score tilings are
checkerboard patterns with unconstrained square sizes and offset (0,0) from
the lower left corner in the spin lattice, we can formalize the tiling Hamiltonian
in the following lemma.

Supplementary Lemma 4.4 (Checkerboard Tiling Hamiltonian). There
exists a diagonal Hermitian operator h € B(C?*® C?) for d = 11 with matriz
entries in Z as in supplementary eq. (11) such that the corresponding tiling
Hamiltonian Hg, = Ziwj h(9) on a square lattice A has a degenerate zero
energy ground space Sc, spanned by checkerboard tilings as in supplementary
fig. 3, of all possible square sizes, where the pattern starts with a corner
tile at the origin (i.e. in the lower left corner of the lattice), as laid out in
supplementary proposition 4.3. Any other eigenstate not contained in this
family of zero energy states has eigenvalue > 1.

Proof. Translating the tileset 7’ from supplementary proposition 4.3 into
local terms as in supplementary eq. (11) via | ] vields local Hamilto-
nian terms h € B(C? ® C%), where d is the number of tiles in the tileset—here
11; the local terms have entries in Z because all the weights (bonuses and
penalties) in the tileset are integers. Hcp, will have a ground space spanned
by tilings with net score 0, which we proved in supplementary proposition 4.3
to look as claimed.

Furthermore, since all other tilings must have integer net penalty, all
other tiling eigenstates will have energy > 1. The claim follows. O

4.3 Classical Turing Machine Tiling

It is well know that a classical TM which runs for time N and uses a tape of
length N can be encoded in an N x N grid of tiles [ |. A brief overview
of how this is done is given in the following. We first recall that a TM is
specified by a tuple (X, @, d) where @ is the TM state, ¥ is the TM alphabet,

and ¢ is a transition function

§:QxX—QxXx{L, R} (12)
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as well as an initial state gg, an accepting state g,, and a blank symbol # € .
Here L, R in the transition function output tell the TM head whether to
move left or right respectively.

We now take the N x N grid which we can place tiles on. We will identify
the rows of the grid with the tape of the TM, where successive rows will be
successive time steps. Each tile now represents a cell of the TM’s tape at a
given time step. We now introduce a set of tiles which encode the evolution
of the TM. We will need tiles which represents every possible configuration
that a cell can take (what is written in the cell, whether the TM head is
there, etc.).

To encode the evolution of such a TM into a set of tiles, we introduce
three types of tiles: variety 1 which is specified only by an element of 3,
variety 2 specified by ¥ x @ x {r, [}, and variety 3 specified by ¥ x Q@ x{R, L}.
At position P offset from the left within a row, these tiles have the following
function:

Variety 1 With marking (c¢), ¢ € X, the corresponding cell on the TM’s tape
contains ¢, and the TM head is not at position P at the corresponding
time step.

Variety 2 With marking (c,q,d), c€ X, g € Q, d € {r,l}, the corresponding cell
on the TM’s tape contains ¢, the TM head is at position P at this time
step, but has not yet overwritten the tape symbol. The TM is in state
q and the TM head has just moved from the right/left of P.

Variety 3 With entry (c,q, D), c € 3, g € Q, D € {R, L}, the corresponding cell
on the TM’s tape contains ¢, the TM head has just moved right/left
from position P where it has just overwritten the previous symbol.
The TM is in state ¢ at this time step.

As a last remark, we note that one can always dovetail multiple TM
tilings, as shown by Gottesman and Irani.

Supplementary Lemma 4.5 (Tiling-Layer Dovetailing | ). Let My
and My be classical Turing machines with the same alphabet 3 such that
their evolution is encoded in a tiling pattern on different tiling layers (see
supplementary remark 4.1) of a rectangular grid with a border as in supple-
mentary fig. 3. Then—Dby potentially altering the tile sets—it is possible to
constrain the tiling layers at the border such that My takes the output of My
as its input and continues the computation.

Proof. If M1 and My are TMs, then there exists a TM M which carries out
M, followed by My | ]. Define a tileset on each layer that corresponds
to said Turing machine, such that Mj runs from bottom-to-top and Ms
runs top-to-bottom on each respective layer. We now need to show that
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there is a way of enforcing equality of the tapes of the two tiling layers next
to the boundary; then the claim follows.

Similar to supplementary remark 4.1, let the meta tile at position & be
specified by a 2-tuple T}, = (;,t;)i. Let the set of tiles making up the border
be B. Then we enforce the 2-local tiling rule that the only valid tiles that
can appear next to the upper border tiles have the form ((t;,¢;),b), where
b € B (i.e. the tiles must have the same markings in both layers). Thus the
output of My is the input of My. My then continues the computation on
the top layer of the grid. O

In this fashion, any Turing machine (e.g. a universal one) can be encoded
in a grid of tiles, which in turn can be used to define a local Hamiltonian
with a ground state that corresponds to the TM’s valid evolution; given a
TM tiling, this can be achieved by using the tiling-to-Hamiltonian mapping
already explained. Giving due credit, we capture this mapping for TM tilings
in the following lemma.

Supplementary Lemma 4.6 (Berger’s Turing machine Tiling Hamiltonian
[ ). For any classical Turing machine (3,Q, ) there exists a diagonal
Hermitian operator h € B(C?® C?) for d = poly(|%|, |Q|) with matriz en-
tries in Z as in supplementary eq. (11) such that the corresponding tiling
Hamiltonian Eiwj h(9) on a square lattice A has a degenerate ground space
STM tiling containing

1. any tape configuration without TM head tiling the plane forward indefi-
nitely,

2. a tiling pattern corresponding to valid Turing machine evolutions where
the initial head is aligned on one side of the lattice and where the TM
does not halt on the initial tape and space provided, and

3. any valid Turing machine evolution starting mid-way that does not halt
within the space provided.

Proof. See | |; the fact that the tape without head tiles the infinite plane
is obvious since the tape can be initialized arbitrarily and will consistently
cover the lattice, i.e. by being copied forwar. If the TM’s head is present
in a tile, and since there is no transition into the initial state ¢; € Q of the
TM, if the initial state is present it has to reside on one side of the lattice.
Similarly, if the TM halts within the space provided there is no forward
transition, meaning that tiling cannot have zero energy. Finally, if neither
initial nor final state are present the tiling can show a consisten Turing
machine evolution starting mid-way, with the tape being copied forward, or
potentially altered if the TM head passes by. O

We emphasize that the TM in supplementary lemma 4.6 does not have to
be reversible. We will later lift the large degeneracy of the so-defined ground
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space by forcing an initial tape and head configuration; with such an initial
setup, the tiling becomes unique since the forward evolution of a TM head
and tape is always unambiguous.

4.4 Combining Checkerboard and Turing Machine Tiling

As seen in supplementary remark 4.1 and supplementary lemma 4.5, we can
combine two tilesets into one, by defining the new tileset as the Cartesian
product of the two. In this fashion we couple the TM tile set to apper above
grey-shaded interior of the squares in the underlying checkerboard pattern
from supplementary proposition 4.3; the area above the edge tiles we fill with
a dummy border tile. We use this dummy border to enforce initialization
of the TM’s tape and head: for a tape cell above but not to the right of the
border, the tape cell is blank. For a cell above and to the right of a border,
we put the TM into its initial configuration go.

In case we need our Turing machine to run for more steps than are
available on a single L x L grid, we can do so as well by introducing multiple
layers as per supplementary remark 4.1.

Supplementary Lemma 4.7. Let ni,no € N be constant, and take a TM
tileset S such that the TM tiles appear over the grey-shaded interior of the
checkerboard pattern in supplementary fig. 5. We can define a new tileset
S’ such that the TM head will start in the lower left corner on an empty
tape; on a grey square of side length L it will have a tape of length n1L and
runtime noL available.

Proof. Initializing the head and tape on one edge of the grey square is
achieved by penalizing any other tiles from appearing there, which we can do
using inter-layer constraints as in supplementary remark 4.1. Once the TM
tiling reaches one end of the grey square, we can similarly copy its state to
another layer with a separate TM tileset that makes it evolve in the opposite
direction. This shows that one can increase the available number of time
steps by another constant ny. An even simpler argument shows that on
finitely many grid cells L one can always increase the number of tape cells by
a constant factor ny, by redefining n; sets of separate symbols. The claims
follow. O

4.5 Cordonning off an Edge Subsection

In this section, we show that one can define a classical TM tiling that
puts a single marker on an extra layer within each checkerboard square in
supplementary fig. 3, namely on the lower edge, and at position z = [L/¢]
for any ¢ € N, ¢ > 0. Since we have already shown how to define a
classical TM tiling to appear only within the grey shaded interior of each
checkerboard sqaure (supplementary remark 4.1), how to allow constant tape
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and runtime overhead (supplementary lemma 4.7), and how to dovetail TM
tilings (supplementary lemma 4.5), the claim is immediate from the following
two lemmas.

Supplementary Lemma 4.8. Let f : N — N such that 1 < f(N) < N be
computable within time O(2%) where |z| is the binary length of its input.
Consider the checkerboard tiling constructed in supplementary proposition /.3
such that each square has side length N +2 (which is measured between corner
tiles). Then there exists a set of tiles which has this same checkerboard pattern,
but for every corner tile, except those along the bottom edge, there is a special
symbol e at distance f(N) from the left border along the top edge.

Proof. The proof is a variant of a construction from | |. First, we add an
extra tiling layer above the grey interior of the checkerboard tilings which
translates the square’s side length N into binary; this can be done with a
counter tiling, see | ; | and | , sec. F2.3].

Using supplementary lemma 4.5, we then dovetail this output with a TM
that computes the function f(N) by taking input from the previous layer.
Since this is promised to be computable in time O(2/¥) = O(N), this can
be done via supplementary lemma 4.7. The output of this computation is
then f(NN) in binary.

Finally we run a binary-to-unary converting TM on the binary output of
f(N) by reversing the binary counter tiling in | ; ]; this requires N
steps. This leaves a marker at distance f(IN) along the square interior. We
can then introduce a tiling rule which forces a e marker onto the edge above
it. The configuration on the upper white edge of each complete square of
the tiling is then

OO0 DD 000w

where the black dot e marks distance f(IN) away from the left border. [

With supplementary lemma 4.8 in place, all that is left is to show existence
of a TM that calculates the 8" root of a number given in binary, and obeys
the required constraint on the number of steps—i.e. at most linear in the
square’s side length L.

Supplementary Lemma 4.9. Let ¢ € N, ¢ > 0. There exists a classical
TM which, on binary input L, computes [Ll/ 81 in binary, and requires at
most O(log3(L)) steps.

Proof. 1t is known that taking the square root of a number has the same
time complexity as multiplication (see | ]). For a number of ¢ = log, L
digits, long multiplication has time- and space complexity ~ log3 L. Taking
the 8" root can thus be done in ~ logg L steps by calculating



Now we have all the ingredients together to define the following aug-
mented checkerboard Hamiltonian, which is in essence the checkerboard
tiling Hamiltonian defined in supplementary lemma 4.4, but with a classical
TM acting within its grey squares to place an additional marker onto the
horizontal edges.

Supplementary Lemma 4.10 (Augmented Checkerboard Tiling Hamil-
tonian). Let He, be the Hamiltonian defined in supplementary lemma /..
Then we can increase the local Hilbert space dimension to accommodate for
the extra tileset necessary in supplementary lemma 4.9, and define a new
Hamiltonian 0., as per supplementary eq. (11) where

1. the zero energy ground state is spanned by the same checkerboard
patterns as in supplementary lemma 4.4, but such that the horizontal
edges above a grey square carry a special marker o at offset L'/ from
the left cornerstone,

2. any other eigenstate has eigenvalue > 1.

Proof. The first claim follows by supplementary lemmas 4.8 and 4.9, and
supplementary lemma 4.6. The second claim follows since the grey TM
interiors feature unique tilings, enforced by penalties only. ]

For later reference, we further prove the following two tiling robustness
facts.

Supplementary Remark 4.11 (Checkerboard Tiling Robustness). We

single out the pair of tiles

in the tileset T' used in supplementary proposition /.5. Then either

1. the pair of tiles is part of an edge of some length L as shown in the
proof of supplementary lemma 4.8—i.e. fig. 13—with a grey square of
size L x L below it, and a valid TM tiling enforcing the position of the
extra edge marker o at position [LY/®], or

2. there exists a unique penalty > 1 at another location in the lattice that
can be associated to the tile pair.

Proof. Since the corner tile in the pair cannot be one on the left lattice
boundary, we follow the tiling to its left; it has to be a blue edge Ay pattern
as in supplementary fig. 2, and necessarily end in another corner tile—if
not, take the mismatching tile and resulting penalty of size 1 as the unique
associated one.

Given the blue horizontal edge is intact, this defines a distance between
the two corner tiles, L. The subsquare L x L below this defined edge then has
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to be a valid checkerboard square with augmenting TM as in supplementary
lemma 4.10, which in turn enforces the position of the e marker between the
two upper corner tiles at the specified offset. If the square is not intact—which
includes it being cut off—take the closest penalty in Manhattan distance
from the tile pair as the associated penalty of size > 1 (or one of the closest
one in case of ambiguities). O

Supplementary Remark 4.12 (Augmented Checkerboard Tiling Robust-
ness). In any given ground state of the checkerboard tiling, there can be
at most one e between two cornerstone markers; this marker is only ever
present on blue horizontal edges that have a full grey interior square below
them, meaning the e is offset at [Ll/s] from its left, as in supplementary
lemma 4.9. Any other configuration introduces a penalty > 1.

Proof. A bullet can only appear above the appropriate marker in the classical
TM. We design the TM such that it produces exactly one such marker and
such a marker gets a penalty if it is not above the point at which the
TM places it. Thus, if there exists more than one e per edge joining two
cornerstones, at most one of them can be above the marker left by the
classical TM, and hence the other will receive an energy penalty.
Furthermore, since e can only occur at the output of a valid TM tiling,
it can only occur on edges that lie above a full TM tiling. Since the lattice
boundaries are white edges by supplementary proposition 4.3, the claim
follows. O

Supplementary Note 5 A 2D Marker Checkerboard

In this section we will introduce a Hamiltonian on a one-dimensional spin
chain which has a fine-tuned negative energy. More specifically, our goal
in this section is to take the tiling pattern given in supplementary fig. 3
used to define H., in supplementary lemma 4.10, and on a separate layer
add the Marker Hamiltonian H) from | , Thm. 11]. The Marker
Hamiltonian, plus the classical TM encoded in the classical Hamiltonian will
then be used to correct for the energy penalties caused by the quantum phase
estimation being done approximately (and thus picking up some error).

5.1 Combining the Marker Hamiltonian with the Classical
Tiling

In slight extension from the construction therein, we only allow the boundary

markers |l to coincide with the cornerstones of the checkerboard tiling

{)
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and condition the transition terms h; and hy from [ , Lem. 2] to
only occur in between two cornerstones and if and only if the marker o is
present there,' i.e. on the blue horizontal edge

00 OE0 - 00000 w

-~

L tiles

All other configurations are energetically penalised. The negative energy
contribution of one such edge—and thus by supplementary remark 4.12 also
of one square below said edge in the checkerboard pattern—is

Eedge(L) = Amin(H(f)‘S(L))v (15)

where S(L) denotes a single B-bounded segment of the original marker
construction of length L. The arrow 1 denotes the position of the special
symbol that indicates position L'/®, as explained in supplementary lemmas 4.9
and 4.10.

As the ground state energy of HY) depends on the choice of the falloff
f we carefully pick this function to be able to discriminate between the
halting and non-halting cases in supplementary theorem 3.7. In particular,
we will choose f such that if a universal TM halts on input ¢(n), then
ming (Eedge (L) + Amin(Heomp)) < 0, if it does not halt then ming,(Fedge(L) +
Amin(Heomp)) > 0, where we assumed the Turing machine’s tape length is
L as well. For inputs ¢’ € [p(n),@(n) +2777*) for some £ > 1 a similar
condition will be true depending on the amplitude that the output state has
on halting and non-halting.

One obstacle is that the bounds on the energy contribution in | ,
Lem. 7] is too loose for our purposes, i.e. it was asymptotically bounded
as lying in the interval Ay, (H)) € (=277 —4=/(1)) In the following
section, we prove that the scaling of the upper bound is in fact tight.

5.2 A Tight Marker Hamiltonian Bound

In this section we improve on the bounds set out in [ , Lem. 7] for
the ground state energy of the Marker Hamiltonian. To do this, we consider
the following w X w matrix:

Ay =AY — Jw)w]. (16)

We now adapt | , Lem. 7] to prove a better lower bound on the
lowest eigenvalue.

Supplementary Lemma 5.1. The minimum eigenvalue of Al satisfies

1 3
min(AL) > —= — = 1

IThis can easily be enforced with a regular expression.
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Proof. Our proof is essentially the same as in Bausch et al. except we use
a better ansatz for the lower bound on the ground state energy. We begin
by noting that, as in the proof of | , Lem. 7], the characteristic
polynomial of A/ is

—w—1
P = = (3@ (Y) = () + VA= HwaN) + () (19

where
2oV = (A= VA= 4VA - 2>w
Yu(A) = ()\ VA4V — 2)“’

Since it is not clear if p,,(A) = 0 has any closed form solutions in expressible
in A\ directly, we instead try to bound where the solutions can be.

First we calculate p,,(—1/2) = (—1)**2~% and thus know that sgn p,(—1/2) =
1 for w odd, and —1 for w even. If we can show that p,(—1/2 — f(w)) has
the opposite sign for some function f(w) > 0, then by the intermediate value
theorem we know there has to exist a root in the interval [-1/2— f(w), —1/2].
Since we are trying to prove a tighter bound than | , Lem. 7], we
will assume 0 < f(w) < 27%.

Let py(—1/2— f(w)) =: Aw/By, where we use the notation of | ,

Lem. 7]:
/ 9
_ 2w+1 e
)+ 5%

w = _al,w(xiu - yqlu) - a2,w(xiv + yq’u)’
a1 =3
2w = f(w

xw:<\/f \/f +f—f )—)
- (—\/f(w)Jrg\/f(w)Jr;—f(w)—2>w-

Then By, a1, and as,, are real positive for all w. We distinguish two cases.
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w even. If w is even, we need to show p,(—1/2 — 1/2%) > 0, which is
equivalent to

= 0< Ay = —a1,0(2), — Yy) — a2.0(2h + Yiy)

— 0>alx, —y.,)+ (2, +y.,) where a 1= 2% ¢ 1, 2]
az w
a—1 ,

<~ a+1y;”2%

For w even, y!, > z/,, and furthermore we find that xi}/ v /yg/ “ is mono-

tonically decreasing (assuming that f(w) > 0 and is itself monotonically
decreasing), so it suffices to find a f(w) which satisfies

a—1 5 3\“ /5 3\ " 1
a—|—1_<2 2> <2+2> 4w (19)

Expanding out a as

flw) +1/2
a=3"F——=, 20
F(w) 192 2
and substituting this into the above, we find
Flw) > - (21)
~ 4(4w) — 10 + 5(47w)’
Hence we can choose f(w) = 3/4", which works for all w > 2.
w odd. Now g/, <z, and it suffices to show
a—1
a+ 1y7/“” <7y
which is true provided
a—1
<
a+1—
This also holds true for all w > 0 for f(w) = 3/4*. This finishes the
proof. O
Theorem 5.2. The minimum eigenvalue of Al satisfies
1 3 ) 11
—5 - 4Tu < )\min(Aw) < —5 - 471; (22)
Proof. Supplementary Lemma 5.1 gives the lower bound, and [ ,
Lem. 8] gives the upper bound. ]
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5.3 Balancing QPE Error and True Halting Penalty

With this tighter bound derived in supplementary theorem 5.2, we can
calculate the necessary magnitude and scaling of Eegee(L) as explained at the
start of supplementary note 5 as follows. As a first step, we notice that the
clock runtime T'= T'(L) of the QTM is bounded by supplementary eq. (7),
which holds both in the halting and non-halting case, since the clock idles
after the computation is done. That is, the clock runtime does not depend
on the input to the computation.

Let Epen halt(L) and Epentoo short (L) be the ground state energies of
Homp(L) in the case where the encoded computation does not halt with
high probability, and when the binary expansion of the encoded phase is too
long, respectively, i.e. when |¢’| > m. Then from supplementary theorem 3.7
we get:

1 * K1
Epen,non-halt(L) > Epen,too short(L) =0 |:1Q:| > Wa (23)

where we made use of supplementary remark 2.9 at step (x). Similarly,
let Epen hait(L) be the minimum eigenvalue when the QTM halts on input
¢ € [pn),¢(n) +2777F), as given in supplementary definition 2.1. Then
again from supplementary theorem 3.7 and for sufficiently large ¢ we get:

Epen hatt (L) = O [(2—" +4(L, m)) 1]

T2
_r1/4
_o[(2 + 172 )Tg]ggm (24)

where in step (xx) we have used the fact that m < L, ¢; < 4 and ¢o > 1.
Both Kj and K» in supplementary eqs. (23) and (24) are positive constants,
chosen sufficiently small and large to satisfy the two bounds. How large does
¢ have to be—or in other words, how small does the interval around ¢(n)
have to be that ¢’ is chosen from—for supplementary eq. (24) to hold?

ot < 2271 & 1> log, (L*22L” 4) . (25)

In order to discriminate between the two asymptotic history state penalties
in supplementary egs. (23) and (24), Feqge(L) thus has to lie asymptotically
between these two bounds, i.e. we need

1 1
Eeqge(L) = 0 <L2§2L10g“2L> and  Feqge(L) = w <§2L2L1/4> :

Now we know by supplementary theorem 5.2 that Eegge(L) ~ 4=f(L) for
some f : N — N marker falloff, which itself has to be computable by a
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history state construction on the segment of length L. We therefore require

1 1 1
? <L2§2L log2L> TgmT Y <§2L2L“4> o

w(L+logL+loglogL) = f(L) = 0(L+L1/4). (26)

This lets us formulate the following conclusion.

Supplementary Corollary 5.3. There exists a constant C such that
f(L) = C(L + L'Y®) asymptotically satisfies supplementary eq. (26).

5.4 Marker Hamiltonian with L + L/8 Falloff

The crucial question is: can we create a Marker Hamiltonian with a falloff
exponent like f(L) = C(L + LY/ 8), which would satisfy supplementary
corollary 5.37 As discussed in [ ], this is certainly possible for any
polynomial of L, or even an exponential—in essence it is a question of creating
another history state clock for which the runtime of the segment of length L
equals f(L). Herein lies the problem: while a runtime L is easy—just have a
superposition of a particle sweeping from one side to the other—how do we
perform L'/® additional steps?

While there might be a clever way of doing this purely within the scope
of a history state construction, we take the easy way out.” In supplementary
note 4.5, we discussed how we can place a special symbol on the lower edge,
which by supplementary lemma 4.9 can be at distance L'/® from the left
corner. With this in mind and with the tighter marker Hamiltonian spectral
bound from supplementary lemma 5.1 to define the following variant of a
marker Hamiltonian:

Supplementary Lemma 5.4. Let C € N be constant. Take the standard

marker Hamiltonian Héf) from [ | defined on a local Hilbert space
Ho = C¥, where d' depends on the decay function f to be implemented.
Then there ezists a variant HY) with local Hilbert space H = Ho @ C2, where
| %) is one of the basis states of the second subspace, such that HY) has the
following additional properties:

1. HY) =37 hy, with h; € B(C?®CY), and d = O(C).
2. [h, [Je)(%k]] = 0.
3. If S(r) is the subspace of a single B-bounded segment of length L,
containing a single % offset at position r, then
3 1
I (f) < _
7 < Auin (Bl ) < =75 27)

2We note that if this task is possible within the history state framework, then it may be
possible to prove the main result of this paper for 1D. Indeed, the 2D tiling construction is
only used to allow the 1D Marker Hamiltonian to have the correct drop off.
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where f(L) = C(L+r).

Proof. We design the marker Hamiltonian variant to perform the following
procedure before stopping:

1. Sweep the length of the edge L,
2. Sweep back to the |¥) symbol sitting at offset r.

3. If the number of rounds is not yet C', switch to another head state and
repeat, where even iterations run in reverse.

Finally, employ Gottesman and Irani’s boundary trick, used as in | ,
Rem. 3], which exploits the mismatch in number of one- and two-local inter-
action terms to remove the constant —1/2 offset present in supplementary
theorem 5.2 by only adding translationally-invariant nearest neighbour terms
to the Hamiltonian. The energy scaling then follows directly from supple-
mentary theorem 5.2, and the dimension and [hys, [%)(%]|] = 0 follow by
construction. O

This marker Hamiltonian we will now combine with the Hilbert space
of the checkerboard Hamiltonian H/, from supplementary lemma 4.10, to
obtain a 1D marker Hamiltonian where the location of the boundary symbols
B and offset marker ¥ align with the checkerboard tiles as

lHDand*HE (28)

and such that the marker Hamiltonian terms do not occur above any other
but the blue edge tiles.

Supplementary Corollary 5.5 (1D Marker Hamiltonian). Let H., be the
checkerboard Hamiltonian from supplementary lemma 4.10, with local Hilbert
space Hey. Take HY) from supplementary lemma 5.4, with local Hilbert space
H, and let C € N, C > 1. Then there exists a marker Hamiltonian Hgf)
with one- and two-local interactions hy € B(H'), hy € B(H' @ H') where
H := (H®C)®Hep, and such that Hgf) has the following properties.

1. If S(r) denotes the subspace of a good tiling edge segment supplementary
eq. (13) of length L, where the marker e is offset at position r from the

left, then
3

4 f(D)
with f(L) = C(L +1).

< Amin (Hgf)|5(r)> S TIOk

2. Restricted to any other tiling subspace S’ which does not contain the

pair of tiles

we have )\min(Hgf)|S/) > 0.
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Proof. Let h/ and h), denote the one- and two-local terms of H), trivially
extended to the larger Hilbert space H @ C. Let |0) denote the extra basis
state in H @ C. Denote with II a projector onto the tiling subspace spanned
by the corner and blue edge tiles given in supplementary proposition 4.2. We
explicitly construct the local interactions h; and hy of Hgf ) by setting

hy =} @+ [0)0] ® TT + (1 — [0)0]) @ T+

(1= %)) @ 'BXB’ + (1 — mym) ® ‘DXD)

and
hy := h, ® I1®2,

The marker bonus is only ever picked up by the (final state) marker head
running into the right boundary in a configuration |--->>»M), which by
the one-local Hamiltonian constraints newly imposed can only occur above
the tile pair blue edge—corner given; any other configuration will have a
net penalty > 0. By construction, the ground space of Hgf ) features the
required alignment from supplementary eq. (28). The claim then follows

from supplementary lemma 5.4. ]

This is the last ingredient we require to formulate a two-dimensional vari-
ant of the Marker Hamiltonian, with the required falloff from supplementary
corollary 5.3.

Theorem 5.6 (2D Marker Hamiltonian). We denote with A the given lattice.
Let hy and hy be the local terms defining the 1D marker Hamiltonian from
supplementary corollary 5.5 with constant C € N, C' > 1. Further let H., be
the augmented checkerboard lattice with symbol e offset by L'/ on each of
the horizontal edges, as defined in supplementary lemma 4.10. On the joint
Hilbert space we set

HE) = 10H, + Y by’ + ) hf
€A €A

where the second sum runs over any grid index where the 2x1-sized interaction
can be placed. Then the following hold:

1. H®ED block-decomposes as HES) = @SLZI HgHﬂ’f) @ B; the family
HgEE’f ) corresponds to all those tiling patterns compatible with the aug-
mented checkerboard pattern in supplementary lemma 4.10 with square
size s. B collects all other tiling configurations.

2. The ground state of H&Blf), labelled |vs) is product across squares
[Vs) = Q) |¢:), where i runs over all squares in the tiling.
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3.

/.

B >0.

Denote with A a single square of the ground state |HB) (i.e. a square
making up the grid), denoted |Hs) 4. Then its energy contribution to

the ground state of HgEE’f) i

3
_44C(s+s1/8)

1
E7

< <BHS|AH( f)(s)‘A ’BHS>A < _4C(s+51/8) :

where C is the constant from supplementary corollary 5.5.

Denote with I1 = |Hs)H| 4 the projector onto the orthogonal comple-
ment of the ground state of HgEE’f)]A. Then

ITH® | 411 > 0.

Proof. We prove the claims step by step.

Claim 1 & 2

Claim 3

Claim 4

Claim 5

The classical tiling Hamiltonian H, is diagonal in the computational
basis. Furthermore, by construction, h; and hs defined in supplemen-
tary corollary 5.5 commute with the tiling terms.

The bonus of —1/2 introduced in the marker Hamiltonian can only

ever act across a pair of tiles

Since we have proven the checkerboard tiling to be robust with respect
to the occurence of this tile pair in supplementary remark 4.11, we
know that the combination carries at least a penalty > 1 if it occurs in
any non-checkerboard configuration; this means that any tiling in B
can never have a sub-configuration such that the marker bonus offsets
penalties inflicted by the tiling constraints; B > 0 follows.

The “good” subspace in the fourth claim we know by supplementary
remark 4.12 to necessarily look as the blue edge segment supplementary
eq. (13). This, in turn, means that r = [LY/®] in supplementary
lemma 5.4, and the claim follows from the first energy bound proven
therein.

Follows in a similar fashion as the fourth claim, from supplementary
remark 4.12 and from the second claim in supplementary lemma 5.4. [
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Supplementary Note 6 Spectral Gap Undecidabil-
ity of a Continuous Family of Hamiltonians

In this section, we combine the 2D Marker Hamiltonian with the QPE History
State construction. Despite the two-dimensional marker Hamiltonian, the
setup is very reminiscent of the 1D construction; the crucial difference being
the more finely-geared bonus and penalties we need to analyse. We show that
the energy contributions from each of the checkerboard squares, defined in
the classical Hamiltonian, is either positive or negative depending on whether
an encoded computation halts or not. This provides a constant ground state
energy density which is either positive or negative which can be leveraged to
prove undecidability of the spectral gap and phase.

6.1 Uncomputability of the Ground State Energy Density

Supplementary Lemma 6.1. Let hq, hy®", h§°1 be the one- and two-local
terms of H®) with local Hilbert space My, and similarly denote with qu, qo
be the one- and two-local terms of Heomp from supplementary definition 3./
with local Hilbert space Hq, respectively. Let lleqge be a projector onto the
edge tiles in supplementary proposition 4.2. Define the combined Hilbert
space H = Hym @(Hq BC), where |0) denotes the basis state for the extension
of Hq.

We define the following one- and two-local interactions:

h{" :=h; ®1+ Hedge @ q1 + Hedge ® |0X0| + Hedge (1 —|0%0])
htot ,TOW | hrow Q1+ H ® Q2
- edge

] ><D‘®1}® 1o @%@ +
I RIEERY

On a lattice A define the overall Hamiltonian

H .= Z hi?(tz) + Z (hg’)(t;ow tot row) + Z htot colj

1€EA €A 1€EA

tot,row |
2 T

where each sum index runs over the lattice A where the corresponding Hamil-
tonian term can be placed. Then H has the following properties:

1. H= @ H, ® B’ block-decomposes as H®) in supplementary theo-
rem 5.6, where B’ = B® 1.

2. B' > 0.
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3. All eigenstates of Hg are product states across squares in the tiling
with square size s, product across rows within each square, and product
across the local Hilbert space H @(Hq SC).

4. Within a single square A of side length s within a block Hy, all eigen-
states are of the form |Bs) |4 ® |ro) ® |r), where

(a) |Bs) is the ground state of the 2D marker Hamiltonian block
g&/)

(b) |ro) is an eigenstate of Heomp®O0, i.e. the history state Hamiltonian
with local padded Hilbert space Hq ®C, and

(c) |r) € (Hq EB(C)®(SX(S_1)) defines the state elsewhere.

5. The ground state of Hy|4 is unique and given by|r) = |0)E*E=D) gng
|ro) = |¥), where

=
L

(W) = D 10) [¢hr)

t

Il
=)

is the history state of Heomp as per supplementary theorem 5.3, and
such that |1g) is correctly initialized.

Proof. We already have all the machinery in place to swiftly prove this lemma.
First note that, by construction, all of {h'°*, thOt’rOW,hEOt’wl, h$e!, pit oy
pairwise commute with the respective tiling Hamiltonian terms {hy, h{®", h$°'}.
Furthermore, the local terms from Hcomp—0q1 and qa—are positive semi-
definite; together with supplementary theorem 5.6 this proves the first three
claims. As shown in supplementary theorem 3.3 and since the Hamiltonian
constraints in py”"**" enforce the ground state of the top row within the
square A to be bracketed, the first and third claim imply the fourth and

fifth. O

Supplementary Lemma 6.2. Take the same setup as in supplementary
lemma 6.1, and let Heomp = Heomp(¢') for ¢’ € [p(n), ©(n) +2777%), where
©(n) is the unary encoding of n € N from supplementary definition 2.1. As
usual £ > 1. Then for a block Hy we have

1. If s<n, Hs > 0.
2. If s > n and M does not halt on input n within space s, then Hg > 0.

3. If s > n and M halting on input n, and ¢ > 10g2(5*2251/4) as per
supplementary eq. (25), then Amin(Hs) < 0.

Proof. We start with the first claim. By supplementary lemma 6.1, it suffices
to analyse a single square A of side length s; the proof then essentially follows
that of | , Thm. 20]. We first assume s < 7. Using the same notation
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as in supplementary theorem 5.6, and denoting with Ilegee the projector onto
the white horizontal edge within A, we have

)\min(Hs‘A> = Amin H(Eif)(s)‘A ®1+ Hedge ® Hcomp((P/)
= edge(s) + Epen,tooshort(s) >0,

where we used supplementary corollary 5.3 and supplementary theorem 5.6
and the fact that the two Hamiltonian terms in the sum commute.

The other claims follow equivalently: in each case by supplementary corol-
lary 5.3, the sum of the edge bonus and TM penalties satisfy supplementary
eq. (26). For the second claim, by the same process we thus get

)\min(Hs|A) = Eedge(s) + Epen,non—halt(s) > 0.
Then for the third claim,
)\min(Hs‘A> - Eedge(s) + Epen,halt(s) <0. O

Supplementary Corollary 6.3. Tuke the same setup as in supplementary
lemma 6.2, and let ¢(n) encode a halting instance. Set w = argmin { Amin (Hs) <
0}, and W a single square of size w x w. Then the ground state energy of
H(¢') on a grid A of size L x H is bounded as

B = | | |5 | dmin Bl (20)

Proof. From supplementary lemma 6.1, we know the ground state of H(¢')
is a grid with offset (0,0) from the lattice’s origin in the lower left. Each
square of the grid contributes energy Amin(H(¢')|w) < 0; the prefactor in
supplementary eq. (29) is simply the number of complete squares within the
lattice.

For all truncated squares on the right hand side, He¢omp from supple-
mentary definition 3.4 with either the left or right ends truncated has zero
ground state energy, since it is either free of the in- or output penalty terms.
Furthermore, we see that if we truncate the right end of the 1D Marker
Hamiltonian Hgf ) in supplementary lemma 5.4, it has a zero energy ground
state since it never encounters the tile pair

CH)

from supplementary theorem 5.6 necessary for a bonus. Truncating squares
at the top does not yield any positive or negative energy contribution. The
total lattice energy is therefore simply the number of complete squares on
the lattice, multiplied by the energy contribution of each square. O
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Theorem 6.4 (Undecidability of Ground State Energy Density). Discrim-
inating between a negative or nonnegative ground state energy density of
H(¢') is undecidable.

Proof. Immediate from supplementary lemma 6.2 and supplementary corol-
lary 6.3; the energy of a single square is either a small negative constant, or
nonnegative. Determining which is at least as hard as solving the halting
problem. O

With this result we can almost lift the undecidability of ground state
energy density to the spectral gap problem. In order to make the result
slightly stronger, for this we first shift the energy of H(¢') by a constant.

Supplementary Lemma 6.5 (] , Lem. 23]). By adding at most
two-local identity terms, we can shift the energy of H from supplementary
lemma 6.1 such that

>1 in the non-halting case, and

— —00  otherwise.

)\min(H) {

6.2 Undecidability of the Spectral Gap

With the proven uncomputability of the ground state energy density, we can
lift the result using the usual ingredients—a Hamiltonian with a trivial ground
state, as well as a dense spectrum Hamiltonian that will be pulled down
alongside the spectrum of the QPE Hamiltonian, if the encoded universal
Turing machine halts on the input encoded in the phase parameter—to prove
that the existence of a spectral gap for our constructed one-parameter family
of Hamiltonians is undecidable as well.

Theorem 6.6 (Undecidability of the Spectral Gap). For a continuous-
parameter family of Hamiltonians, discriminating between gapped with trivial
ground state ]0)®A, and gapless as defined in supplementary definitions 1.1
and 1.2, is undecidable.

Proof. So far we have constructed a Hamiltonian H(¢') with undecidable
ground state energy asymptotics given in supplementary lemma 6.5; we
denote its Hilbert space with H;. We add the usual Hamiltonian ingredients
as in | | or | , Thm. 25]:

Hgense Asymptotically dense spectrum in [0, 00) on Hilbert space Ha.

Hi,ivia1 Diagonal in the computational basis, with a single 0 energy product
ground state \O>®A, and a spectral gap of 1 (i.e. all other eigenstates
have nonnegative energy > 0); its Hilbert space we denote with Hs.
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Hgyara A 2-local Ising type interaction on H := H1 ® Ha @ H3 defined as

Hya = Y (11315 + 187 @11)),
i~
where the summation runs over all neighbouring spin sites of the
underlying lattice A (horizontal and vertical).

We then define
HA(L) (90/) = H(QDI) ® ]12 @ 03 + ]11 & Hdense @ 03 + 01,2 @ Htrivial + ngard-

The guard Hamiltonian ensures that any state with overlap both with
H1 ® Ho and Hs will incur a penalty > 1. It is then straightforward to check
that the spectrum of Hit is given by

spec(HA) = {0} U (spec(H(¢")) + spec(Hgense)) U G

for some G C [1,00), where the single zero energy eigenstate stems from
Htrivial-

In case that Amin(H(¢")) > 1, spec(H(¢')) 4 spec(Hgense) C [1,00) and
hence the ground state of H is the ground state of Hy,ivia1 With a spectral
gap of size one.

For Apin(H(¢')) — —00, Hgense 18 asymptotically gapless and dense;
this means that H® becomes asymptotically gapless as well. ]

Since the spectral properties of H(¢') are—by supplementary lemma 6.2—
robust to a choice of ¢/ within an interval around an encoded instance ¢(n)
as per supplementary definition 2.1—i.e. for large enough ¢ we can vary
¢ € [p(n), p(n) + 271 *)—supplementary theorem 6.6 immediately proves
theorem 2.1, corollary 2.2 and corollary 2.3 in the main article.

As a small addition, we generalise the above to show undecidability
between any two phases with an arbitrary ground state property.

Supplementary Corollary 6.7. Let there exist Hamiltonians Hx and
H_x defined by local terms that their ground states respectively have the
property X and do not have the property X, for all L > Lo for some Lg, and
both have zero ground state energy. Without loss of generality, let the ground
state of H(') have the property X. For a continuous-parameter family of
Hamiltonians, discriminating between a phase with property X, and a phase
without ground state property X, is undecidable.

Proof. We then define
HYE) (') = H(¢) @ 1o 03+ 11 @ Hy @ 03 + 012 ® H_x + Hyyara.

If \g(H(¢')) — —oo, the ground state of HA) (') has property X. If
Mo(H(¢')) > 1, the ground state does not have property X. Since the ground
state energy of H(¢') is undecidable, then determining whether the ground
state has property X is also undecidable. ]
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6.3 Subtleties Concerning Computable and Uncomputable
Numbers

In the statement of the main result and throughout the analysis, we have
been careful to avoid a subtle point related to allowing ¢ to vary over all
of R: a number chosen uniformly from R is almost surely uncomputable.
For such uncomputable values of ¢, we cannot even write out the matrix
elements of the local terms of the Hamiltonian. Thus determining the phase
of the Hamiltonian is trivially uncomputable for such values.

However, it is worth noting that this is not an issue unique to the
Hamiltonian constructed in this work; any Hamiltonian which is a function
of parameters in R will suffer from this. For example, take the 1D Ising
model with Hamiltonian Hrny(p) = Z@m ng)ag) +eo>, Ug(f) for o € R.
The matrix elements for the local terms become uncomputable when ¢ is
uncomputable. Despite this, the phase diagram for the model is computable
[ |, and for all computable numbers ¢ the phase of Hrn(¢) can be
determined.

Our results are non-trivial because they hold even for computable values
of p € R.

Supplementary Note 7 Conclusions

One of the main aims of this work was as a first foray into the rigorous study
of the computability and computational complexity of phase transitions.
Quantum phase transitions are one of the best studied physical phenomena,
but still incompletely understood. We anticipate that this work can be
extended in several directions:

Uncomputablity in 1D. Here we have only studied phase diagrams in 2D.
As described in 5, our construction has relied on the fact we can encode a
classical Turing Machine into 2D tilings. This is not possible in 1D. However,
since 1D systems tend to be fundamentally easier to solve than 2D systems,
it may still be the case that the phase diagram of a 1D system is computable.
However, given the undecidability of the spectral gap in 1D | ], it
would not be unexpected that computing phase diagrams of 1D systems can
also be shown to be uncomputable.

More Realistic Systems. This work has shown that determining phase
diagrams is in general uncomputable. But does this remain the case for any
physically realistic systems—for example those with smaller Hilbert space
dimension or interactions limited to a certain form?

Finite Systems. In this work we have only studied phase diagrams in
the thermodynamic limit. Yet for any finite-sized system, determining any
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property is necessarily decidable (as we can simply diagonalise the Hamil-
tonian). A natural question is thus what we can say about the complexity
of determining phases and phase parameters for finite system sizes, for a
suitable notion of phase transition in this context.
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We begin with the following definition for a 1D chain of spins:

Supplementary Definition 8.1 (Standard Basis States, from Section 4.1
of [CPGWI5]). Let the single site Hilbert space be H = ®;H; and fix some
orthonormal basis for the single site Hilbert space. Then a Standard Basis
State for H®L are product states over the single site basis.
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We now define standard-form Hamiltonians — extending the definition from
[ E

Supplementary Definition 8.2 (Standard-form Hamiltonian, from | ],

extended from | ). We say that a Hamiltonian H = Hipqns + Hpen +

Hin+Heyy acting on a Hilbert space H = (CC®CR)®L = (CY)®Lg(CR)®L =
. : 1 (e

He @ Hg is of standard form if Hirans pen,in,out = Zlel hi;;:s;)en’m,out, and

Nirans,pen,in,out satisfy the following conditions:

1. hirans € B (((CC ® (CQ)®2) is a sum of transition rule terms, where all
the transition rules act diagonally on C¢ ® CC in the following sense.

Given standard basis states a,b, c,d € CC, exactly one of the following
holds:

e there is no transition from ab to cd at all; or

e a,b,c,d € CC and there exists a unitary Ugpeq acting on C8 ® CV
together with an orthonormal basis {‘wibcd>}i for CQ ® C?, both
depending only on a, b, c,d, such that the transition rules from ab to
cd appearing in hipans are exactly |ab) ‘w;bcd> — |ed) Ugped ‘¢2bcd>
for all i. There is then a corresponding term in the Hamiltonian

of the form (|cd) © Uapea — |ab))({cd| @ UYL, — (ab]).

2. hpen € B (((CC ®(CQ)®2) is a sum of penalty terms which act non-
trivially only on (CC)®2 and are diagonal in the standard basis, such
that hpen = 3~ (ap) 1itegar |20} (ab| ® Wq, where (ab) are members of a
disallowed /illegal subspace.

8. hip =Y lab) {ab|y ® Mgy, where |ab) (abl, € (CY)®? is a projector
onto (C®)®? basis states, and Hgbn) € (C)®2 are orthogonal projectors
onto (C9)®2 basis states.

4. hour = |zy) (Y| @ 4y, where lzy) (zy|o € (CO)®? is a projector onto
(C€)®? basis states, and Hgf; ) e (C9)®2 are orthogonal projectors onto
(C9)®2 basis states.

We note that although h,,+ and h;, have essentially the same form, they
will play a conceptually different role.

Supplementary Lemma 8.3. Hqrwv s a standard form Hamiltonian.

Proof. Comparing with supplementary definition 8.2, we see that all terms
fall into one of the four classifications, and hence it is standard form. O

We now introduce the following definition.
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Supplementary Definition 8.4 (Legal and Illegal Pairs and States, from
[ 1). The pair ab is an illegal pair if the penalty term |ab) (ab|- @¥ ¢
is in the support of the Hpe, component of the Hamiltonian. If a pair is not
illegal, it is legal. We call a standard basis state legal if it does not contain
any illegal pairs, and illegal otherwise.

Then the following is a straightforward extension of Lemma 42 of |
with H;,, and H,,; terms included.

Supplementary Lemma 8.5 (Invariant subspaces, extended from Lemma
42 of | 1)- Let Hirans, Hpen, Hin and Hyye define a standard-form
Hamiltonian as defined in supplementary definition 8.2. Let S = {S;} be
a partition of the standard basis states of Ho into minimal subsets S; that
are closed under the transition rules (where a transition rule |ab) ) [1) —
led) . pp Uabed [1) acts on He by restriction to (CO)®2, i.e. it acts as ab — cd).
Then H = (PgKs,) @ Hg decomposes into invariant subspaces Ks, @ Hq of
H = Hpep, + Hirans + Hip + Hour where Kg; is spanned by S;.

Supplementary Lemma 8.6 (Clairvoyance Lemma, extended from Lemma
43 of | ). Let H = Hypans + Hpen + Hin + Hout be a standard-form
Hamiltonian, as defined in supplementary definition 8.2, and let Kg be
defined as in Lemma 8.5. Let A\o(Kg) denote the minimum eigenvalue of the
restriction H|ICS®HQ of H = Hirans + Hpen + Hiyy + Hoye to the invariant
subspace Kg @ Hq.

Assume that there exists a subset W of standard basis states for Ho with
the following properties:

1. All legal standard basis states for Heo are contained in W.
2. W is closed with respect to the transition rules.

3. At most one transition rule applies in each direction to any state in
W. Furthermore, there exists an ordering on the states in each S such
that the forwards transition (if it exists) is from |t) — |t + 1) and the
backwards transition (if it exists) is |t) — [t — 1).

4. For any subset S C W that contains only legal states, there exists at least
one state to which no backwards transition applies and one state to which
no forwards transition applies. Furthermore, the unitaries associated
with the transition |t) — [t + 1) are Uy = W¥q, for 0 <t < Tipiy — 1
and Tinye < T, and that the final state |T') is detectable by a 2-local
projector acting only on nearest neighbour qudits.

Then each subspace Kg falls into one of the following categories:

1. S contains only illegal states, and H |cgom, > -

45



2. S contains both legal and illegal states, and

Wi Hkcsom,W > @D (AD + > k) (k) (30)
[ ‘k>€Kl

where 3 e, k) (k| := Hpenlcsong and K; is some non-empty set of
basis states and W is some unitary.

3. S contains only legal states, then there exists a unitary R = W (W¥¢o ®
(X @Y)q) that puts H|csemu, in the form

Hg, Hab
R'H R= < ) , 31
eseral = (" (31)
where, defining G := supp (Z?%itl Hf’ﬂ) and s ;== dim G,
e X :G—G.
o YV :G— G°.
e H,, i1s an s X s matriz.
e H,,, Hy, > 0 and are rank rq,rp respectively.
e H,, has the form
Tinit—1
Hyo = @ (AP + 0, [|S] = 1) (1S] = 1]) + D ) (@ XTT[¢ X
i t=0
(32)
e Hy, is a tridiagonal, stoquastic matrixz of the form
Hy, = EP(AWD + 8, ||S| — 1) (|S] = 1)). (33)

i

H,, = Hy, is a real, negative diagonal matriz with rank min{rq, ry}.

Hap = Hyo = P i l15] = 1) (S| = 1]. (34)

where either we get pairings between the blocks such that

(Oéi %‘) _ ( 1—pi —Vhi(1 —Mz’)> or (1 0) (35)
Vi Bi —v/ui(1 = pi) i 0 1)’

for 0 < p; <1, or we get unpaired values of a; = 0,1 or 8; = 0,1 for
which we have no associated value of ;.
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