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1Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV

Amsterdam, the Netherlands
2Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands
3These authors contributed equally
4Lead Contact

*Correspondence: science@tomclement.nl (T.J.C.), daanhugodegroot@gmail.com (D.H.d.G.)

https://doi.org/10.1016/j.patter.2020.100177
THE BIGGERPICTURE Understanding the metabolic capabilities of cells is of profound importance. Micro-
bial metabolism shapes global cycles of elements and cleans polluted soils. Human and pathogen meta-
bolism affects our health. Recent advances allow for automatic reconstruction of reaction networks for
any organism, which is already used in synthetic biology, (food) microbiology, and agriculture to compute
optimal yields from resources to products. However, computational tools are limited to optimal states or
subnetworks, leaving many capabilities of organisms hidden. Our program, ecmtool, creates a blueprint
of any organism’s metabolic functionalities, drastically improving insights obtained from genome se-
quences. Ecmtool may become essential in exploratory research, especially for studying cells that are
not culturable in laboratory conditions. Ideally, elementary conversion mode enumeration will someday
be a standard step after metabolic network reconstruction, achieving the metabolic characterization of
all known organisms.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Themetaboliccapabilitiesof cellsdetermine their biotechnological potential, fitness inecosystems,pathogenic
threat levels, and function in multicellular organisms. Their comprehensive experimental characterization is
generally not feasible, particularly for unculturable organisms. In principle, the full range of metabolic capabil-
ities can be computed froman organism’s annotated genomeusingmetabolic network reconstruction.Howev-
er, current computational methods cannot deal with genome-scale metabolic networks. Part of the problem is
that these methods aim to enumerate all metabolic pathways, while computation of all (elementally balanced)
conversions between nutrients and products would suffice. Indeed, the elementary conversion modes
(ECMs, defined by Urbanczik and Wagner) capture the full metabolic capabilities of a network, but the use of
ECMs has not been accessible until now.We explain and extend the theory of ECMs, implement their enumer-
ation in ecmtool, and illustrate their applicability. This work contributes to the elucidation of the full metabolic
footprint of any cell.
INTRODUCTION

Metabolism underlies most cellular behaviors. Which chemical

compounds a microbe can exploit for growth, which products

it canmake and at which yields is essential information for under-

standing the microbe’s roles in ecosystems, its responses to

varying conditions, and its potentials for biotechnology and
This is an open access article und
bioremediation. In the case of pathogens, metabolic capabilities

are informative about the niches in which they can thrive. The

functioning of multicellular organisms relies on how the capabil-

ities of different cell types complement each other. A computa-

tional method that can enumerate all metabolic capabilities of

any cell, from its annotated genome sequence, is therefore of

key importance.
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In the pre-genomic era, a cell’s metabolic capabilities were

investigated using experimental physiological information and

elemental balancing of nutrients and products. Cellular meta-

bolism was seen as a black box: without having knowledge of

the metabolic details, so-called macrochemical equations were

calculated which specify the stoichiometry of the conversion of

nutrients into biomass (cells) and by-products.1–6 Precise mea-

surements of heat exchange, nutrient uptake, and product for-

mation were used to develop thermodynamic theories of cellular

growth,7 which led to the improvement of biotechnological pro-

cesses.5,8 These methods could not always be applied: they

were not exhaustive, and required experimental data and basal

knowledge ofmetabolic pathways. This information is often lack-

ing, in particular for unculturable and extremophile microorgan-

isms, or for cells that survive only in multi-species communities

or as part of a multicellular organism. In addition, when several

substrates can be consumed or multiple by-products can be

produced, a unique macrochemical equation cannot be derived

and the methods need to be augmented with experimental

data.3 Nowadays, in the post-genomic era, in which the genome

of any organism can be sequenced, the potential exists for

comprehensive and unsupervised enumeration of all macro-

chemical equations of any cell. Yet despite its great benefits,

no such method is currently used, partially because most efforts

focus on computation of a highly redundant capability set.

All metabolic reactions that can be catalyzed by a cell can be

determined from the metabolic-gene annotations of its genome.

This allows for the reconstruction of the metabolic network, which

can nowadays be done almost purely computationally9 (seeMen-

doza et al.10 for a recent review). The resulting genome-scale

metabolic networks, or genome-scale stoichiometric models,

have been determined for thousands of species. Since such a

model specifies all metabolic reactions, it determines all possible

pathways from substrates to products, which are conveniently

described by the set of all elementary flux modes (EFMs).11–16

The enumeration of all EFMs of large metabolic networks is not

possible due to a severe combinatorial explosion in their num-

ber,17 so that most research has focused on calculating only sub-

sets of EFMs.18–30 However, since many EFMs share the same

overall substrates-to-products conversion and, therefore, indicate

the same metabolic capability, their enumeration is not always

required. Instead, for many applications it suffices to focus on

all possible overall conversions that a cell can catalyze.

The complete metabolic capabilities of a cell can thus be stud-

ied by focusing on all conversions from substrates to products.

An exhaustive list of these is obtained by enumeration of the

elementary conversion modes (ECMs), defined in 2005 by Ur-

banczik and Wagner.31 ECMs are not defined in terms of the

metabolic routes through the network; rather, they are defined

in terms of the end results only: the feasible stoichiometries be-

tween substrates and products—the net conversion (see Box 1

for explanation). Thus, ECMs focus on the connection of an or-

ganism with its environment rather than on the metabolic path-

ways through which this is achieved.

ECMs can be seen as objects analogous to EFMs: the

ECMs form a minimal set that generates all steady-state sub-

strate-to-product conversions, i.e., all macrochemical equa-

tions, while the EFMs form the minimal set that generates all

steady-state flux distributions. However, the set of ECMs is
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much smaller than the set of EFMs: first, because many

different EFMs map to the same overall conversion and sec-

ond, because ECMs are objects in the lower-dimensional

space of external metabolite changes rather than in the space

of reaction rates. For these reasons, the combinatorial explo-

sion that prohibited the enumeration of all EFMs on a genome-

scale network might disappear when enumerating ECMs.

Although ECMs were already defined in 2005,31 and despite

their potential for broad applicability, we could find only one

study in which they were used.35 This might be because the

concept was never made accessible for a broad audience,

even though it was rigorously defined mathematically. Mostly it

might be due to the absence of a readily usable computational

tool that computes ECMs for general metabolic networks.

In this work, we unlock the potential of ECMs by making the

theory accessible and enumeration possible for any systems

biologist. We reformulate and extend the ECM theory of Ur-

banczik and Wagner,31 provide additional explanations in

Boxes 1, 2, and 3, and supply extensive Supplemental Infor-

mation wherein all enumeration steps are explained and math-

ematically supported. Most importantly, we present a Python-

based enumeration program called ecmtool. Our software

accepts metabolic models in the SBML format as input36

and gives an exhaustive and exact list of ECMs as output.

Ecmtool provides both an indirect and a direct method.

The indirect method is based on the algorithm proposed by

Urbanczik and Wagner31 and is fast for small- to medium-

scale networks; the direct method uses a novel algorithm

that lends itself to massive parallelization and is therefore scal-

able to much larger networks. We validate the correctness of

the computed ECMs on the medium-scale e_coli_core

network,37 and test the scope of ecmtool by enumerating

the ECMs of networks of various sizes and complexity. In

addition, we provide a hide method that allows focusing on

the conversions between a user-defined subset of the external

metabolites. This method enables the enumeration of ECMs

on genome-scale models. Finally, in a collaborative, parallel

study on rhizobial bacteroids, we show that ECMs can now

truly be applied to gain biological insight (Schulte et al., un-

published data currently under revision).

This work contributes to closing the gap between any cell’s

genotype and phenotype. It offers a computational toolkit for

the exhaustive determination of metabolic capabilities, and

should be particularly valuable when experimental characteriza-

tion is impossible because cells cannot be cultured in isolation.

RESULTS

Cells Have Orders of Magnitude Fewer Metabolic
Capabilities (ECMs) Than Flux Routes (EFMs)
The number of ECMs increases much slower with metabolic

network size than with the number of EFMs (Figure 2). For

example, the number of elementary modes in the e_coli_core

model37 reduces from 100,274 EFMs to 689 ECMs. The num-

ber difference is likely even greater for larger genome-scale

metabolic networks. This makes ECM visualization possible,

which facilitates their exploration and analysis (Figure 3). This

illustrates that it is more direct and efficient to enumerate

ECMs, which are the metabolic capabilities of a cell, instead



Box 1. Definition of ECMs

ECMs are theminimal building blocks of all net conversions bymetabolic networks, and were defined by Urbanczik andWagner.31

To explain their definition, we start with the stoichiometry matrix N of a metabolic network. Each column of N captures for one re-

action which metabolites are consumed, which are produced, and in what ratios. To facilitate the exposition, we here assume that

all reversible reactions are split into a forward and backward reaction, so that all reactions in N are irreversible. Some metabolites

are internal to the cell and somemetabolites are external; metabolites that occur both inside and outside the cell are considered as

two metabolites: one internal and one external. We denote the index set of internal metabolites by Int. The product of the stoichio-

metric matrix with the vector of reaction rates v gives the rates of change of all metabolite concentrations, i.e., the conversion _c =

Nv. Metabolism is assumed to be in steady state, so that all internal metabolite concentrations are constant: _ci = 0 for all i˛ Int. The

space of all steady-state conversions, and thus of all metabolic capabilities, is given by

C =

�
_c = Nv

���� _ci = 0 if i˛ Int; vj R 0 for all j

�
: (Equation 1)

This space is called the conversion cone and should not be confused with the flux cone which comprises all steady-state fluxes. In

fact, the conversion cone is the result of multiplying all points in the flux cone with the stoichiometric matrix (see Supplemental

Information Section 2 for further explanation).

Definition 1. The set of elementary conversion modes (ECMs) is the minimal set of conversions fecm1;.; ecmKg such that each

steady-state conversion can be written as a positive sum of ECMs, without the production of any external metabolite being

canceled in that sum.

Some readers might note that this definition of ECMs is similar to the definition of EFMs. This is because both can be defined as

elementary vectors (more precisely as conformally non-decomposable vectors31–34): ECMs are the elementary vectors of the con-

version cone, while EFMs are the elementary vectors of the flux cone. The values in an ECM indicate the changes of metabolite

concentrations, while the values in an EFM indicate reaction rates.

We will explain the two parts of Definition 1 using the toy network example of Figure 1, in which the external metabolites

A; B; and BM are interconverted via internal metabolites C, D, and E.

All steady-state conversions together form the conversion cone,which is a ‘‘convex polyhedral cone’’ (shaded area in Figure 1B). As

a consequence, the steady-state conversions can be fully described by the extreme rays of this cone (blue and green in the figure).

Indeed, any steady-state conversion can bewritten as a positive sumof the extreme rays. By the first part of Definition 1, thismeans

that these extreme rays are ECMs. The example, therefore, has at least two ECMs: A / B (blue) and 2B/ BM (green).

It is important to note that any positive sum of steady-state conversions is again a steady-state conversion. This makes sense in

biological terms: a conversion lies in the cone if there exists a set of reactions that gives rise to the conversion, and satisfies the

irreversibility and steady-state constraints fromEquation 1. So, if we have several sets of reactions that correspond to conversions,

their sum will correspond to the summed conversion. However, a sum in which some extreme conversions are added negatively

does not necessarily result in a feasible conversion, because the resulting conversion might not be feasible without using an irre-

versible reaction in the negative direction.

Figure 1. ECMs Are the Minimal Building Blocks of All Net Conversions by Metabolic Networks

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2020.100177.

(A) The Elementary conversion modes for a small network are shown in blue, green, and red. Note that the red ECM can be written as a positive combination of

the blue and green ECM, but that this cancels the production of B.

(B) The cone of steady-state conversions is shown in gray and is spanned by the blue and green ECM. The red ECM lies in the interior of the cone on the

intersection with the _B= 0 plane.

(Continued on next page)
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Box 1. Continued

Now consider the conversion 2 A / BM (red). This conversion can be written as a positive sum of the two previously found

ECMs: 2( A/ B ) + ( 2 B / BM ) = ( 2 A / BM ). However, in summing these ECMs, the metabolite B is cancelled, since

it is produced and consumed. Since, the ECMs are intended to capture a complete set of minimal building blocks of biologically

realistic conversions, taking only the extreme rays does not suffice: we also want to describe the possibility of producing BM

from A without simultaneously excreting and consuming B. The second part of the ECM-definition therefore ensures that these

conversions are added to the set of ECMs as well: the ECMs should generate all conversions without cancellation of the pro-

duction of any metabolite. If we would take a combination of the blue and green extreme conversions, this would always (partly)

cancel the production of B, since B is produced in the blue conversion and consumed in the green conversion. Therefore, the

red conversion is also an ECM: since this conversion does not produce or consume B, a positive combination with the other

ECMs does not induce a cancellation. In total, we thus have three conversions, as listed in Figure 1A.

In mathematical terms, one could obtain the full set of ECMs by calculating the extreme conversions per orthant, and then taking

the union of all these extreme conversions. The requirement that no metabolite production is cancelled, implies that all steady-

state conversions can be written as a positive sum of ECMs in which each metabolite is either produced by all ECMs in the

sum, or consumed by all ECMs in the sum. In this manner, cancellations no longer occur (see 33).
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of EFMs, which are flux routes that often have an identical

metabolic capability, i.e., net conversion of cellular nutrients

into products (Figure 2A).

A major advantage of ECMs is that they can be computed for

metabolic networks for which EFM enumeration is not possible.

For example, we found 874,236 possible ECMs for the pathogen

Helicobacter pylori in a minimal medium (iIT_341;38 485 metabo-

lites and 554 reactions), while EFM enumeration ran into memory

errors, most likely due to the enormous number of EFMs in this

model (the full set of ECMs is available upon request). We note

that a set of hundreds of thousands of ECMs might appear diffi-

cult to analyze, but the user can easily filter out a relevant subset

once such a set is obtained (see Figure S1 for an example).

Summarizing, the enumeration of ECMs by ecmtool allows for

the determination of all the metabolic capabilities of metabolic

networks for which EFM enumeration is no longer feasible. We

did find that the number of ECMs in the genome-scaleEscherichia

coli network iJR90439 (761metabolites, 1,075 reactions) is still too

large to be computed by ecmtool. However, even for models of

this size ecmtool still provides useful information. In Box 2 and

Figures 5 and 6, we show how focusing on essential information

allows networks of this size to be analyzed.

Validation of ecmtool for ECM Enumeration
We validated the results of ecmtool in several ways. First, we

have computed the ECMs on many small models for which we

could still check the correctness and completeness of the results

by hand. Second, we used the e_coli_core-model, for which we

could still use the set of EFMs enumerated by efmtool, to validate

our results. The MATLAB code that we used for this validation is

provided as a supplemental file.

The correct set of ECMs should satisfy three properties: (1)

each ECM must be a steady-state conversion, (2) each ECM

must be an elementary vector, and (3) each steady-state conver-

sion must be a positive combination of ECMs without metabo-

lites being canceled in the sum.

We confirmed that all computed ECMs are steady-state

conversions by checking that the net production of internal me-

tabolites equals zero, and that there exists a combination of

metabolic reactions that gives rise to the ECM. Then, according

to the definition of ECMs given in Box 1, we proved that each
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ECM is elementary by showing that it cannot be written as a pos-

itive sum of the other ECMs without the production of any

external metabolite being canceled.

The third property was more difficult to validate, because how

can we prove for all steady-state conversions that they can be

written as a combination of ECMs? We chose to use the set of

EFMs calculated by efmtool. This set spans all possible

steady-state flux combinations the metabolic network allows.

For each EFM,we then calculated its overall conversion and tried

to write this conversion as a combination of ECMs. If we allowed

for an error of 10�7, each conversion could be decomposed into

ECMs. This errormargin was necessary because the results from

efmtool are affected by round-off errors. The computed ECMs

do not suffer from round-off errors because the computation

by ecmtool uses fractions only. Although this slows down

many of the calculations, this is necessary to maintain the accu-

racy of the computed ECMs. For example, for the Double

Description (DD) method it is known that round-off errors can

grow to a non-negligible size.40

Above, we explained and validated that ecmtool finds all

ECMs, given an annotated genome. The annotation is necessary

for the reconstruction of the metabolic network. Strictly

speaking, this minimally requires the annotation of the metabolic

genes. Since the annotation of a genome is not always complete,

we cannot guarantee that all metabolic capabilities encoded on

the genome are found.We can guarantee that all conversions are

found of the genome-derived metabolic network.

Focusing on Subsets of Metabolites Enables Genome-
Scale Calculation of Metabolic Capabilities
Focusing on the stoichiometric relations between metabolites

of major importance by hiding external metabolites of minor

importance is a powerful way to scale up the size of metabolic

networks that can be dealt with in ecmtool. The ECMs that

are obtained now span all possible relations between the

non-hidden metabolites but no longer give information about

what happens to the hidden metabolites (see Box 2 for a

more elaborate explanation). Importantly, the steady-state

assumption remains satisfied and all hidden metabolites can

be produced or consumed, even though this production or

consumption is not reported.



Figure 2. The Number of ECMs Remains Orders of Magnitude Lower than the Number of EFMs

(A) Because many different EFMs refer to the same overall metabolic capability, the number of ECMs is much lower than the number of EFMs.

(B) EFM-versus-ECM numbers in the e_coli_core network.

(C) Subnetworks of the e_coli_core network were selected (see Supplemental Information 10.1) to illustrate how the number of ECMs and EFMs scale with

network size.

ll
OPEN ACCESSArticle
To illustrate how the hide method can help one to focus on the

most important metabolic capabilities of a network, we focused

on the minimal growth strategies that the pathogen H. pylori can

employ. We took the iIT341 model for which we already calcu-

lated the full set of ECMs (see Figure S1) and hid all information

about product secretion (Figure 5). The 3,652 ECMs that were

obtained thus span all possible proportions in which the different

nutrients can be consumed. The results show that the only

mutual dependency between the uptake of different nutrients

is between D-alanine and L-alanine, one of which should always

be consumed. This independence indicates a modular design of

the nutrient uptake system of H. pylori, which might benefit its

flexibility when living in the human stomach.

If we focus only on the conversion of glucose and oxygen into

biomass, we could even compute the ECMs for a genome-scale

model of E. coli: iJR904,39 containing 761 metabolites and 1,075

reactions (Figure6).According to theauthors’definition, the result-

ing ECMs form a minimal spanning set of all feasible conversions

from glucose and oxygen to biomass. This implies that the set of

ECMs contains the most ‘‘extreme’’ conversions. Therefore, we

can use them to draw the full Pareto front between the biomass

yield onglucose andonoxygen, extending amethodusedbyCarl-

son and Srienc to genome-scale models.41 It turns out that this

Pareto front is completely determined by 12 ECMs. For each of

theseECMs,wecan find acombination of reaction rates that gives

rise to this conversion. In doing so, we obtain 12 states of meta-

bolism that fully determine E. coli’s flexibility to optimize its growth

rate in glucose- and oxygen-limited conditions. A flux balance

analysis whereby glucose and oxygen uptake is constrained and

biomass production is maximized will always result in a combina-

tion of these metabolic states.
Case Study: A Metabolic Capability Study of an
Unculturable Rhizobium Strain with ecmtool
Rhizobiaare soil bacteria thatcan induce formationof nodule struc-

tures on plant roots, in which they differentiate into non-dividing

bacteroids. Bacteroids fix atmospheric nitrogen into ammonia
and make this available to the plant in exchange for carbon in the

formof dicarboxylates.42Althoughametabolic networkwas recon-

structed, physiological information about rhizobial bacteroids is

lacking because they are difficult to isolate and extremely fragile.43

In addition, analyzing the metabolic network with an optimization

approach such as flux balance analysis44 is unfavorable because

it is unclearwhat theoptimizationobjectivewouldbe.Afterpersonal

correspondence,ecmtoolwasusedbySchulteetal. toenumerate

the metabolic capabilities of Rhizobium leguminosarum (Schulte

et al., unpublished data currently under revision). This aided in

exposing the role of oxygen supply in the observed amino acid

secretion and carbon polymer synthesis by bacteroids, and in

quantitatively reproducing the carbon cost of biological nitrogen

fixation.
DISCUSSION

Relevance of ECMs
Our method enumerates and quantifies, for any organism for

which a metabolic reconstruction has been made, all possible

stoichiometric relations between substrates, products, and

biomass. This method does not rely on any optimality assump-

tion, nor does it require experimentally obtained physiological

information. It uncovers the full metabolic capability of an organ-

ism, and with that the metabolic footprint that an organism may

leave in its environment.

ECM enumeration stands in a long tradition of methods that

pursue this goal.45 Some of these methods attempt to find an

exhaustive list of reaction pathways that a cell is capable of,

for example calculating extreme currents,46 EFMs,11 or elemen-

tary pathways.47 Thesemethods all have in common that scaling

to genome-scale metabolic networks is impossible because of

the rapid growth of the number of pathways with network

size.17 Other methods try to view the cell as a black box and

focus on what is consumed and what is produced, leading to

the concepts of macrochemical equations,3,5 direct overall reac-

tions,2 and eventually to ECMs.31 ECM enumeration is the only
Patterns 2, 100177, January 8, 2021 5



Figure 3. The Full Metabolic Potential of the

e_coli_core-Model

(A) The ECMs of the full model are shown as the

different columns; each row corresponds to a

different external metabolite. The color scale in-

dicates the stoichiometric coefficient of the

metabolite in the conversion: blue for production

and red for consumption. The coefficients were log-

transformed to allow for visualization of differences

in both large and small coefficients (details and R-

code can be found in Supplemental Information

10.2); small values are shown in gray while zero

values are white. Of the 689 elementary conver-

sions, 613 lead to the production of biomass. These

ECMs were normalized to fix the biomass produc-

tion at 1, while the other ECMs were normalized

such that the sum of absolute coefficients is 1.

(B) If we use the hide method, explained in Box 2, to

hide the production of metabolites, we get 15 ECMs

that span all possible ratios in which substrates can

be converted into biomass. This smaller set of

ECMs is easier to compute and easier to explore,

while the steady-state assumption is still satisfied in

the whole network. So even though the secretion of

products is not reported, it has been implicitly taken

into account, so that all relations between sub-

strates shown in (A) are captured in (B).

(C) If we use the tag method, also explained in Box

2, to report the activity of the pyruvate dehydroge-

nase (PDH) reaction, we find 36 ECMs that sum-

marize all possibilities. It can be seen that the PDH

reaction is not essential for growth but seems to be

necessary for efficient growth on glucose, since the

uptake of glucose is generally lower when PDH is

active.
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method that provides a complete set of metabolic capabilities,

takes reaction irreversibility into account, and scales to

genome-scale networks.

Applications of ECM Enumeration
The enumeration of ECMs facilitates the exploratory study of

metabolic networks: investigation of the ECMs could spark

new hypotheses and show unexpected connections. It therefore

complements optimization approaches like such as flux balance

analysis (FBA)44 that are efficient at answering questions already

known beforehand. Even in the case that optimization ap-

proaches are more efficient, elementary mode analysis provides

additional insight. For example, EFM analysis was used to un-

derstand an adaptive growth strategy of Lactobacillus plantarum

that was observed experimentally and predicted by FBA.48 In

this specific case, the analysis could be restricted to primary

metabolism which facilitated the EFM computation, but this re-

striction is often biologically unreasonable. In the future ECMs

could replace EFMs, such that this approach can bemore gener-

ally applied. Carlson and Srienc41 used the set of EFMs in a rela-

tively small E. coli model to investigate optimized E. coli growth

in carbon- and oxygen-limited conditions. Using this approach,

they could simplify their analysis by selecting four EFMs that

together determined all optimal growth strategies in different

glucose- and oxygen-limited conditions. In Figure 6 we showed

that with ecmtool this approach can be generalized to genome-

scale models.
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Most analyses ofmetabolic networks require a priori physiolog-

ical information that is often not available. For example, it is often

required to impose constraints on exchange fluxes to choose a re-

action rate that needs to be optimized, or at least to know which

metabolites can be produced.3 This hinders the investigation of

species that are insufficiently characterized and difficult to culture.

Moreover, for many organisms it is doubtful whether reaction

rates are optimized at all, for example for pathogens or the

composing cells of higher eukaryotes. ECMsdo not require exten-

sive information, solely a reconstructed metabolic network. The

decisive role that ECMenumeration can play in the study of uncul-

turable and non-optimized organisms is exemplified by the recent

application of ecmtool to investigate the symbiotic relationship

of unculturable bacteroids with plants (Schulte et al., unpublished

data currently under revision).

An overview of all feasible overall reactions might furthermore

be useful when studying interacting species, such as crossfeed-

ing species, host-pathogen interactions, or multi-species com-

munities. The possible interactions are determined by what is

consumed and produced by the individual species, which is

exactly the information offered by the ECMs. Indeed, knowing

the capabilities of one and the incapabilities of another might

lay bare dependencies on which a stable community is built.

Methods to Scale ECM Computation Even Further
Although ECM computation increases the size of models for

which metabolic capabilities can be charted, all ECMs of



Box 2. Hiding and Tagging Enables Focusing on the Most Important Metabolic Conversions

In ecmtool, the user can choose to compute only the stoichiometric relations between a subset of the external metabolites by

‘‘hiding’’ the other external metabolites. The resulting set of ECMs still gives a full summary of these relations and complies

with the steady-state assumption on the full metabolic network. The consumption and production of the hidden metabolites still

occurs but is not reported. As a result, the reported ECMs are not necessarily mass-balanced, which is emphasized by the ques-

tionmarks in Figure 4A. An ECMcomputedwith the hidemethod thus gives a ratio in which the non-hiddenmetabolites can appear

in a conversion, but it does not give any information about which hidden metabolites are consumed or produced in such a con-

version. In return, the hide method facilitates ECM enumeration on much larger networks because fewer ECMs are needed to

describe all conversion relations between the smaller set of non-hiddenmetabolites. Therefore, ECMenumeration with hiddenme-

tabolites can take an organism’s full metabolic complexity and summarize its metabolic capabilities regarding a few variables that

are of interest.

Figure 4. The Hide- and Tag-Methods Enable the Study of the Relations between the Most Relevant Metabolites and Reactions

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2020.100177.

(A) Information about the production of F can be ignored if F is marked as internal and a virtual reaction (cyan) is added that converts metabolite F into nothing.

This strategy aids in fast computation, because the resulting set of ECMs is generally smaller (see also the worked-out example in Methods).

(B) Information about the usage of a reaction can be uncovered by coupling the production of a virtual metabolite (T1, shown in green). The coefficient of T1 in

the resulting ECMs denotes the rate of the reaction of interest.

In Figure 4A we show how metabolite F can be hidden in the ECM computation by adding a reaction that converts it to nothing

(sometimes called a demand reaction). In general, a metabolite is hidden by adding a reaction that creates it from ‘‘nothing,’’ turns

it into ‘‘nothing,’’ or both, depending on whether the metabolite can only be consumed, only produced, or both, respectively. The

metabolite is then marked as an internal metabolite, so that the steady-state assumption is imposed. The added reaction can al-

waysmake sure that the net consumption or production of themetabolite is zero. As a result, the hiddenmetabolite will vanish from

the computations at an early stage of the enumeration, thereby reducing computation time. We illustrate this in the worked-out

enumeration example in Box 3.

In the example of Figure 4A, we obtain the conversions between non-hidden metabolites A, B, and BM, ignoring the information

about whether or not F is produced during these conversions. If metabolites are hidden, the computed conversions should be in-

terpreted with care, acknowledging that the reported conversions are possibly not elementally balanced (since the hidden metab-

olites are excluded from this report). In the example, we emphasize that we do not knowwhether F was produced in the conversion

by adding question marks on the right side of the conversion notation. If metabolites that can be consumed by the cell are also

hidden, question marks should be placed on the left side as well.

Besideshidingmetabolitesofminor importance,wecankeep trackof reaction ratesofmajor importance. The tagmethod, suggested

byUrbanczik andWagner,31 adds a virtual externalmetabolite that is producedwhenever the reaction of interest is used. As a result,

one unit of virtual metabolite is produced when the tagged reaction runs at a rate of 1. Since an ECM reports the stoichiometric co-

efficients of all metabolites in the conversion, the coefficient of the virtual metabolite in the ECM reflects the rate at which the tagged

reactionmust run toproduce theconversion. Thismethodwill showtowhichconversions the reactionof interest contributes,possibly

providing valuable informationabout theessentiality of that reaction. In Figure 4B,weshowanexampleof such reaction tagging.One

of two reactions from C to D is extended to produce virtual metabolite T1, resulting in the reaction C/ D + T1. Any conversion that

uses the reaction of interest produces T1, and its coefficient in the conversion is equal to the reaction rate.

In Figure 3 we illustrate the hide- and tag-methods in the e_coli_core model to respectively highlight the different possible com-

binations of growth substrates, and the necessity of the pyruvate dehydrogenase reaction in these conversions.
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Figure 5. Focusing on Substrate Uptake Shows the Minimal Needs

of Helicobacter pylori

We computed the ECMs, shown as different columns, for the iIT341 model by

allowing for the uptake of all metabolites of a supposedly minimal medium

proposed by the developers of the model (MinII from Thiele et al.38). All output

metabolites were hidden, using the hide method outlined in Box 2. The uptake

of nine substrates is not shown here because these were equal for all ECMs,

indicating that these are directly coupled to biomass formation. The color scale

indicates the log-transformed coefficients of themetabolites in the conversion,

where metabolite production is shown in blue and consumption in red (details

and R-code can be found in Supplemental Information, Section 10.2). The

ECMs are normalized such that biomass production, if non-zero, is 1, other-

wise the sum of the absolute coefficients is fixed at 1. The ECMs were clus-

tered using hierarchical clustering. The block-like ordering of the ECMs in-

dicates that substrate usage of H. pylori is largely modular: the uptake of one

substrate seems independent of the uptake of another.

Figure 6. Few Conversions from Glucose and Oxygen to Biomass

Cover E. coli’s Full Flexibility
We calculated the ECMs for the genome-scale E. coli model iJR90439 by

hiding all external metabolites except for glucose, oxygen, and biomass. This

gives 12 ECMs that span all possible biomass yields on glucose and oxygen.

The dots show, for the 10 ECMs that produce biomass, the necessary glucose

and oxygen uptake to produce one unit biomass. The other two ECMs give the

most extreme conversions from glucose and oxygen to non-biomass prod-

ucts, consuming only glucose (red arrow) or consuming the most oxygen per

glucose (blue arrow). The convex combinations of biomass-producing ECMs

combined with positive multiples of the non-biomass-producing ECMs give all

feasible ways to produce one unit of biomass (yellow area).
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genome-scale networks with thousands of reactions can still not

be computed. We hope that this last scaling step can be made in

the future. Even if this step cannot be made, the hide method

described in Box 2 enables focusing on the most relevant set

of external metabolites while the steady-state constraints are still

satisfied in the whole network. In Figures 3 and 5 we illustrate

with an E. coli core model and a genome-scale H. pylori model

that thismethod can be used to obtain amuch smaller set of con-

versions that spans all stoichiometric couplings between the

user-defined external metabolites. This has not been possible

with any other method. Moreover, when we focused only on

the relations between glucose, oxygen, and biomass production,

the hide method allowed us to scale ECM computation to the

genome-scale E. coli model (Figure 6).

ECM enumeration ignores all information about the activities

of reaction rates. If the hide method is used, even the consump-

tion and production of the hidden metabolites is ignored. For

example, if we hide everything but glucose, oxygen, and

biomass, the ECMs show that the cell is capable of converting

glucose and oxygen into biomass in the reported ratios. Howev-

er, we obtain no information about which other metabolites can

be consumed and produced during this conversion. Therefore,

the ECMs obtained while hiding metabolites are generally not

elementally balanced, illustrated by the question marks in Fig-

ure 4A. This might limit their use if one is, for example, interested

in the thermodynamic properties of the conversion. However, for

each ECM of interest, some flux distributions that lead to it can
8 Patterns 2, 100177, January 8, 2021
be reconstructed. These flux distributions can then be used to

determine the overall conversion. The reconstruction could be

done by imposing the conversion ratios from the ECMas equality

constraints on the model. Solving an FBA problem would then

give one candidate flux distribution, performing a flux variability

analysis49 would give the feasible ranges of all fluxes, and it

might even be possible to find all elementary pathways that

lead to this ECM by computing the elementary flux vectors.34,50

In addition, if one is particularly interested in the activities of a

certain set of reactions in the conversions, this can be reported

by using the tag method, which is explained in detail in Box 2.

In Figure 3C we used the tag method to highlight the use of the

pyruvate dehydrogenase reaction in the e_coli_core network.

Conclusion
In thisworkwepresented ecmtool, a computational tool that cal-

culates all overall chemical conversions that a cell might cata-

lyze—all of its metabolic capabilities—from its metabolic network

alone. We hope that ECM enumeration will in the future become a

standard step after metabolic network reconstruction so that the

metabolism of all known organisms will be fully characterized.
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Box 3. A Worked-Out Example of ECM Enumeration with the Direct Method

To show how ECM enumeration works in practice, we will here work out some steps of the computation of ECMs for the network

given by the following stoichiometry matrix:

v1 v2 v3 v4 v5 v6 v7

N=

A
E
F
BM
B
C
D
G

2
66666666664

�1 �1 0 0 0 0 0
0 0 0 0 �1 0 0
0 0 0 0 0 �1 0
0 0 0 0 0 0 1
1 0 �1 0 �1 �1 0
0 1 0 �1 0 0 0
0 0 1 1 0 0 �1
0 0 0 0 1 1 �1

3
77777777775
;

(Equation 7)

which is also shown as the first network of Figure 7A. All reactions are assumed irreversible, external metabolites A, E, and F

can only be used as inputs, and BM can only be used as an output. For the enumeration we will use the direct intersection

method, and we will not apply any of the network compression steps (examples of these steps can be found in Supplemental

Information Section 5).

Figure 7. A Worked-Out Example of ECM Enumeration on a Small Network
For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2020.100177.

All steps are described in the main text. Metabolites that are underlined are marked as external. The metabolites for which we impose the steady-state

constraint in the next step are circled. Dotted arrows indicate conversions that were found to be redundant, and are thus deleted. (A) The network has two

Elementary Conversions: using either E or F to convert A into BM. (B) When we ignore the uptake of E and F by using the hide-method, the metabolic ca-

pabilities is summarized by just one ECM, converting A into BM.

The stoichiometry matrix gives a list of generators that generates all conversions before we have imposed the steady-state

constraints: Rð0Þ = N. On this collection of generators, we impose the steady-state constraint for metabolite B, i.e., _B =

0. In the stoichiometry matrix we can see that there are three reactions, v2; v4; v7, that do not produce or consume B

and therefore already satisfy this constraint. Of the other reactions, v1 produces B and v3; v5; v6 consume B. Each pair

of a producing and a consuming reaction generates a candidate that satisfies the steady-state constraint, so this gives us

133= 3 candidates:

d v1 + v5: A + E / G;

d v1 + v6: A + F / G;

d v1 + v3: A / D.

(Continued on next page)
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Box 3. Continued

All candidates are tested for redundancy by the adjacency test described in Supplemental Information Section 8.1. This test in-

dicates whether the candidate can be written as a positive combination of already existing reactions. The first two reactions

are non-redundant and are thus added to the next list of generators, but the third reaction can be written as a sum of v2 and

v4, and is therefore not added. We obtain

Rð1Þ =

A
E
F
BM
C
D
G

2
66666666664

v2 v4 v1 + v5 v1 + v6 v7
�1 0 �1 �1 0
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 1
1 �1 0 0 0
0 1 0 0 �1
0 0 1 1 �1

3
77777777775
; (Equation 8)

which is depicted as the second network in Figure 7A.

This process is then repeated for internal metabolites C, D, and G, eventually giving

Rð1Þ =

A
E
F
BM

2
664
�2 �2
�1 0
0 �1
1 1

3
775; (Equation 9)

containing all ECMs, namely 2A + E / BM , and 2A + F / BM .

In Figure 7B we illustrate the ECM enumeration when we use the hide method to ignore the consumption of E and F. Hiding these

metabolites is done by extending the metabolic network with reactions that create E and F from nothing, and marking the metab-

olites as internal. We thus get

v1 v2 v3 v4 v5 v6 v7 v8 v9

N=

A
E
F
BM
B
C
D
G

2
66666666664

�1 �1 0 0 0 0 0
0 0 0 0 �1 0 0
0 0 0 0 0 �1 0
0 0 0 0 0 0 1
1 0 �1 0 �1 �1 0
0 1 0 �1 0 0 0
0 0 1 1 0 0 �1
0 0 0 0 1 1 �1

0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0

3
77777777775
:

(Equation 10)

When we now start by imposing the steady-state constraints for metabolite E, we see that only v5 and v8 do not satisfy this

constraint. Combining these reactions gives the candidate v5 + v8: B / G, which is added to the new list of generators. When

we then impose the steady-state constraint for metabolite F, we get the same candidate v6 + v9: B / G, but since this is not a

new conversion it is not added to the list of generators. It can thus be seen that hiding metabolites E and F immediately reduces

the computational complexity, because now only one reaction from B to G remains while without the hide method there were two

such reactions. Moreover, after imposing the remaining steady-state constraints, we find only one ECM: 2A + ??/ G, where the

question marks indicate that we do not know whether more metabolites are consumed because this information is hidden.

Although it would not give problems in this example, we can in general not hide a metabolite by simply removing it from the

network. This is because information about whether the metabolite can be used as an input, as an output, or both would be

lost from the computation. With the current method, this information is stored in the directionality of the added reaction.
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Materials Availability

There are no physical materials associated with this study.

Data and Code Availability

The source code for ecmtool is freely available on GitHub at https://github.

com/SystemsBioinformatics/ecmtool, and can additionally be installed

through the Python package manager pip. A manual is available as Section

11 of Supplemental Information, which includes the commands for some

worked-out examples for which the results are available in the GitHub

repository.

This study did not generate any new datasets.
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Methods

Here, we will describe only the most important conceptual steps of the ECMs

computation. The method that was implemented in ecmtool is more elabo-

rately described and explained in Supplemental Information. In developing

this method we strongly benefited from the pioneering work by Urbanczik

and Wagner, who not only defined ECMs but also described many of the

enumeration steps. Unfortunately their enumeration tool, implemented in a

mixture of Mathematica, MATLAB, and C, no longer functions, but many of

the ideas can still be used. In the following, we will mention which conceptual

stepswere based on ideas fromUrbanczik andWagner andwhichwere added

by us.

https://github.com/SystemsBioinformatics/ecmtool
https://github.com/SystemsBioinformatics/ecmtool
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The Minimal Ingredients for Computing ECMs

To start the computation of ECMs, we need the following ingredients:

1. A stoichiometry matrix

2. Reversibility information of all reactions

3. Information on which metabolites are external or internal

4. Information on whether external metabolites can be produced,

consumed, or both

Our Python implementation can automatically extract these from an

SBML (Systems Biology Markup Language36) file. In the case that it is

not clear whether a reaction is reversible or not, the reaction can be

assumed to be reversible. Incorrectly marking a reaction as reversible

can only lead to some ‘‘false positives’’—computed ECMs that are in

fact not possible—but not to ‘‘false negatives.’’ Since marking a metabolite

as internal or external is sometimes ambiguous and context dependent, we

here use our own definition: a metabolite is internal whenever the steady-

state assumption should be met, so that its production and consumption

should balance out.

Splitting External Metabolites into Inputs and Outputs Enables ECM

Computation by Extreme Ray Enumeration

The ECMs, formally defined in Box 1, can be described as the elemen-

tary vectors32 in the space of all steady-state conversions. This space is given

by

C =

�
_c = Nv

���� _ci = 0 if i˛ Int; vj R 0 for all j

�
; (Equation 2)

where N is the stoichiometry matrix and Int the index set of internal metabo-

lites. We have, for simplicity, assumed all reactions to be irreversible, but

this is not necessary.

We first consider the case that the space of steady-state conversions is

contained in one orthant, i.e., that for each dimension, i, all conversions

are either non-negative ð _ci R0Þ or non-positive ð _ci %0Þ. In that case, the

elementary vectors coincide with the spanning rays: a well-defined minimal

set of vectors with which we can generate the cone by taking conical com-

binations (weighted sums with positive weights). Enumerating the extreme

rays of a polyhedral cone is a known mathematical problem described, for

example, by Fukuda.51 However, the set C is generally not contained in

one orthant, because some external metabolites can be used as an input

( _ci<0) in some conversions, and as an output ( _ci>0) in others. This adds

ECMs that are not spanning rays of C, so that extreme ray enumeration is

no longer enough.

We devised a new method to solve this problem: we extend the network

slightly to make a new C that is contained in one orthant. Let Aex be an

external metabolite that is both an input and an output. We connect Aex to

two virtual metabolites, Aex;in and Aex;out, through two irreversible reactions:

Aex;in/Aex and Aex/Aex;out. Finally, we mark Aex itself as an internal metab-

olite, such that it has to be kept in steady state. As a consequence, conver-

sions in which Aex was produced must now produce Aex;out to maintain the

steady-state assumption. Likewise, conversions in which Aex was consumed

must now consume Aex;in. As such, all information about Aex is stored in the

production of Aex;out and the consumption of Aex;in, while these new external

metabolites can only be produced or consumed. Therefore, the new space of

steady-state conversions is contained in a single orthant, so that we can pro-

ceed with the ECM computation by enumerating the spanning rays of this

space. After the calculation we can then undo the splitting of metabolites

so that we obtain the full set of ECMs (we prove this in Supplemental Infor-

mation Section 3.3).

Finding the ECMs Is Finding a Generator Representation of C
The space of steady-state conversions C is a so-called pointed polyhedral

cone. Such a cone can be described in two ways: with an inequality represen-

tation or with a generator representation.52

The inequality representation is a set of vectors fa1;.;aMg that give the

bounds that constrain the cone. All elements in the cone _c˛C must satisfy

ai, _cR0 for all i. Or, as a matrix equation,
C =

8>><
>>: _c˛Rn

�������� A
_cR 0; A =

2
664
aT
1

«

aT
M

3
775
9>>=
>>; ðinequality representationÞ:

(Equation 3)

In the generator representation one gives a set of vectors, fr1;.rKg, with

which all elements in the cone can be generated by taking conical

combinations:

C = f _c = Rl j li R 0; R = ½ r1 . rK �g ðgenerator representationÞ:
(Equation 4)

Since we have split the external metabolites into inputs and outputs

before, computing the ECMs now amounts to obtaining a minimal generator

representation of C, because the generators, r i, are then precisely the

ECMs.

TheMain Computation Step: Impose Equality Constraints on a Large

Set of Generators

Following Urbanczik and Wagner,31 we will start the computation with a cone

that is too large, but for which we already have a generator representation. To

be precise, we will start with the cone generated by the columns of the stoichi-

ometry matrix:

C0 = f _c = Nl j li R 0g: (Equation 5)

This cone is the space of all conversions that can result from combinations of

reactions of the metabolic network, regardless of whether these conversions

meet the steady-state requirement or not. Therefore, this cone does contain

the steady-state conversion cone, C, because it contains all possible conver-

sions in steady state. However, to get a good description of C we should still

impose the steady-state constraint. To compute the ECMs, we should there-

fore keep track of how our set of generators changes while we impose the

steady-state equalities _ci = 0 for each internal metabolite.

Concluding: we start with a set of generators of the cone C0, we impose the

set of equalities given by _ci = 0, and are then interested in the generators of the

resulting cone. We have implemented two methods for this main part of the

computation: an indirect method, which was extended from suggestions in

literature,31,51 and a direct method, which we developed ourselves. These

methods are described elaborately in Supplemental Information Sections 7

and 8, but we will also briefly explain both below. We chose to implement

both methods because their merits complement each other. The indirect

method is fast on small- to medium-scale networks, and might therefore be

preferred over the direct method. The method is called indirect because it first

computes a large intermediate result, which is then used to compute the

ECMs. However, the intermediate result might be much larger than the final

result, so that the indirect method can run intomemory issueswhile calculating

the intermediate result, even though the final result is not that large. Our newly

developed direct method performs better on larger networks, and especially

when many metabolites are hidden using the hide method, because it avoids

such large intermediate results.

The Indirect Method

As we will explain below, the indirect method twice uses the DD method.40,53

The DD method computes a minimal set of generators from an inequality rep-

resentation of a cone. This part of the computation is done using polco.54

Although our actual starting point is a generator representation of C0, it is
useful for now to imagine that we already have an inequality representation

of C0. We will later explain how we obtain this representation. This inequality

representation would be a set of vectors h1;.hM, such that

C0 =

8>><
>>: _c˛Rn

�������� H
_cR 0; H =

2
664
hT
1

«

hT
M

3
775
9>>=
>>;: (Equation 6)

Given this representation, it is easy to impose a steady-state constraint _ci =

0, by adding the elementary unit vector be i = ½0;/; 0; 1; 0;/; 0�T both positively
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and negatively to the set of inequalities. This enforces 0%be i, _c= _ci and 0% �bei, _c = � _ci, such that we have actually imposed _ci = 0. In our implementa-

tion, we have sped up the computation by imposing the steady-state

constraint through removing the ith column from the inequality constraint ma-

trix H. We prove in Supplemental Information Section 7.3.1 that this is equiva-

lent. Removing these columns can make many of the rows in the constraint

matrix redundant. For this, we have developed a redundancy removal algo-

rithm that minimizes the size of the inequality constraint matrix (see Supple-

mental Information Sections 5.6 and 7.3.3).

Comparing Equations 2 and 6, we see that by imposing these steady-state

constraints for all internal metabolites we go from an inequality representation

for C0 to an inequality representation of the cone of steady-state conversions C.
From this, we can use the DD method to compute a minimal set of generators

for this cone, yielding the ECMs.

It remains to be shown howwe obtain an inequality representation of C0 from
the generator representation we start with. For this, we assume that C0 has a

dual cone associated with it: C�0, which has two important properties (see Sup-

plemental Information Section 1.3 for more information and explanation):

(1) the dual of the dual cone is again the cone: ðC�0Þ� = C0;
(2) the vectors in the generator representation of a cone form an inequality

representation of the dual cone, and vice versa: genðC0Þ = ineqðC�0Þ.

Our computation starts from a generator representation of C0 (Equation 5),

but by property 2 this is also an inequality representation of its dual C�0. By
applying the DDmethod on this inequality representation, we can find a gener-

ator representation of C�0. This generator representation is, again by property 2,

an inequality representation of the dual of this dual cone. By property 1, we

have thus obtained an inequality representation of C0, which was exactly

what we needed. The steady-state constraints can now be imposed and the

ECMs computed, as explained above.

Note that this indirect method heavily relies on the DD method. We found

that polco54 functions well and is reasonably fast, but can run into memory is-

sues when the networks for which we try to compute the ECMs get too large.

We found that these memory issues were caused by the size of the inequality

representation needed to describe C0, i.e., the issues arise in the first applica-

tion of the DD method. This therefore causes a computational limitation even

though the generator representation of C (which we are eventually after) can be

much smaller. This lack of control of the size of our intermediate results forms

an important disadvantage of the indirect method. Therefore, we developed

the direct method for the computation of ECMs for larger networks.

The Direct Method

Just as the indirectmethod, the directmethod starts with the cone C0 introduced
in Equation 5, generated by the columns of the stoichiometry matrix N. We

collect these generators in a matrix Rð0Þ. We then iteratively impose the

steady-state constraints, _ci = 0, for all internal metabolites i. Imposing such a

steady-state constraint means that we take the intersection of the cone C0
with the hyperplane _ci = 0. The intersection is again a cone, called Cð1Þ, which

is generated by a new set of generators that we collect in amatrixRð1Þ. Proceed-
ing withRð1Þ and imposingmore steady-state constraints, we will eventually end

up with a set of generators for the steady-state conversion cone C.
One such iteration thus starts with a set of generators of Cði�1Þ, collected in

Rði�1Þ. Now, we distribute these generators into three groups—a plus-group, a

zero-group, and a minus-group—depending on whether the generators have

_ci>0, _ci = 0, or _ci<0, respectively. The generators in the plus- and minus-groups

do not satisfy the steady-state constraint, and should therefore be dropped. How-

ever, each combination of a plus-generator with a minus-generator can provide a

candidategenerator thatdoessatisfy _ci = 0.Thesecandidates, combinedwith the

generators that were already in the zero-group,must contain all generators of CðiÞ.
However, when we combine all generators from the plus-group with the

minus-group to create new generators, we will not get aminimal set of gener-

ators. In other words, the cone CðiÞ could also be generated by a smaller num-

ber of generators. This might not seem like a large problem, but the number of

unnecessary generators (also called redundant generators) grows exponen-

tially with the number of iterations, quickly causing computational infeasibility.

Therefore, we have developed an adjacency test. This test determines for each

candidate, i.e., an appropriate combination of a plus-generator with a minus-
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generator, whether it is redundant. It does so by checking if the candidate can

be written as a combination of other generators. If so, the candidate is redun-

dant and should be left out of RðiÞ. This test is implemented by performing a

linear optimization for each candidate. In Supplemental Information Section

8.1 we have added figures to explain our method, and also elaborate on the

linear optimization and explain how we optimized it to be fast enough.

Although performing many linear optimizations is in principle a very slow

process, there is an important advantage: the different optimizations can be

done completely independently. Therefore, we were able to parallelize this

direct method so that it can now be run on large computation clusters.

Network Compression Facilitates ECM Computation on Large

Networks

ECM theory focuses on the overall conversions between external metabolites

instead of on how these conversions come about internally. This distinction

can be exploited to simplify the network even before we start the main compu-

tation steps described above. We have implemented several compression

steps that together bring large networks back to aworkable size. Most of these

compression steps were suggested by Urbanczik and Wagner.31 We have

added the removal of cycles, the removal of redundant reactions, and part

of the removal of infeasible reactions. In Supplemental Information Section 5

we provide proofs and more extensive explanations.

Infeasible Reactions Can Be Removed. The flux vectors that give rise to the

ECMs should satisfy the steady-state and the irreversibility constraints. If we

can prove that a reaction can never be active in a solution that meets both

of these constraints, this reaction can be safely removed. In principle, the

feasibility of a reaction can be tested by running a linear optimization: for reac-

tion iwewould maximize vi such that vjR0 for irreversible reactions j, and such

that Nintv = 0, where Nint is the part of the stoichiometry matrix corresponding

to internal metabolites. If the optimal solution does not give vi strictly larger

than zero, then reaction i is infeasible and can be removed from the network.

In Section 5.1 of Supplemental Information we describe a computationally effi-

cient way of achieving the same.

Redundant Reactions Can Be Deleted. We can delete redundant reactions; a

reaction is called redundant if it can bewritten as a conical combination of other

reactions. Because the function of these reactions can always be replaced by

the combination of the other reactions, it does not add functionality to the

network and can therefore be removed. Redundant reactions in systems with

fewer than about 10,000 reactions can be removed using a program called re-

dund from lrslib,55 so that this suffices during this compression step. As we

have mentioned above, we also apply redundancy removal during both the

direct and the indirect method, and here the number of reactions can become

much larger than 10,000. This is the reason why we also developed our own

parallelizable redundancy test (see Supplemental Information Section 5.6 for

an explanation).

Reversible Reactions Can Be Used to Cancel a Reaction and a Metabolite.

Each reversible reaction can be used to cancel itself and one metabolite it con-

nects to. Say that a reversible reaction, R1, produces an internal metabolite A,

and say that there are several other reactions producing or consuming A. We

prove in Section 5.3 of Supplemental Information that we can, without changing

the ECMs of the network, add or subtract reaction R1 to these other reactions

such that the production or consumption of A is canceled. After doing this for all

reactions connected toA,R1 is theonly reaction left that producesA. This implies

that no reaction flux ispossible throughR1 in a steady-state solution, because the

production of A cannot be compensated by another reaction. Therefore, we can

delete both R1 and A from the network without affecting the ECM results.

Dead-EndMetabolites andConnectingReactionsCanBeDeleted. Sometimes

an internal metabolite can only be produced and not consumed, or vice versa. In

this case, the reaction flux through the reactions connected to this metabolite

has to be zero in any steady-state solution. Therefore, we can delete the metab-

olite and all connecting reactions without affecting the set of ECMs.

Reactions with a Unique Function Can Be Used to Cancel a Reaction and a

Metabolite. Say that we have a reaction R1 which is the sole reaction that

produces a metabolite A, but that there are several reactions that consume

A. Then, again without affecting the set of ECMs, we can add R1 to these

consuming reactions such that the consumption of A is exactly canceled.

The reaction R1 is now the only reaction left that producesA, and can therefore

not be active in a steady-state solution. We can thus cancel both R1 and A.
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Cycles of k Reactions Can Cancel k � 1 Reactions and Metabolites. A cycle

is a set of reactions that can be used in a certain ratio such that nothing is pro-

duced or consumed. Say that the reactions R1;.;Rk form a cycle, so that with

appropriate weights li we have l1R1 +/+ lkRk = B/B. In addition, say that

R1 produces an internal metabolite A. In Section 5.5 of Supplemental Informa-

tion we show that we can now use a trick similar to what we used with the

reversible reactions. We use l1R1 as the forward reaction and l2R2 + /+

lkRk as the backward reaction to cancel the production and consumption of

A. After doing this, R1 will again be the only reaction producing A, so that we

can delete both R1 and A from the network. Since we compensated for the ac-

tion of R1 in the rest of the network, we will be left with a cycle using the reac-

tions R2;.;Rk , on which we can use the same trick again. In this way, we can

delete k � 1 reactions and k � 1 metabolites.

The ECM Computation Was Implemented in Python

We implemented our algorithms in a publicly available Python program called

ecmtool. It is freely available on GitHub at https://github.com/

SystemsBioinformatics/ecmtool, and can additionally be installed through

the Python package manager pip. The direct and indirect computation

methods are both available within the program. A manual is available as Sec-

tion 11 of Supplemental Information, and some worked-out examples

are given.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100177.
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Supplementary figures

Figure S1: All Elementary Conversion Modes for the iIT 341-model of Helicobacter pylori
could be computed. We show the ECMs that support growth on a defined medium proposed by
the model developers (see minII in1). For visualization purposes, we only show which metabolites are
consumed or produced rather than their exact stoichiometric coefficient. In addition, we show only
the ECMs that in which L-alanine was not taken up, and in which acetate and biomass was produced,
because the full set of 874 236 ECMs was simply too large to show. After these simplifications, there
were still 7740 unique ECMs. The full set of ECMs is available as a supplementary file.

Notation and conventions

In the following, we will denote matrices by capital letters (A), and vectors by bold lowercase letters (v)
(or bold uppercase letters if the vectors are rows or columns from a matrix). The requirement that all
components of a vector v ∈ Rn are nonnegative, vi ≥ 0, i ∈ {1, ..., n}, will be written as v ≥ 0. Time
derivatives are indicated by a dot, ċ = dc

dt . All single vectors in this work denote column vectors, unless
otherwise stated. The ith row of a matrix A is indicated as Ai•. Column vectors of A are sometimes
denoted as A•j .

In biochemical networks, an underlined metabolite (S) is assumed to be ‘external’, which here means
that the steady-state constraint does not have to be satisfied for that metabolite. To simplify the
following analysis, we will assume all reactions to be irreversible, unless explicitly stated otherwise. We
can do this without loss of generality since all reversible reactions can be decomposed into an irreversible
forward and an irreversible backward reaction.

1 Background information on polyhedral computation

We will shortly review the concepts from linear algebra that we will need for the definition and enumer-
ation of ECMs (see for example2).



1.1 Inequality and generator descriptions of polyhedral cones

A subset S of Rd is called a convex cone if any conical combination of two vectors v,w ∈ S is still a
vector in S, i.e., for all α, β ∈ R≥0 we have αv+ βw ∈ S. S is called a polyhedral convex cone if there is
some constraint matrix A such that

S =
{
x ∈ Rd | Ax ≥ 0

}
, (inequality representation). (1)

This way of describing S is called the inequality-, or H-representation. The Minkowski-Weyl theorem
tells us that every polyhedral cone can be generated by taking conical combinations of a finite set of
vectors, r1, . . . , rn ∈ Rd. If we collect these vectors as the columns of a matrix R, this gives us a second
representation of S called the generator-, or the V -representation:

S = {x = Rλ | λi ≥ 0} , (generator representation). (2)

Such representations of S are denoted by ineq(S) and gen(S), respectively.

1.2 Pointedness

Vectors v ∈ S for which −v ∈ S as well, are called linealities. The space that comprises all such vectors is
called the lineality space. Since by the definition of S, we would have Av ≥ 0 and A(−v) = −Av ≥ 0, we
can describe the lineality space as the null-space of the constraint matrix that was used in the inequality
representation of S, i.e.,

Lin(S) =
{
x ∈ Rd | Ax = 0

}
. (3)

A polyhedral cone is called pointed if its lineality space contains only the zero vector. A pointed cone
has a unique generator representation.

In one of the steps of ECM-enumeration, one can encounter a non-pointed polyhedral cone. The
computation, however, can only proceed with a pointed cone. In such cases we can use that any cone is
the direct sum of its lineality space and a pointed cone.3 To be precise, for any cone S, we have

S = Lin(S)⊕ (S ∩ Lin(S)⊥). (4)

The pointed part of the polyhedral cone is thus given by all vectors in the cone that are perpendicular
to the lineality space. Using a set of basis vectors n1, . . . ,nk of the lineality space Lin(S), we can even
get an inequality representations for the two parts

S =
{
x ∈ Rd | Ax = 0

}
⊕
{
x ∈ Rd | Ax ≥ 0, Nx = 0

}
, (5)

where N =
[
n1 · · · nk

]T
.

1.3 Dual cones

Let S be a polyhedral cone in Rd. Its dual cone S∗ is defined as

S∗ = {u ∈ Rd | u · v ≥ 0,v ∈ S}. (6)

The dual of the dual of a convex polyhedral cone is equal to itself if S is convex and closed.
In Figure S2 we illustrate an important property of dual cones: a generating set of C, gen(C), forms

the inequalities representation of C∗, ineq(C∗), and vice versa:4,5

gen(C) = ineq(C∗), (7)

ineq(C) = gen(C∗). (8)



(a) (b)

Figure S2: Cones are spanned by inequality constraints of their dual. (a) A 2-dimensional cone
C (green) spanned by generating vectors v1 and v2, meaning that any nonnegative linear combination
of them (light-green arrows) is also in C. C can additionally be described by the intersection of the two
halfspaces w1 · x ≥ 0 and w2 · x ≥ 0 (blue). Here, w1 and w2 form the inequality representation of
C. (b) The dual of C, C∗ (blue), is spanned by the inequality representation vectors of C. Thus, we can
see that the inequality representation of a cone forms generating vectors of its dual, and its generating
vectors form the inequality representation of its dual. Both cones, C and C∗, extend to infinity; only a
section is drawn.

1.4 Adjacent rays

Assume that we have an m× n inequality representation A of the polyhedral cone

C = {x ∈ Rn : Ax ≥ 0}

and corresponding ray representation R:

C = {x ∈ Rn : x = Rλ,λ ≥ 0}.

For each extreme ray rj of the cone (i.e., the j-th column of R), define the zero set

Z(rj) = {i : Ai•rj = 0}.

Two distinct extreme rays rj+ , rj− ∈ R are adjacent if for any extreme ray rj , we have

Z(rj+) ∩ Z(rj−) ⊆ Z(rj) =⇒ rj ∼ rj+ or rj ∼ rj− ,

where ∼ means that the two vectors are scalar multiples of each other. In other words, two vectors rj+
and rj− are adjacent if there are no other extreme rays that satisfy the constraints with equality that
are satisfied with equality by both rj+ and rj− from A.

Geometrically, two distinct extreme rays are adjacent if the minimal face of C containing both contains
no other extreme rays. For more details, see Proposition 7 in.6

1.5 The double description method

The Double Description method is an algorithm originally suggested by Motzkin et al.7 to translate
between the two representations of a cone. For a more comprehensive description and proofs of the
propositions, see.6

A pair (A,R) is called a double description pair or DD pair if A is an inequality representation
and R is a generator representation of the same cone. That is,

{x ∈ Rn : Ax ≥ 0} = {x ∈ Rn : x = Rλ,λ ≥ 0}.

The following proposition shows that an algorithm that can translate in one direction automatically also
solves the inverse direction.



Proposition 1. (A,R) is a DD pair if and only if (RT , AT ) is a DD pair.

The double description method provides an algorithm to find an R based on a given A such that (A,R)
is a DD pair. As we described in the previous section, RT is an inequality representation for the dual
cone of the cone represented by the inequalities in A. If we want to find a DD pair starting from a
given R, we can take RT and treat it as the inequality representation of a cone, then apply the double
description method to find AT (hence giving (A,R)).

The core of the double description algorithm is an incremental procedure. We start with an m×n matrix
A, giving the inequality representation of a cone that we will denote by P (A). Let K ⊂ {1, . . . ,m} be a
subset of the row indices of A and AK the submatrix consisting of the corresponding rows. Suppose we
already have a ray representation for the cone P (AK), i.e., we have a DD pair (AK , RK). To perform
the incremental step, select any index i not in K; we will denote the corresponding row by ai. We will
add ai to AK to form AK∪{i} and use RK to construct a DD pair (AK∪{i}, RK∪{i}).

First, we partition the column index set J of RK into three parts:

J+ = {j ∈ J : aiR•j > 0},
J0 = {j ∈ J : aiR•j = 0},
J− = {j ∈ J : aiR•j < 0}.

To make the matrix RK∪{i} we keep all the columns R•j from RK with j ∈ J+ or j ∈ J0. These rays
satisfy the inequality given by the row ai already: aiR•j ≥ 0 and so they are in P (AK∪{i}) unchanged.
The columns corresponding to J− are not in the new cone, but they give rise to new generating rays in
the following way.

Let rjj′ = (aiR•j)R•j′ − (aiR•j′)R•j for each (j, j′) ∈ J+×J−. Note that airjj′ = 0 for each choice
of (j, j′). These columns are also added to RK∪{i}.

Figure S3: A cone (blue) spanned by generators (black) is being intersected with an inequality constraint
(orange). All generators on one side of the constraint can remain, and those on the other side are replaced
by the non-redundant the red vectors. The red vectors are conical combinations of each pair of extreme
rays on both sides of the halfspace, such that the red vector exactly saturates the constraint. This process
is repeated for all inequality constraints, until only the generating set of the final cone remains.

To sum up, RK∪{i} is the d×|J ′| matrix with columns given by the index set J ′ = J+∪J0∪(J+×J−),
where rjj′ = (aiR•j)R•j′ − (aiR•j′)R•j . In Figure S3, one intersection with an inequality constraint is
illustrated.

Proposition 2. (AK∪i, RK∪{i}) is a DD pair.



Repeating this step, eventually all the rows of A will be included, giving a DD pair (A,R) as intended.
What is left is to find is a starting point. A good option is starting with d linearly independent rows of
A to form AK0

. Then we can find an inverse matrix, and AK0
x = λ ≥ 0 implies that x = A−1K0

λ, so that

(AK0 , A
−1
K0

) is a DD pair.

1.5.1 Redundant rays

Although the Double Description method as described above gives a ray representation R, it is not
necessarily a minimal representation: there can be redundant columns in R that are not extreme rays
of the cone. In fact, the number of unnecessary rays in practice increases very fast and goes beyond any
tractable limit.6

One possible solution is to discard all redundant vectors, preferably between each step of the Double
Description method. This can be done, for example, with the program redund from lrslib,8 which
looks for redundant vectors by trying to find matching conic combinations of other rays (see also Section
5.6). However, this quickly becomes computationally intensive for large sets of vectors.

Alternatively, for each rjj′ that we created with (j, j′) ∈ J+ × J−, we can test the originating rays
for adjacency, which we defined above in Section 1.4. It turns out the new ray rjj′ is redundant if and
only if its parent rays were not adjacent (Lemma 8 in6). The Double Description method, including an
adjacency test, is efficiently implemented in Polco.9 In Section 8.1.2 we will return to this adjacency
test, because we need an adapted version for our direct intersection method.

2 Defining Elementary Conversion Modes

A metabolic network with r reactions and m metabolites can be summarized in an m× r stoichiometry
matrix N . The entries in this matrix denote how much of which metabolite (rows) are used in each
reaction (columns). The stoichiometric matrix can be multiplied by a vector of reaction rates, a flux
vector v, to yield the net production and consumption of metabolites by this combination of reaction
rates: ċ = Nv. We will call ċ a conversion. We can assume without loss of generality that all reactions
in the metabolic network are irreversible, meaning that v ≥ 0, and we will do so unless otherwise stated.

We often impose a steady-state constraint on a part of the metabolites, enforcing that the net pro-
duction of these metabolites is zero. In the following, we will call the metabolites for which we impose
the steady-state internal metabolites, and we collect their indices in an index set Int. We can now define
two important sets, the steady-state flux cone:

F = {v ∈ Rr | NIntv = 0, vi ≥ 0 if reaction i irreversible} , (9)

and the steady-state conversion cone:

C = {ċ = Nv | NIntv = 0, vi ≥ 0 if reaction i irreversible} . (10)

Both of these sets are convex polyhedral cones and thus have both an inequality representation, and a
generator representation. The definitions of Elementary Flux Modes and Elementary Conversion Modes
are closely related to the generator representations of these cones. We here give a definition of EFMs
that is different from their original definition, but which can be found in later literature.10–12 We find
that this definition clarifies the analogy with ECMs better.

Definition 1. The set of Elementary Flux Modes (EFMs) is the minimal set {efm1, . . . , efmK} ⊂ F
of flux vectors such that each steady-state flux vector can be written as a positive sum of EFMs, without
the flux of any reaction being cancelled in that sum.

The first part of this definition implies that all vectors in the generator description of the steady-
state flux cone F are EFMs. However, in case that we have reversible reactions, these do not form the
complete set of EFMs. Rather, we should add conical combinations of these generators that make an
additional reaction rate equal to zero. The complete set of EFMs may be found by taking the union
of all generator sets of the intersections of F with the orthants. In practice, it is easier to just split all
reversible reactions in a forward and a backward reaction. As such, no reaction can be cancelled and the
EFMs are exactly the generators of the new flux cone F .



Definition 2. The set of Elementary Conversion Modes (ECMs) is the minimal set of conversions
{ecm1, . . . , ecmL} ⊂ C such that each steady-state conversion can be written as a positive sum of ECMs,
without the production of any external metabolite being cancelled in that sum.

This definition is further explained and illustrated in Box 1 of the main text. It is important to note
that a reasoning can be used here that is similar to what was used for the EFMs above. That is, there
are two ways of calculating ECMs as the generators of a convex polyhedral cone. First, we can take the
union of all generators of the cones obtained by intersecting C with the orthants. Second, we can split
all metabolites that can be produced and consumed into two virtual metabolites: one that is consumed,
and one that is produced. We will take the latter approach in this work.

3 Pre-processing of the metabolic networks

To facilitate the enumeration of ECMs, ecmtool goes through some pre-processing steps after reading in
a metabolic network. We will here review these steps shortly. Although ecmtool works well with most
models in the SBML-format, we recommend the user to always review the success of these preprocessing
steps. We have added arguments called --print metabolites and --print reactions to facilitate this
review. With the printed lists of parsed metabolites and reactions, the user can check if the correct
metabolites are marked as external, and if their directionality is as intended.

3.1 Deleting exchange reactions and determining directionality of external
metabolites

Ecmtool first detects external metabolites by using functionalities from the cbmpy-package (http://
cbmpy.sourceforge.net/). Metabolites are marked external when their metabolite-id has a specific
suffix (the suffix for the external compartment is set to e, but this can be changed with the argument
--external compartment), or when the metabolite is attached to a ‘dead-end reaction’, which is a
reaction that involves only one metabolite.

These dead-end reactions are virtual reactions called exchange reactions. Exchange reactions are
present in models to allow the steady-state assumption to hold even for the external metabolites, since
these external metabolites are often assumed fixed. In the case of ECMs, however, we are interested
in the production and consumption of these external metabolites, and will therefore delete all exchange
reactions.

Based on the directionality, reversibility and constraints of the exchange reactions in the model,
ecmtool will detect if the external metabolite can be used as an input, an output, or as both. This
conclusion can be overruled easily by using the --inputs- and --outputs-arguments.

3.2 Adding an objective metabolite

Many models contain an objective reaction, often a virtual reaction that uses all components that are
needed for biomass production in the right proportions. Although ECMs in principle do not report any
reaction rates, the rate of the objective reaction is most often of interest. Therefore, ecmtool by default
adds an external ‘objective metabolite’ to the model that is produced in the objective reaction. In this
manner, the rate of the objective reaction is reported in the production of the objective metabolite. The
addition of this objective metabolite can be disabled by the --add objective metabolite-argument.

3.3 Splitting metabolites

As was discussed in Section 2, not all ECMs are generating vectors of the steady-state conversion cone
defined in (10), unless this cone is contained in one orthant. However, the conversion cone might not
be contained in one orthant since some metabolites can both be consumed ċi < 0 and produced ċi > 0.
In the Method-section of the main text, we explained how this can be remedied by splitting external
metabolites into input- and output-metabolites. We will here make this explanation more precise.

We start with a stoichiometric matrix N , and possibly overlapping index sets Input and Output ,
indicating which metabolites can be taken up and which can be produced. We now create a new
metabolite for each metabolite in Input and for each metabolite in Output . For convenience, let us



give index Ii to the virtual metabolite that is added if i ∈ Input , and the virtual metabolite added
if i ∈ Output index Oi. An extended stoichiometry matrix N̄ is created by adding rows and columns
for these metabolites. The new columns are of the shape êi − êIi and −êi + êOi

, where êi indicates
the i-th elementary unit vector. These new columns model the irreversible ‘reactions’ cIi → ci and
ci → cOi . The metabolite ci is marked as internal, so that the steady-state assumption should be
satisfied. We then enumerate the generator description of the conversion cone associated with this
extended metabolic network. The results are mapped back to our original metabolic network by the
unsplitting rule: ċi = ċIi + ċOi

.

Theorem 3. Given a metabolic network, we follow the outlined recipe above to create an extended
metabolic network. All Elementary Conversion Modes of the original metabolic network can be found as
the generator representation of the conversion cone of the extended metabolic network.

Proof. Let us first show that there is a bijection f from the space of conversions of the original metabolic
network, C, to its image in the space of conversions of the extended metabolic network C̄. Let ċ be a
steady-state conversion of the original metabolic network. We can map the conversion to an extended
conversion by defining

fIi(ċ) = ċi if ċi < 0 and i ∈ Input ,

fOi
(ċ) = ċi if ċi > 0 and i ∈ Output ,

fj(ċ) = 0 otherwise.

This is a steady-state conversion for the extended metabolic network. Its inverse is then given by the
unsplitting rule:

gi(x̄) = x̄Ii + x̄Oi .

This map is a bijection between the original steady-state conversion cone and its image in the extended
cone. This shows that any conversion in the original steady-state conversion cone is still present in
the new conversion cone. Now, we only have to show that any ECM of the original metabolic network
becomes a generator of the new conversion cone, and vice versa.

We thus first want to show that if ċ is an ECM in the original metabolic network, then f(ċ) is a
minimal generator of C̄. We will prove this by its contrapositive: assume that f(ċ) ∈ C̄ is not a minimal
generator. Then, we know that there are two steady-state conversions x̄, ȳ ∈ C̄ that are not multiples
of each other, such that f(ċ) = λ1x̄ + λ2ȳ, with λ1, λ2 > 0. We can now apply the inverse mapping g
to find a similar decomposition in C. According to the definition of ECMs, this shows that ċ is not an
ECM, unless for all i we have λ1gi(x̄) = λ2gi(ȳ), or if for some i we have λ1gi(x̄) = −λ2gi(ȳ). So, we
have either λ1(x̄Ii + x̄Oi

) = λ2(ȳIi + ȳOi
), or λ1(x̄Ii + x̄Oi

) = −λ2(ȳIi + ȳOi
). In addition, we know for

each i by the definition of the mapping that either fIi(ċ) = 0, or fOi
(ċ) = 0. Let us assume the former

without loss of generality, then we know that x̄Ii = ȳIi = 0. Adding the pieces together, we find that
either λ1x̄Oi = λ2ȳOi , or λ1x̄Oi = −λ2ȳOi . Since x̄Oi , ȳOi ≥ 0, the latter is impossible, implying that for
all i, λ1x̄Oi

= λ2ȳOi
. But this is in direct contradiction with x̄ and ȳ not being multiples of each other,

and ċ can not be an ECM. We conclude that any ECM of the original metabolic network must map to
a minimal generating vector of the extended conversion cone.

It remains to be shown that for all vectors x̄ in the minimal generating set of C̄, g(x̄) is an ECM.
Let’s again use contrapositivity, such we assume that g(x̄) can be written as g(x̄) = λ1ċ + λ2ḋ so that
no metabolite is cancelled in the sum. Even stricter, if we choose appropriate convex combinations of
λ1ċ and λ2ḋ, we can find two vectors that we will call ċ′ and ḋ′, for which we have g(x̄) = ċ′ + ḋ′ and
that both lie in the same orthant as g(x̄). Since these two vectors are not multiples of each other and
lie in the same orthant, the mapping f will map them to two vectors that are also not multiples of each
other, and for which we still have x̄ = f(ċ′) + f(ḋ′). This shows that if g(x̄) is an ECM, then x̄ cannot
be in the minimal generating set of C̄. So, by contrapositivity this means that all vectors in this minimal
generating set map to ECMs of the original metabolic network. This completes the proof.

As we will mention later, the splitting of metabolites can be postponed to later in the calculation if the
‘indirect method’ is used. This is sometimes beneficial, decreasing both memory usage and computation
time, but not always. We have not found a clear indication of when it is useful to postpone the splitting.
Therefore, we have added an argument --splitting before polco that determines when the splitting
is done, so that the user can try out which method works best for the model of interest.



3.4 Converting the stoichiometic coefficients into fractions

The ECM enumeration that we implemented works entirely with fractions. This is necessary to keep
round-off errors from accumulating which would lead to reporting too many ECMs. Most metabolic
networks have some reactions of which the stoichiometric coefficients are decimal numbers: usually the
biomass reaction, and sometimes some ‘maintenance’ reaction. Each number with a finite number of
decimals can be exactly converted to a fraction. This is what we do in this step.

It is important to note that coefficients with many decimal numbers will require the numerator and
denominator of the fractions to be large numbers. These large integers can slow down the computations.
The user might therefore choose to round off the decimal numbers in the input SBML-file if these do not
matter too much.

3.5 (Optional): Hiding metabolites and tagging reactions

We have discussed the --hide- and --tag-methods in Box 2 of the main text. Comma-separated lists
can be given to ecmtool indicating of which metabolites the production and consumption should be
ignored, and of which reactions the rates should be reported. When metabolites are hidden, virtual
sink or source reactions are added at this point, and the metabolite is itself marked as internal. When
reactions are tagged, virtual metabolites are added that are produced during these reactions.

4 A custom LP-solver

During the enumeration of ECMs we will often encounter Linear Programs of a specific type. We
developed a customized LP-solver for this type of problems based on the conventional Revised Simplex
Method, see for example.13 Our solver outperformed other solvers on our type of Linear Programs by
both speed and accuracy. In this section we describe the Revised Simplex Method and how we have
optimized it.

4.1 Problem description

In the ECM enumeration, we often encounter linear problems where an initial feasible solution is known,
but where we want to know if there are alternative solutions. Specifically, let λInit be the initial solution,
and let Init be the index set of its support. We want to know if there is a solution that uses more than
only these reactions. We can use the following Linear Program

maximize
λ

∑
j /∈Init

λi

subject to Rλ = RλInit (11)

λi ≥ 0.

A normal Linear Program would keep searching until the maximizer is found, but we are not interested
in the maximizer. Rather, we are interested in whether an alternative solution exists. We thus developed
an LP-solver with an ‘early exit’. Moreover, we used that in this type of problems an initial solution is
always known beforehand. Lastly, many of the problems that we will encounter are highly degenerate,
as defined below. So, in summary, our problems have three specific features:

� Solver should stop when first alternative solution is found

� Initial feasible solution is known

� Problem is highly degenerate

Before, we can explain how our LP-solver exploits these features, we give a short introduction to Linear
Programming. Then, we will describe the revised simplex method, and after that describe how we used
and adapted this method.



4.2 Some background on Linear Programming

Let us consider a Linear Program in the form of (11). Let m × n be the dimensions of R. It is safe to
assume n ≥ m; if this is not the case, there are more linear constraints than variables, and some of them
will be redundant.

A basis for the LP is any set B of m indices from {1, . . . , n} such that the corresponding columns of
R form a basis of the column space of R. In other words, a basis is a B such that the m×m submatrix
RB of R is non-singular.

We say that a feasible solution λ is a basic feasible solution (BFS) with basis B if all the non-zero
elements of λ are also elements of B (B may be a larger index set, though). Note that any basis B has
at most one corresponding BFS: since RB is nonsingular, RBλ = x has a unique solution λB. This λB
is a BFS if and only if it satisfies λB ≥ 0. The converse is not true: one BFS can have multiple bases.
This occurs when there is a BFS λ that has fewer than m non-zero elements. This is called a degenerate
solution. We will often encounter degenerate solutions. In fact, the initial feasible solution that we will
use is almost always degenerate.

Degenerate points can cause cycling, a situation where iterative solution methods such as the (revised)
simplex method visit the exact same point more than once. When this happens, the method will again
start the same cycle, and will thus never terminate. We will overcome this by perturbing the Linear
Program, see Section 4.7.

4.3 The revised simplex method

The revised simplex method uses the idea of a basis for a linear program to find an optimal solution.
Essentially the method is based on the Karush-Kuhn-Tucker (KKT) conditions, which are necessary and
sufficient conditions for the optimality of a Basic Feasible Solution. More information is available in the
book Numerical Optimization,13 specifically chapter 12 and 13.

Suppose we have an LP problem in standard form:

minimize
x

cTx

subject to Ax = b (12)

xi ≥ 0,

where we assume A to have size m× n and rank m. The KKT optimality conditions are:

Ax = b, (13)

ATπ + s = c, (14)

x ≥ 0, (15)

s ≥ 0, (16)

sTx = 0. (17)

These conditions derive from constrained optimization using Lagrange multipliers, where π is the La-
grange multiplier associated with the constraint Ax = b, and s is the Lagrange multiplier associated
with x ≥ 0. Practically it means that if we find a combination of x,π and s such that all conditions are
met, we have found the optimal solution to the LP. These conditions do not only tell us when we are
done, but also induce an optimization strategy, which we describe below.

The revised simplex method starts in a Basic Feasible Solution x with feasible basis B of length m.
If the problem is non-degenerate, all entries in xB will be strictly greater than zero. One can thus
construct the feasible basis directly from a non-degenerate solution. However, we will often have an
initial feasible point with fewer than m nonzero’s. In that case, fewer than m columns of A are needed
to satisfy the constraints. To still be able to start with the revised simplex method, we must then supply
these columns with additional columns from A such that we get an invertible m ×m-matrix AB . The
way to find these additional columns is described in Section 4.5. Let us for now proceed by assuming
that we have a basis B of size m corresponding to the feasible solution x.



We denote by N the indices not in B, and split x, c and s according to B:

x =

[
xB

xN

]
=

[
A−1B b

0

]
, c =

[
cB
cN

]
, s =

[
sB
sN

]
.

Then, we can also split the second KKT constraint in two parts:

AT
Bπ + sB = cB , (18)

AT
Nπ + sN = cN . (19)

In order to satisfy the last KKT condition, let sB = 0. Since AB and cB are known, we can deduce from
(18) that

π = (AT
B)−1cB . (20)

Next, from (19) we can compute sN according to:

sN = cN −AT
Nπ. (21)

Now x satisfies the KKT conditions if and only if sN ≥ 0, so we can tell whether or not the vertex x
is optimal. If x is indeed optimal, we are done and the LP is solved. Otherwise, we perform a pivot
operation.

4.4 Pivoting: replacing one of the columns in the feasible basis

One step in the revised simplex method involves replacing one column index in B by one from N .
To select the entering index, consider sN . At least one element is negative, otherwise the previous x

would have been optimal. We will see later that the entries in sN capture how much the objective value
would decrease when the corrsponding column is added to the basis. Now choose any q with sq < 0 as
the entering index. The procedure for altering B and changing x and s accordingly is as follows:

1. Increase xq from zero;

2. Keep all other components of xN at zero;

3. Change the current basic vector xB in such a way that Ax = b remains satisfied;

4. Keep increasing xq until one of the components of xB (say xp) reaches zero, or determine that no
such component exists (then the LP is unbounded);

5. Remove p from B and replace it with q.

To perform step 3 we can use the following reasoning. Call the new vertex x+. Since both Ax = b and
Ax+ = b, and since xN = 0 and x+i = 0 for i ∈ N \ {q}, we have

Ax+ = ABx
+
B +Aqx

+
q = ABxB = Ax. (22)

Using that AB is non-singular, we can left-multiply with A−1B to obtain

x+
B = xB −A−1B Aqx

+
q = xB − dx+q , (23)

showing that we should subtract from xB the vector d = A−1B Aq. Step 4 tells us that we should subtract
this vector until one of the entries in x+

B becomes zero. This means that we must have

x+q = min

{
(xB)1
d1

, . . . ,
(xB)m
dm

}
, (24)

and that the leaving column has index p = argmin
{

(xB)1
d1

, . . . , (xB)m
dm

}
.

We can verify that this pivot operation always leads to a decrease in the objective cTx.

Theorem 4. The above described pivot operation will always lead to a decrease in the objective function.
The change is always strictly less than zero if the original solution x is non-degenerate.



Proof. We know that
x+
N = (0, . . . , 0, x+q , 0, . . . , 0)T , (25)

so
cTx+ = cTBx

+
B + cTNx

+
N

= cTBx
+
B + cqx

+
q

= cTBxB − cTBA−1B Aqx
+
q + cqx

+
q .

(26)

From (20) we have cTBA
−1
B = πT , and from (19) we get πTAq = cq − sq. Therefore,

cTBA
−1
B Aqx

+
q = πTAqx

+
q = (cq − sq)x+q , (27)

so by substituting in (26) we obtain

cTx+ = cTBxB − (cq − sq)x+q + cqx
+
q = cTBxB − sqx+q . (28)

Since xN = 0, we have cTx = cTBxB and therefore

cTx+ = cTx− sqx+q . (29)

We chose q such that sq < 0, and since x+q ≥ 0, it follows that the step produces a decrease in the

objective function cTx. The change in objective value is strictly less than zero whenever x+q is strictly

larger than zero. Since x+q = min
{

(xB)1
d1

, . . . , (xB)m
dm

}
, we are sure to have a strict decrease whenever

xB > 0, which is the definition of a non-degenerate solution.

It is important to emphasize what happens when we have a degenerate solution. In that case, one
of the entries in xB is zero, and the pivot operation might thus lead to a step of size zero: column p
was used zero times in the original solution, and is now replaced by column q which is also used zero
times. In this case, and in this case only, the objective value does not strictly decrease during the pivot
operation. This can be problematic, because the simplex method could later return to the same basis.
If the same pivot step is again made at that point, one could end up in an infinite cycle. Such cycling
is impossible in the non-degenerate case, since the strict decrease in objective value prevents the same
basis from re-occurring. This problem can be prevented by keeping track of the bases that have already
been visited, or by perturbing the system to get rid of degeneracy. We will describe in Section 4.7 that
we choose the latter.

4.5 Finding a starting basis efficiently

As mentioned in Section 4.1, we always already have an initial feasible solution for the Linear Programs
that we must solve in this work. This initial x satisifies the constraints, but it is not yet a Basic Feasible
Solution. For that we need an index set B of length m that contains at least all indices that correspond
to the nonzero’s of x, and such that AB is non-singular. Because our initial feasible solutions are often
degenerate, x generally comprises fewer than m nonzero entries, so that we should supply B with columns
of A that do not contribute to satisfying the constraints, i.e., the corresponding entry in x is zero.

To do this, we start by taking the indices in which x is non-zero. The columns corresponding to these
indices should be linearly independent, otherwise we must find an alternative solution where one of the
columns is no longer necessary. However, in the problems that we will encounter, the linear independence
is guaranteed by the preceding steps. Then, we start iterating over the columns of A: we try to add a
column and check to see if the resulting matrix is still of maximal rank. When this is not the case, the
most recently added column is dropped again. After trying this for all columns of A, we are guaranteed
to find m total columns that are linearly independent, since A has rank m.

Finding a basis in this manner is a time-consuming computation, but we do not have to go through
this procedure each time that we do an LP. Indeed, as will become clear in Sections 7.3.3 and 8.1.2, we
will need to do many LPs for the same constraint matrix A, but with a different initial feasible solution
x. This means that we can use the basis B found in the previous LP as a starting point. We only have to
make sure that the indices corresponding to the nonzero’s in x are in B. Therefore, we use the following
method.



Let AB be an invertible matrix, and Aq a column. We want to construct a new invertible matrix ĀB

by replacing one of the columns from AB by Aq. We solve

ABx = Aq, (30)

which according to Cramer’s rule gives

xi =
det(A

(i)
B )

det(AB)
, (31)

where A
(i)
B is the matrix formed by replacing the i-th column of AB by Aq. Since Aq is nonzero, there

must be an i for which xi 6= 0, which implies that det(A
(i)
B ) 6= 0. We can thus find a new invertible

matrix by replacing the i-th column of AB by Aq.

4.6 Detecting an early exit possibility

As mentioned in Section 4.1, the LP-solver may stop when it is clear that the initial solution is not
the only possible solution. This means that we can stop the program at two events: 1) when the KKT
conditions are met, meaning that the initial feasible solution is the only (and thus the optimal) solution,
or 2) when the first non-zero step is made during a pivot operation, showing that an alternative solution
exists.

From (24), we know that the step size is equal to min
{

(xB)1
d1

, . . . , (xB)m
dm

}
, and that the index that

leaves the basis B is then equal to argmin
{

(xB)1
d1

, . . . , (xB)m
dm

}
. Therefore, it is clear that a nonzero step

is only made when the leaving index corresponds to a nonzero entry of x. This means that we can stop
the Linear Program when the leaving index corresponds to a nonzero entry of the initial solution x.

4.7 Perturbation to remove degeneracy

Degenerate vertices are problematic for the (revised) simplex method. When x is degenerate, the pivot
operation described above might not cause any change in x at all. It is possible to make a number
of degenerate pivots resulting in the same basis we had before. In this case the algorithm would start
cycling and never terminate.

We use a perturbation strategy to circumvent this problem. We will call the original Linear Program
LP and the perturbed one LP ′. The perturbation is applied after we have established a Basic Feasible
Solution, with solution x, and corresponding basis B. This solution of course satisfies the original
constraint

Ax = b. (32)

However, we now perturb the right hand side of this equation to get

Ax′ = b′ = b+ABε, (33)

where ε is a vector of length m with elements chosen uniformly at random from [δ/2, δ], where δ > 0 is
a small constant. Note that ε > 0. The solution corresponding to this new constraint is

x′ = A−1B b′ = A−1B (b+ABε) = x+ ε. (34)

Since we chose ε > 0, this new solution still satisfies x′ ≥ 0, and B is still a feasible basis for the
perturbed problem LP ′.

Theorem 5 (properties of perturbed LP). The following hold for LP ′:
(a) LP ′ is non-degenerate.
(b) If B is a feasible basis of LP ′, then B is also a feasible basis of LP .
(c) If B is an optimal basis of LP ′, then B is also an optimal basis of LP .
(d) If xq can leave and xp can enter in a pivot corresponding to B in LP ′, then the same holds in LP .

See for example14 for a proof. This theorem shows that we can use the perturbed version LP ′ to
do all the pivots, and once we find an optimal basis it is guaranteed that this basis is also optimal for
the original problem. This shows that although the perturbation might affect the exact optimal value
of the LP, it will never affect whether there is an alternative solution to the initial solution, or not. For
our purposes, the perturbation of the LP thus has no disadvantages, while it does prevent the revised
simplex method from entering an infinite loop.



5 Compression of the metabolic networks

To reduce the size of the main step in ECM-enumeration, the metabolic network can be compressed
by various methods. The compression steps that we have used all leave the eventual set of ECMs
unchanged. The amount by which the network can be compressed is one of the advantages of ECM-
enumeration compared to EFM-enumeration: because the individual reaction rates are not reported,
many reactions can be merged or even deleted. The first four compression steps are adapted from,10 the
compression of cycles and the removal of redundant rays has been added by us.

These compression steps are not completely independent. If compression step A is executed, then
another execution of A will not remove any more metabolites or reactions. However, after executing
compression step B, A might again be able to compress the network further. Therefore, to maximise
the compression of the network, the following sequence of compression steps is repeated until a complete
sequence did not remove another metabolite or reaction.

5.1 Removal of infeasible reactions

Some reactions can never be active in a steady state solution that satisfies the irreversibility constraints.
Before we start the ECM enumeration, these reactions can be safely removed, since we are only looking
for steady state conversions.

A first test if a reaction is feasible can be done by calculating the nullspace of the matrix Nint,
denoting the part of the stoichiometric matrix corresponding to internal metabolites. Let K be a matrix
with as columns a basis for the nullspace, so that we have for each column NK•i = 0. Note that the
nullspace contains the full steady state flux cone. An entry kji of the matrix K denotes the rate of
reaction j in the i-th vector of the nullspace. If K contains a row of only zeros, this means that this
reaction can never be active in a steady state solution. The reactions corresponding to zero rows of K
can thus be removed from the network.

The nullspace contains all solutions that satisfy the steady state constraint Nintv = 0, but might also
include solutions that do not satisfy the irreversibility constraints: vi ≥ 0 for all irreversible reactions i.
Therefore, we can do another test, suggested by Urbanczik et al.10 to check if reactions become infeasible
if we take these irreversibility constraints into account.

All solutions that satisfy the steady state constraint can be written as v = Kλ, because the columns
of K form a nullspace of N . Here, the rate of the i-th reaction in the solution is given by vi = Ki•λ.
We can get a sum of reaction rates by left-multiplying v = Kλ by a vector: µKλ =

∑
i µivi. To

test for reaction feasibility, we select the submatrix Kirr of K given by all rows that correspond to
irreversible reactions. Then, we check, with a Linear Program, if there exists a non-zero vector µ such
that µi ≥ 0 for all i, and µKirr = 0. If such a vector exists, this means that for any λ we have
0 = µKirrλ =

∑
irreversible µivi. In other words, for all steady state solutions, the sum of reaction rates

with weights µi is zero. However, since all µi are positive, this implies that some of the vi must be
negative, but this would violate the irreversibility constraints. Therefore, the only option is that all vi
are zero, and thus infeasible. Concluding, all reactions i such that µi is strictly greater than zero must
be zero, are thus infeasible, and can be removed.

5.2 Dead-end metabolites are deleted

Internal metabolites that can either only be produced or only be consumed, are sometimes called dead-
end metabolites. The ECMs are calculated under the constraint that all internal metabolites are in
steady-state. A dead-end metabolite can therefore not be produced/consumed at all, because there
are no consuming/producing reactions to maintain the steady-state. Before ECM-computation we can
therefore delete these metabolites and all (solely producing or consuming) reactions that connect to
them.

5.3 Cancelling metabolites with a reversible reaction

A reversible reaction can be used to delete an internal metabolite without changing the space of steady-
state conversions, see Figure S4b. Let’s say that we have a metabolic network with r reactions and
that the last one of those is reversible. We also assume that there is at least one internal metabolite



involved in this reaction, say metabolite i. Now, we are going to cancel the production or consumption
of metabolite i from each reaction by adding or subtracting reversible reaction r. We denote by εrj the
number of times that we need to add reaction r to reaction j to cancel metabolite i. The resulting
stoichiometric matrix, N̄ thus has the same number of columns, but only column r still has a non-zero
i-th entry. To see that this change of stoichiometry does not change the steady-state conversion space,
let’s recall the definition:

C = {ċ = Nv | NIntv = 0, vi ≥ 0 if i irreversible} . (35)

Let ċ ∈ C be a conversion in the original metabolic network, and let v be a flux vector that leads to this
conversion. Then we know that ċ = Nv =

∑
jN•jvj . We now prove that this conversion can still be

generated with the new stoichiometric matrix N̄ . We have

ċ =
∑
j

N•jvj =
∑
j

(N̄•j − εrjN̄•r)vj = N̄ v̄, (36)

where v̄ = v +
∑

j ε
r
j êr. Since reaction r was reversible, vr is allowed to be negative. Therefore, v̄ is

certainly a feasible steady-state flux vector, and the original conversion ċ is therefore still possible. This
compression is not possible for irreversible reactions, because

∑
j ε

r
j might be negative.

The advantage of changing the stoichiometric matrix from N to N̄ is that we are now in the situation
of Section 5.2: metabolite i has become a dead-end metabolite. We can therefore now cancel both
metabolite i and reaction r. In Figure S4b we illustrate how reversible reaction v3 can be used to cancel
metabolite x2.

(a) (b)

Figure S4: Conversion cones are invariant to network compression. (a) Compression through
addition of a reversible reaction to other reactions. V3 is added to V2 and subtracted from V4. This sets
the stoichiometry of X2 to 0 in V2 and V4. Since X2 is now only used in V3, they can both be removed.
(b) Compression through the removal of singly produced or consumed internal metabolites. As X2 is
only produced by V2, V2 can be added directly to V3. Since X2 is now only used in V2, both X2 and V2
can be removed. The same can then be done for X3.

5.4 Cancelling singly produced or consumed metabolites

A metabolite that is either produced by only one reaction, or consumed by only one reaction, can be
cancelled without changing the space of steady-state conversions, see Figure S4a. Let’s say that reaction
r is the only reaction in the metabolic network that produces metabolite i. (The case in which metabolite
i is consumed by only one reaction is similar and will thus not be treated here.) We can now add reaction
r to all reactions j that consume metabolite i, such that the consumption of i is cancelled exactly. We
again denote by εrj the number of times that we need to add reaction r to reaction j to cancel the



consumption of metabolite i. The modified stoichiometric matrix is given by N̄ . Note that in this case,
all εrj are nonnegative. For a general conversion ċ we again get

ċ =
∑
j

N•jvj =
∑
j

(N̄•j − εrjN̄•r)vj = N̄ v̄, (37)

where v̄ = v +
∑

j ε
r
j êr. Because all εrj ≥ 0, this change will not violate the irreversibility constraints,

and therefore all conversions remain feasible in the modified metabolic network.
Again we end up in the situation of Section 5.2: metabolite i and reaction r can be removed. In

Figure S4a we illustrate how, for example, complete linear pathways can be reduced to just one reaction
by this method.

5.5 Removing cycles by cancelling metabolites

It is possible that the metabolic network contains cycles: combinations of reactions that have a combined
production and consumption of zero. These combinations of reactions can also be viewed as vectors v
that satisfy the irreversibility constraints and are in the nullspace of the stoichiometric matrix: Nv = 0.
We will show that these cycles can in some sense be viewed as reversible reactions, and can therefore
be used to cancel reactions and metabolites. Moreover, for the direct intersection method that we will
describe below, it is necessary that the cone spanned by the columns of N is pointed (see Section 1.2),
which means that cycles may not exist. For the use of this intersection method, this compression step
therefore must be applied.

We will detect cycles in N by solving a Linear Program with our custom LP-solver described in
Section 4. We will try to find a λ ≥ 0 that satisfies Nλ = 0 and λ 6= 0; if such a λ exists, there are still
cycles. The cycle finding LP is as follows:

maximize
λ

∑
i

λi

subject to Nλ = 0 (38)

λi ≥ 0

λi ≤ 1.

The LP is always feasible, since λ = 0 is a solution with objective value 0. If this is the only feasible
solution, then we are sure that cycles no longer exist in the metabolic network, so that this compression
step is done. If another feasible solution exists, it will always be found by the Linear Program because
it must result in a larger objective value.

Let’s say that we have a cycle, then the optimal solution λ∗ may be assumed to have at least one
position equal to 1, say λ∗r = 1. This is because any λ that induces a cycle satisfies Nλ = 0, so multiples
of λ will satisfy that as well. Hence the constraint λi ≤ 1 (for all i) is the only thing keeping λ (and with
that the optimal value) bounded. The corresponding column N•r gives the stoichiometry of a reaction
that is involved in the cycle. This will be used to remove (part of) the cycle.

Let’s say that metabolite i is produced by reaction r. Because we have split each external metabolite
into being only an input or only an output in Section 3.3, it is impossible for external metabolites to
have non-zero coefficients in any ray that is part of a cycle, as there can be no circular flow through such
external metabolites. We can thus be assured that metabolite i is an internal metabolite.

Because reaction r is part of a cycle, we have

0 =
∑
j

N•jvj =
∑
j 6=r

N•jvj +N•rvr = Nv− +N•rvr, (39)

where v− are all reaction rates in the cycle except for reaction r: v− = v − vrêr. Comparing this with
the case in which we had a reversible reaction, reaction r can now be viewed as the forward reaction,
and the combination of the other reactions: Nv− as the backward reaction. Let us in fact add this
combination of reactions as reaction r+1 to our network. We can now use these two ‘reactions’ to cancel
the production and consumption of metabolite i from all reactions in the network. If a reaction consumes
metabolite i, then we will cancel this consumption by adding reaction r; let εrj denote the number of



times that reaction r is added to reaction j. If reaction j produces metabolite i, then we can cancel the
production by adding reaction r+ 1; εr+1

j denote how many times this is necessary. We then get for any
conversion that was feasible in the original metabolic network that

ċ =
∑
j

N•jvj =
∑
j

(N̄•j − εrjN̄•r − εr+1
j N̄•r+1)vj = N̄ v̄, (40)

where v̄ = v +
∑

j ε
r
j êr +

∑
j ε

r+1
j êr+1. Since all ε-values are now nonnegative, we now that this flux

vector meets the irreversibility constraints, and thus that the conversion is still possible in the modified
metabolic network.

Finally, we are left with a metabolic network in which metabolite i is produced by reaction r and
consumed by reaction r + 1, and these reactions are their exact reverse. It is clear that the steady-state
constraint imposes vr = vr+1 which means that the net contribution of these reactions is always zero.
Therefore, we can delete both reaction r, reaction r + 1, and metabolite i from the network.

After this procedure we have deleted (at least) one metabolite and one reaction from the orginal
metabolic network. It is often the case that cycles still remain, so that the cycle removal procedure has
to be repeated until no cycles are left.

5.5.1 Example

In the metabolic network of Figure S5, there is one cycle: (B → C → F → E → B). The cycle finding
LP described above would find the solution λ∗ = (0, 0, 1, 1, 1, 1, 0, 0, 0, 0). So we learn that reactions 3,
4, 5 and 6 are involved in a cycle. We select reaction 3 and metabolite B for the removal of the cycle.

Figure S5: Example network for cycle removal.

The only other reaction that uses B is reaction 6. Therefore we add reaction 3 to reaction 6 to create
a new ray that produces C out of E. Then, reaction 3 can be removed. The resulting network can be
seen in Figure S6. After three more steps, the network will be cycle-free (Figure S7).

5.6 Removal of redundant reactions

We call reaction r redundant if there is a feasible combination w of different reactions such that

N•r =
∑
j 6=r

N•jwj . (41)



Figure S6: Network after one cycle removing step.

Figure S7: Network after all cycles have been removed.

These redundant reactions can be removed without changing the steady-state conversion space. To see
this, let ċ ∈ C be any conversion, then we have

ċ = Nv =
∑
j

N•jvj =
∑
j 6=r

N•jvj +N•rvr =
∑
j 6=r

N•jvj +
∑
j 6=r

N•jwjvr =
∑
j 6=r

N•j(vj + wjvr). (42)

So, all steady state conversions remain feasible if we remove the redundant reaction from the network.
The redundant reactions can be removed using redund from lrslib.8 Although this program works well
on relatively small sets of vectors (up to hundreds), it is very slow on larger sets. We have therefore
developed our own redundancy-removal method that uses the following Linear Program:

maximize
v

∑
j 6=r

vi

subject to Nv = N•r (43)

vi ≥ 0.

In this LP, we are not necessarily interested in the maximum, but rather in the question whether there
is a solution besides v = êr. This means that we can quit the program once it is clear that such an
alternative solution exists. This is exactly the type of problem for which we designed the LP-solver
described in Section 4. Note that this LP becomes unbounded whenever the cone generated by the
columns of N is non-pointed. In this case, our strategy would not work. Therefore, it is important to
remove all cycles before removing redundant reactions (Section 5.5).



6 The starting point: generator representation of the (non-
steady-state) conversion cone

After the metabolic network has been preprocessed (Section 3) and compressed (Section 5), we are now
ready for the main computational task. Let us therefore recall the goal of ECM enumeration. We want
to describe the steady-state conversion cone

C = {ċ = Nv | NIntv = 0, vi ≥ 0 if reaction i irreversible} . (44)

Assuming that this cone is fully contained in one orthant, which can be assured by splitting metabolites
(Section 3.3), the Elementary Conversion Modes can be found as a minimal set of generators of this cone.

Both the indirect method (Section 7) and the direct method (Section 8) start from a generator
representation of a larger cone: the (non-steady-state) conversion cone,

C0 = {ċ = Nv | vi ≥ 0 if reaction i irreversible} , (45)

which comprises all conversions, including those that do not satisfy the steady-state constraint. We
can assume without loss of generality that all reactions in the metabolic network are irreversible, since
they were either cancelled during the compression step, or they were split into a forward and backward
reaction. In that case, (45) already gives a generator representation: the columns of the stoichiometry
matrix, N , generate all possible conversions. The remaining task is to impose the steady-state constraints
while keeping track of a generator representation. We will describe the two methods that we implemented
to accomplish this.

The cone C0 is generally not contained in one orthant, nor is it necessarily pointed. In Section 3.3 we
describe why it is beneficial to split external metabolites such that C is contained in one orthant, but this
is not yet necessary for this initial cone C0. We will describe below that in the indirect method, external
metabolites do not even have to be split already because it can be done later. The same holds for the
pointedness: we cannot use the direct method on a non-pointed C0, while it will give no problems in
the indirect method. Therefore, ecmtool always removes cycles before using the direct method, thereby
making C0 pointed (Section 5.5).

7 The indirect method

The indirect method of ECM enumeration is based on the method introduced by Urbanczik et al.10 It
is based on the fact that it is relatively easy to calculate a generator representation of a polyhedral cone
when an inequality representation is known. This task can be accomplished by the Double Description
(DD) method,7 and we use Polco for this.9 Crucially, the indirect method depends on the connection
between the generator representation of a cone and the inequality representation of its dual, see Section
1.3 for background information about this connection. More precisely, we will follow the following steps
to go from the generator representation (45) to the set of ECMs:

gen(C0) = ineq(C∗0 )
DD→ gen(C∗0 ) = ineq(C0)

SS constraints−→ ineq(C) DD→ gen(C) = ECMs (46)

One might at this point ask why the steady-state constraints cannot be added at the start, following
the path gen(C0) → gen(C) at once. The answer is that this is indeed possible, and this is the strategy
implemented by the direct method (Section 8). However, it is generally harder to impose equality
constraints to a generator representation than to an inequality representation, where they can just be
added as two inequality constraints to the existing representation. This is why this indirect route is in
many cases, but not always, preferable, and this intersection method is therefore the default in ecmtool,
which can be changed by setting --direct True.

In the following subsections we will give the details of the method, and where we have added opti-
mization steps.

7.1 gen(C0) = ineq(C∗0)
The columns of the stoichiometry matrix form a generator representation of the non-steady-state conver-
sion cone (see (45)). In Section 1.3 we then explained that this gives an inequality representation to the



dual cone: the constraint matrix being the transpose of the stoichiometry matrix. However, this dual cone
does not need to be pointed, see Section 1.2. The problem with non-pointed cones is that generally they

do not have a unique generator representation. The next step in the method, ineq(C∗0 )
DD→ gen(C∗0 ), would

therefore not be well-defined. To still be able to apply the Double Description method, we decompose
our cone in its lineality space and its pointed part, according to

C∗0 = Lin(C∗0 )⊕ (C∗0 ∩ Lin(C∗0 )⊥), (47)

=
{
x ∈ Rd

∣∣ NTx = 0
}
⊕
{
x ∈ Rd

∣∣ NTx ≥ 0, Null(NT )Tx = 0
}
,

where Null(NT ) =
[
n1 · · · nk

]
is a matrix constructed from a basis of the nullspace ofNT . This shows

that it is necessary to find a basis for the nullspace ofNT . First of all, because {n1, . . . ,nk,−n1, . . . ,−nk}
gives a generator representation of the lineality space (first part in (47)). Second, because we need this
basis to complete the inequality representation of the pointed part of C∗0 (second part in (47)).

7.1.1 An iterative symbolic nullspace calculation

It turns out that obtaining an exact basis for a nullspace for a large matrix with potentially large fractions
is not a trivial computational task. We cannot resort to faster methods using floats, because this will
induce round-off errors that might further accumulate during the ECM-enumeration. We have therefore
implemented an iterative nullspace calculation which avoids memory issues. For this, we separate rows
of NT into K parts, denoting the first set of rows by N(1). We calculate a basis for its nullspace using
a symbolic solver, and gather the basis vectors as the columns of a matrix M . We then know that any
vector x in the nullspace of NT should be a linear combination of the columns in M , in other words:
x = Mλ, for some real vector λ. We now take the second part of our matrix, N(2). We should have
N(2)x = 0, so that λ should satisfy N(2)Mλ = 0. Therefore, we define a matrix N(1:2) := N(2)M , and
calculate its nullspace. Again we gather a basis for this nullspace as the columns of M . Proceeding in
this fashion, we will eventually obtain a matrix M containing a basis for the nullspace of N(1:K) = NT .

7.2 ineq(C∗0)
DD→ gen(C∗0)

The dual of the non-steady-state conversion cone, C∗0 consists of the two parts given in (47). Fortunately,
a set of generators of the entire space is just given by the union of the generators of both parts:

gen (C∗0 ) = gen (Lin(C∗0 )) ∪ gen
(
(C∗0 ∩ Lin(C∗0 )⊥)

)
,

= {n1, . . .nk,−n1, . . .nk} ∪DD
({
x ∈ Rd

∣∣ NTx ≥ 0, Null(NT )Tx = 0
})

Note that the first part of this generator representation is not necessarily unique, because there is no
unique basis for the nullspace. However, since this generator representation is only an intermediate
result, this does not matter. What matters is that the cone described by this generator representation
is unique.

The Double Description method that we use to get the second part of the generator representation
is described in Section 1.5 and implemented in Polco.9 This step, like all others, is done using fractions,
so that our ECM-computations remain exact.

7.3 gen(C∗0) = ineq(C0)
SS constraints−→ ineq(C)

In the previous sections we have described how we obtain a generator representation of the dual of the
(non-steady-state) conversion cone C∗0 . This generator representation also forms an inequality represen-
tation of C0. Let us gather all these inequalities in a matrix H, then we have

C0 = {ċ | H ċ ≥ 0} . (48)

7.3.1 Dropping columns corresponding to internal metabolites

We see that the columns of H thus correspond to the metabolites in the metabolic network. We specify
that we have |Ext| external metabolites, |Int| internal metabolites, and let us assume that H is ordered



such that all columns corresponding to external metabolites come first, i.e., H =
[
HExt HInt

]
. To

obtain an inequality description of the steady-state conversion cone, we should impose the steady-state
constraints ċi = 0 for i ∈ Int. This can be done easily by adding two inequality constraints per internal
metabolites:

C =
{
ċ ∈ R|Ext|+|Int| ∣∣ H+ċ ≥ 0

}
, where H+ =

HExt HInt

0 I|Int|
0 −I|Int|

 , (49)

with I|Int| being the (|Int| × |Int|)-identity matrix. Although this is a valid description of C, it is not a
very efficient one. We prove in the following Theorem that we can just drop all columns corresponding
to the internal metabolites.

Theorem 6. Let C = {x ∈ R|Ext|+|Int| | H+x ≥ 0}, and C′ = {x̃ ∈ R|Ext| | HExtx̃ ≥ 0}. There is a
bijection between cones C and C′.

Proof. Define a mapping between the two cones by keeping only the first |Ext| coordinates:

f : C → C′,
: x 7→

[
x1 · · · x|Ext|

]T
.

We first show that f indeed maps into C′. Take an arbitrary element x ∈ C. We know that H+x ≥ 0.
The last rows imply that 0xExt + I|Int|xInt ≥ 0, and 0xExt − I|Int|xInt ≥ 0, so that we must have
xInt = 0. The first rows of the inequalities then imply 0 ≤ HExtxExt −HInt0 = HExtxExt, which means
that f(x) = xExt ∈ C′.

With the knowledge that for any x ∈ C, the components corresponding to internal metabolites have
to be zero, we can define an inverse mapping

g : C′ → C,
: x̃ 7→

[
x̃T 0T

]T
.

This mapping is clearly a left- and right-inverse of f , and therefore f must be a bijection.

We can thus proceed with HExt as the inequality description of the steady-state conversion cone.

7.3.2 Splitting external metabolites

In Section 3.3, we explained why we need to split external metabolites into input- and output-metabolites
in order to calculate all ECMs instead of only the extreme conversions. We also indicated that this split-
ting can be done during the preprocessing step. However, one can also choose (by using the argument
--splitting before polco False) to calculate HExt without splitting the metabolites, and split the
metabolites afterwards. This choice does affect the size of HExt and therefore the computational com-
plexity of ECM-enumeration, but we could get no clear idea of when which method is favourable. We
recommend the user to try both methods when working with large models, because we have observed
that this option sometimes makes a large difference.

Let us now assume that the external metabolites are not yet split into input- and output-metabolites,
and say, for simplicity, that all metabolites can both be consumed and produced, so that all need to be
split. Then we can use HExt to define

Hsplit =

HExt HExt

I 0
0 −I

 . (50)

Now let us compare the cones that are described by these inequality representations:

CExt = {x ∈ R|Ext| | HExtx ≥ 0}, (51)

Csplit = {x̃ ∈ R2|Ext| | Hsplitx̃ ≥ 0}. (52)

We can define a mapping f from CExt to Csplit by

f : CExt → Csplit,

: x 7→ x̃ =
[
max(x1, 0), · · · ,max(x|Ext|, 0),min(x1, 0), · · · ,min(x|Ext|, 0)

]T
,



We can show that this mapping is well-defined. Let x ∈ CExt, we have to check if x̃ satisfies Hsplitx̃ ≥ 0.
First of all, it is clear from the definition of f that x̃ satisfies the sign constraints that form the two
lower rows of Hsplit. Further, the first rows of Hsplit give

Htop
splitx̃ = HExt

[
max(x1, 0), · · · ,max(x|Ext|, 0)

)T
+HExt

(
min(x1, 0), · · · ,min(x|Ext|, 0)

]T
= HExt

[
max(x1, 0) + min(x1, 0), · · · ,max(x|Ext|, 0) + min(x|Ext|, 0)

]T
,

= HExtx ≥ 0.

This shows that any steady-state conversion in CExt is still a steady-state conversion in Csplit. The
following Theorem shows that the ECMs of CExt can be calculated by computing the minimal generator
set of Csplit.

Theorem 7. There is a bijection between the set of Elementary Conversion Modes of CExt and the
minimal generator set of Csplit.

The proof of this theorem is very similar to the proof of Theorem 3 in Section 3.3. Therefore, we will
not repeat it here.

If we compute a minimal generator in Csplit, we can thus map this back to an ECM in CExt. For this,
we use the left-inverse of f :

g : Csplit → CExt,

: x̃ 7→ x =
[
x̃1 + x̃|Ext|+1, . . . , x̃|Ext| + x̃2|Ext|

]T
.

7.3.3 Removing redundant inequalities

The inequality description of C0, gathered in the matrix H, does not contain redundant inequalities,
because the polco-software returns a minimal set. However, we have used H to define HExt and then
Hsplit. Often, and mostly when there are relatively many internal metabolite columns that are dropped,
these operations cause inequalities to become redundant. In theory, this causes no problem for the next
steps in the ECM-enumeration. However, when Hsplit has many rows, the next Double Description step
is much slower. We can therefore speed up the ECM-computation by removing redundant rows. For
this, we can use either the redund-program from lrslib8 on small sets of rows, or our own algorithm for
redundancy removal. Our algorithm has the advantages of being parallelizable if ecmtool is used with
mpiexec (see the user guide in Section 11), and of reporting a counter which indicates the progress of
the redundancy-removal. By default, we thus use our algorithm. We will shortly discuss how this works.

We call a row redundant if it can be written as a conical combination of other rows, i.e.,

Ai• =
∑
j

λjAj•, where λj ≥ 0. (53)

This row is called redundant for the following reason. If for all j such that λj > 0 we have Aj•x ≥ 0,
then automatically Ai•x =

∑
j λjAj•x ≥ 0. So, the inequality implied by Ai• does not further constrain

the cone. We can thus remove all rows for which we can find a conical combination as in Equation (53)1.
We detect these redundant rows by solving a Linear Program for each row:

maximize
λ

∑
i6=j

λi

subject to ATλ = AT
i• (54)

λi ≥ 0.

This problem is exactly of the form described in Section 4, so we can use our custom LP-solver to solve
it. In Section 4.5 we described that for this LP-solver to work, we need to select a maximal set of linearly
independent columns of AT as a starting basis. This basis should contain the column AT

i that we want to
test for redundancy. Finding such a starting basis is a relatively complex computational task. However,

1It is important that we first make sure that any duplicate rows are removed, since otherwise the procedure could remove
both of them.



we use the same matrix AT for each redundancy test, and we can therefore use almost the same starting
basis. We should only make sure that we replace one of the columns in this basis by AT

i•. In Section 4.5
we describe how we accomplish this.

It is important to note that this redundancy removal only works when the cone generated by the columns
of AT is pointed. If not, we use the strategy that we developed for the removal of cycles to make the
cone pointed. We will very shortly discuss the strategy here too, but it is so similar to the removal of
cycles that we refer to Section 5.5 for details.

If there is a 0 6= λ ≥ 0 such that ATλ = 0, then the Linear Program in (54) is unbounded. We
solve this by selecting one λj > 0 and take the corresponding row Aj•. Since the rows of A correspond
to inequalities, we can see that Aj•x ≥ 0 and 0 ≤

∑
k 6=j λkAk•x = −λjAj•x, so that Aj• in fact gives

an equality constraint: Aj•x = 0. This means that we can add or subtract Aj• to other rows without
affecting the inequality representation. We choose to pick a nonzero entry of Aj•, say Ajl and cancel the
l-th entry from each row in A. The row Aj• itself will for now be stored. We can repeat this procedure
until the resulting cone is pointed. Then, we can use the redundancy-removal outlined above, and after
that we add the found equality constraints again.

7.4 ineq(C) DD→ gen(C) = ECMs

In this last step, we start with the found inequality representation of the steady-state conversion cone.
Because we have split all metabolites, this cone is contained in one orthant. This automatically implies
that the cone must be pointed. We can thus simply apply the Double Description method (again using
fractions) to find a minimal generating set of the steady-state conversion cone. After undoing the splitting
of external metabolites (as mentioned in Section 7.3.2) this yields the Elementary Conversion Modes,
finally.

8 The direct method

The starting point of the direct method is the generator description of the (non-steady-state) conversion
cone, C0, defined in (45) in Section 6. We assume that cycles have been removed using the method de-
scribed in Section 5.5 such that this cone is pointed. The remaining task is thus to impose the steady-state
constraints ċi = 0 for all internal metabolites i. Whereas the indirect method computes an inequality
representation of C0 before imposing the steady-state constraints, the direct method will impose these
constraints ‘directly’ on the set of generators. As far as we know, this direct intersection method is uncon-
ventional. It has probably not been used before because it is usually slower than the indirect intersection
method. It however avoids the (too) high memory usage that the indirect method sometimes suffers from.

The direct method proceeds by an iterative procedure. We start by gathering the generators from
the generator description of C0 in a matrix R(0), and then impose an additional steady-state constraint
in each iteration. We assume for now that we have ordered the metabolites such that there are K internal
metabolites with indices {1, . . . ,K}. In the first step, we impose the constraint ċ1 = 0. The result is
a new cone, called C(1) which again has a set of generators, which we gather in the matrix R(1). We
continue to add the constraints until we end up with the generators gathered in R(K) of the steady-state
conversion cone: C = C(K).

In the following we will denote by rj ∈ R the j-th column of the matrix R.

8.1 Imposing one steady-state constraint

The i-th iteration of the algorithm starts with the matrix R(i−1) of non-redundant columns. These
columns can be interpreted as conversions that satisfy the steady-state constraints for all metabolites

with index smaller than i. The entry R
(i−1)
ij thus indicates the net production of metabolite i in the j-th

conversion. During this step, we will impose the constraint ċi = 0, which thus means that we should

make sure that R
(i)
ij = 0 for all j. For this, similar to the Double Description method (Section 1.5), we



compute the index sets

J+ = {j ∈ {1, . . . , n} : R
(i−1)
ij > 0},

J− = {j ∈ {1, . . . , n} : R
(i−1)
ij < 0}, (55)

J0 = {j ∈ {1, . . . , n} : R
(i−1)
ij = 0}.

We are certain that the vectors corresponding to J0 will be minimal generators of C(i): they satisfy the
constraint ċi = 0 and cannot be written as a conical combination of the other vectors, since otherwise
they would not have been in R(i−1). Furthermore, each pair of indices j+ ∈ J+, j− ∈ J− with their

corresponding vectors rj+ , rj− generate a possible candidate: r̂ = R
(i−1)
ij+

r
(i−1)
j−

− R(i−1)
ij−

rj+ . We do not
have to consider combinations of more vectors, since these can always be written as combinations of the
pairs.

We could get a generating set of C(i) by taking the union of all r̂ with the vectors from J0, but this
set would not be minimal. Therefore, we need a test to determine which candidates to keep, analogous
to the adjacency test that is used in the Double Description method, Section 1.4. The adjacency test
of the Double Description method however uses information about which inequalities are satisfied with
equality by the generators to determine if a pair is adjacent or not. Since we intersect with equalities
instead of inequalities, we cannot directly use this method. We would like to find an alternative way to
determine the adjacency of two rays, using only the ray representation R.

The next section provides this alternative adjacency test. In short: we test whether two rays are
adjacent by considering a point in between them. If this point can also be formed by a conic combination
that includes other rays than the original two, then they are not adjacent.

8.1.1 A geometric adjacency test

Let

x =
1

4
rj+ +

3

4
rj−

and consider the linear program, LP(rj+ , rj−):

maximize
λ

∑
j /∈{j+,j−}

λi

subject to Rλ = x (56)

λi ≥ 0.

Note that the LP is always feasible, and has optimal value at least 0, since we have the initial solution λ̄
with λ̄j+ = 1/4, λ̄j− = 3/4 and zero in the other coordinates. We will prove in the following theorem that
this LP can be used as an adjacency test. The reason for choosing 1/4 and 3/4 is that this ascertains
that the ‘target’ x is not close to the zero vector. In fact, in ecmtool we normalize the rays before
starting the LP such that the L1-norm of all rays is equal to 1. We can then show with the reverse
triangle inequality that

||x|| =
∣∣∣∣∣∣∣∣14rj+ − (−3

4
rj−)

∣∣∣∣∣∣∣∣ ≥ ∣∣∣∣14 ||rj+ || − 3

4
||rj− ||

∣∣∣∣ =

∣∣∣∣−1

2

∣∣∣∣ =
1

2
. (57)

In the following we will denote by R the matrix of generators (columns rj), and by A the inequality
matrix of the same polyhedral cone P (A). Recall from Section 1.4 that the zero set of a generator was
defined as

Z(rj) = {i : Ai•rj = 0}.

Theorem 8 (geometric adjacency test). The following are equivalent for extreme rays rj+ , rj− :
(1) rj+ and rj− are adjacent.
(2) Z(rj+) ∩ Z(rj−) ⊆ Z(rk) =⇒ rk ∼ rj+ or rk ∼ rj− .
(3) LP(rj+ , rj−) has optimal value 0.



Proof. The equivalence of (1) and (2) is just the definition of adjacency described in Section 1.4.
(2) =⇒ (3). Suppose (2) holds, so Z(rj+) ∩ Z(rj−) ⊆ Z(rk) =⇒ rk ∼ rj+ or rk ∼ rj− .

Consider any extreme ray rk that is not equivalent to rj+ or rj− . We know that Z(rk) does not contain
Z(rj+)∩Z(rj−), so there is some index i ∈ Z(rj+)∩Z(rj−) that is not in Z(rk). This means Ai•rk > 0.

Suppose λ is a feasible solution for LP(rj+ , rj−), so Rλ = x. Now consider

Ai•Rλ =
∑
j

Ai•rjλj ≥ Ai•rkλk. (58)

The last inequality holds because each ray rj is in the cone; hence Ai•rj ≥ 0, and also λj ≥ 0 (one of
the LP constraints). At the same time

Ai•Rλ = Ai•x = Ai•(
1

4
rj+ +

3

4
rj−) = 0, (59)

since i ∈ Z(rj+) and i ∈ Z(rj−). Combining (58) and (59) with Ai•rk > 0 gives λk = 0. Because rk
was any extreme ray not equivalent to rj+ or rj− , and λ was any feasible solution, this means that we
will always have

∑
i λi − λa − λb = 0, hence (3) holds.

(3) =⇒ (2). For a contrapositive proof, assume (2) does not hold. Then there is some ray rk such
that Z(rj+) ∩ Z(rj−) ⊆ Z(rk). By definition x = 1/4rj+ + 3/4rj− . Therefore, for any row Ai•,

Ai•x = Ai•(
1

4
rj+ +

3

4
rj−) =

1

4
Ai•rj+ +

3

4
Ai•rj− . (60)

Because rj+ and rj− are in the cone, Ai•rj+ ≥ 0 and Ai•rj− ≥ 0. Thus Ai•x = 0 if and only if
Ai•rj+ = Ai•rj− = 0, hence

Z(x) = Z(rj+) ∩ Z(rj−). (61)

Consider the line segment
L(t) = tx+ (1− t)rk (62)

for t ∈ [0, 1]. This is the line segment from rk to x. In Figure S8 we have schematically drawn the
situation. Take any index l not in Z(x). Since Al•x > 0, we have, for any t ∈ (0, 1],

Al•L(t) = Al•tx+Al•(1− t)rk > 0. (63)

Because Al•L(t) is continuous with respect to t, there is an εl > 0 such that Al•L(1 + εl) > 0. Define ε
as the minimum of all the εl obtained in this way, then

Al•L(1 + ε) > 0 for all l not in Z(x) (64)

On the other hand, any index m ∈ Z(x) is also in Z(rk), since Z(x) = Z(rj+) ∩ Z(rj−) ⊆ Z(rk). This
yields

Am•L(1 + ε) = Am•(1 + ε)x−Am•εrk = 0 for all m ∈ Z(x). (65)

Let α = L(1 + ε), it follows from (64) and (65) that α ∈ P (A) and Z(α) = Z(x). We can write

α = L(1 + ε) = (1 + ε)x− εrk, (66)

so that
α+ εrk = (1 + ε)x, (67)

and
α

1 + ε
+

εrk
1 + ε

= x. (68)

Because α is a point in P (A), it can be written as a conic combination of rays, say α =
∑

i λiri. But
then 1

1+ελ+ ε
1+ε êk is a feasible solution to the LP in (56), with objective value∑

i/∈j+,j−

1

1 + ε
λi +

ε

1 + ε
≥ ε

1 + ε
> 0. (69)

So, LP(rj+ , rj−) does not have optimal value 0. By contrapositivity, this implies that whenever the
optimal value is 0, rj+ and rj− must be adjacent.



Figure S8: Illustration for the proof of (3) =⇒ (2). The point α will always be inside P , indicating
a feasible solution to the LP with objective strictly greater than 0. The grey area might not look like a
cone at first, but consider it as a cross section of one.

This theorem showed that solving the right LP can serve as an adjacency test for extreme rays. The
following theorem in addition shows that if the rays are not adjacent, the original rays cannot be part of
the optimal solution to the LP. To be precise: if the rays rj+ , rj− are not adjacent, then at some point
the contribution λj+ or λJ− must become zero. This is important to make the adjacency test numerically
robust, because the change in λ has to be of size at least 1/4 which means that it is easy to distinguish
from round-off errors. Moreover, it provides an early exit strategy if we use our LP-solver described in
Section 4: at the point that λj+ or λj− becomes zero, we know that the rays are non-adjacent, and we
can stop the LP.

Theorem 9. Let µ be the optimal solution to LP(rj+ , rj−). Then at least one of µj+ and µj− is equal
to zero.

Proof. Suppose that both µj+ > 0 and µj− > 0. We will show that this contradicts the optimality of
µ. Besides µ we know of one more feasible solution: the vector ν with all zeroes except for νj+ = 1/4
and νj− = 3/4. Since both µ and ν are feasible solutions, we have R(µ − ν) = 0. Now consider
µ̄ = µ+ δ(µ− ν) for some small δ > 0. This µ̄ satisfies

Rµ̄ = R(µ+ δ(µ− ν)) = Rµ+ δR(µ− ν) = Rµ+ 0 = x. (70)

The only positions in (µ−ν) that could be negative are j+ and j−, since ν is zero everywhere else. But
we know that µj+ , µj− > 0, so if we pick δ small enough then µ̄j+ , µ̄j− ≥ 0, so that

µ̄ ≥ 0. (71)

Together (70) and (71) show that µ̄ is a feasible solution. Now let us denote by Obj(µ) the objective
value corresponding to the solution µ. We can see that

Obj(µ̄) =
∑

i/∈{j+,j−}

µ̄i =
∑

i/∈{j+,j−}

µi + δ(µi − νi) = (1 + δ)
∑

i/∈{j+,j−}

µi >
∑

i/∈{j+,j−}

µi = Obj(µ). (72)

This would contradict the optimality of µ, so it must be that in the optimal solution µj+ = 0 or
µj− = 0.



8.1.2 Performing the adjacency tests

Recall that one iteration of the direct method involves finding a minimal generating set of the cone C(i)
from the generating set R(i−1) of C(i−1). For that, we determined for all generating vectors in R(i−1)

the sign of ċi, and used that to construct the sets J+, J−, J0 (see (55)). All pairs with one ray from J+

and one ray from J− give a potential candidate that we should test for redundancy. The candidate will
only be non-redundant if the original rays rj+ , rj− are adjacent, according to the adjacency test defined
above. To test all these candidates, we thus have to perform |J+||J−| Linear Programs.

Fortunately, this LP is exactly of the form described in Section 4. We thus already have an efficient
way to solve the LP. For this LP-solver to work, we do need to select a maximal set of linearly independent
columns of R as a starting basis. This basis should contain the rays rj+ , rj− that constitute an initial
solution. Finding this starting basis is computationally relatively complex. Note however, that we use
the same matrix R for each redundancy test, and we can therefore use almost the same starting basis,
B. We should only make sure that we replace two of the columns in AB by rj+ , rj− . In Section 4.5 we
describe how we can add one such column. For this we need to solve ABx = rj+ . Call the basis where
this column is added A+

B . Now, we should still add the second column, and for that solve A+
Bx = rj− .

In ecmtool we optimize this even further. We start by selecting a basis matrix AB once, and im-
mediately calculate its LU-decomposition. This LU-decomposition can be used to solve ABx = rj+ .
We solve this system for all possible rj+ , giving a set of bases A+

B . For each basis in this set we also
calculate the LU-decomposition once. These can then be used to solve the system A+

Bx = rj− for all
possible rj− , yielding all the bases that we will need. This strategy requires us to calculate 1 + |J+|
LU-decompositions, instead of |J+||J−|, which induces a relevant computational speedup.

Another important optimization that decreases the computational time needed by the direct method, is
that we perform the above described LPs using floats instead of fractions. We can do this because each
LP will only give a boolean output, indicating if a pair of rays is adjacent, or not. We use fractions again
when the adjacent rays are combined to form a generator that satisfies the steady-state constraints, so
that the eventual ECM-computation remains exact.

8.2 The order of imposing steady-state constraints

As mentioned above, in each iteration we impose one of the steady-state constraints ċi = 0. The order in
which these constraints are imposed has a large effect on the total computation time. This is similar to
the sensitivity of the Double Description method to changing the order in which inequalities are added.6

It is however unclear which order of equality intersection minimizes the computation time. Therefore,
we offer several heuristics as options using the argument --sort order.

The sorting order that usually performs well is --sort order min adj. Here, we first sum how many
metabolites are adjacent in the metabolic network, i.e., connected by one reaction. Then, for each i,
we sum how many metabolites would become adjacent if we would connect all reactions that produce
metabolite i to the reactions that consume metabolite i. As such, we try to estimate the number of
adjacencies that are added, i.e., the difference between the number of adjacent metabolites after and
before the removal of metabolite i. Note that the number of added adjacencies can be negative, because
metabolite i is deleted and can thus no longer be adjacent to any metabolite. If this sorting order is
chosen, ecmtool picks the metabolite that minimizes the number of added adjacencies. The intuition
behind this sort order is that it would lead to summarizing possible modules in the metabolic network
before connecting these to the rest of the network. Indeed, if we use this sorting order, the last steps are
often not the largest.

An alternative heuristic that ecmtool offers is --sort order min lp. This selects the metabolite i
that requires the minimal number of LPs. Recall that to impose the i-th steady-state constraint, we
need to solve |J+||J−| Linear Programs, where the size of the index sets J+, J− is given by how many
of the current generators produce/consume metabolite i (see 55). This heuristic thus selects metabolites
that are produced and consumed by few reactions. This has the disadvantage of removing the ‘easy’
metabolites first from the network, which could lead to a very difficult step later on.



8.3 Parallelization

Since the adjacency tests are independent of each other, and we commonly need to perform millions of
them to eliminate a single metabolite (for genome-scale networks) this algorithm is highly suitable for
parallel processing. We have implemented this using mpi4py.15

Figure S9: CPU count vs speed-up (red) and linear least-squares fit (blue, dashed). The fit is y =
0.655x+ 0.503.

In Table 1 and Figure S9 we show the relative speed-up compared to using a single CPU for the
e coli core-model. It shows close to linear gains. This is a smaller network, where the most LPs done
in a single step is around 10e5, so for genome scale networks we can expect the scaling to continue up
to hundreds or more CPUs.

Table 1: Speed-up with different processor counts for E. coli core

CPUs 2 3 4 5 6 7 8 9 10
Speed-up rel. to 1 CPU 1.80 2.47 3.34 3.78 4.61 4.95 5.64 6.52 6.95

9 Validation of ecmtool

In this section, we describe how we used a Matlab-script to validate that the ECMs calculated by ecmtool

for the e coli core-network satisfy

1. each ECM is an elementary vector

2. each steady-state conversion must be a conical combination of ECMs

1. According to the definition of ECMs given in Section 2, we can prove that each ECM is elementary
by showing that it cannot be written as a positive sum of the other ECMs without the production of
any external metabolite being cancelled. We tested this with the Matlab-script lp ecms efm.m, which is
available as a Supplementary File.



For each ECM, x, we first gather all other ECMs that are in the same orthant as columns in a matrix
R. Then, we solve the following LP:

minimize
λ

∑
i

λi

subject to

[
R
−R

]
λ =

[
x+ tol
−x+ tol

]
(73)

0 ≤ λi ≤ 103.

If the ECM is indeed an elementary vector, this LP should be infeasible. However, since the LP in
Matlab is solved using floats, we should pay attention if round-off errors do not lead to incorrect results.
Therefore, we allow for the decomposition to be off by a certain tolerance tol . If we allowed for an error
of 10−7 none of the ECMs could be decomposed, indicating that they are all elementary. However, when
we allowed for a larger error, more ECMs could be decomposed. This gives an indication of how close
a conical combination of different ECMs can come to replacing an ECM. In Figure S10 we show the
distribution of error margins that are needed to decompose an ECM into different ECMs. We see that
most of the ECMs cannot be written as a combination of others unless one allows for an error of 10−5

or larger. This indicates that the ECMs are indeed all elementary vectors.

Figure S10: The distribution of error margins, tol that are needed to decompose an ECM into different
ECMs.

2. It is of course hard to validate that any steady-sate conversion is a conical combination of ECMs.
We therefore chose to use the set of Elementary Flux Modes calculated by efmtool. This set spans all
possible steady-state flux combinations that the model contains. For each EFM, we then calculated its
overall conversion, and tried to write this conversion as a combination of ECMs, using a similar LP as
in (73). If we allowed for an error of 10−7, then each EFM-based-conversion could be decomposed into
ECMs. This error margin was necessary because the results from efmtool were affected by round-off
errors, while the ECMs are calculated using fractions and are therefore exact.

When we multiply the EFMs with the stoichiometry matrix, we map them into the conversion cone.



Many of the EFMs will end up in the interior of the cone, thus leading to conversions that are combi-
nations of ECMs. However, for each ECM there must be at least one EFM that leads to exactly that
conversion. As a last sanity check, we tried to validate this. We took the decompositions of EFMs into
ECMs obtained in the LPs above, and checked if each ECM occurs at least once as the sole decomposing
vector of an EFM. We say that an ECM is a decomposing vector of an EFM if it is used more than some
‘support tolerance’. In Figure S11, we vary this tolerance. We see that at a support tolerance of 10−2, all
ECMs have at least one EFM of which they are the sole decomposing ECM. Since both ECMs and EFMs
were normalized before this validation, this implies that for all ECMs there is an EFM-based-conversion
that is 99% equal to the ECM. This indicates that this EFM actually corresponds to the same conversion
as the ECM; the 1% is caused by round-off errors and the allowed tolerance tol in the LP.

Figure S11: The cumulative number of ECMs that are identified as the sole decomposing ECM of at
least one EFM, when we vary the cut-off at which we mark an ECM as ‘decomposing’.

1. Description of validation on the e coli core-network

2. Figures of error distribution in decomposing EFMs

10 ECM-analyses several networks

In the main text we report on ECM computations for the e coli core-network,16 the iIT341-network,1

and the iJR904-network.17 The full results and the run scripts that were used to obtain these results
have been uploaded as supplementary files, and can also be found in the Github-folder:
https://github.com/SystemsBioinformatics/ecmtool, specifically in the subfolder
results and corresponding runscripts/.

The Elementary Conversion Modes for the rhizobial bacteroids were calculated on the model iCS320
by Schulte et al. The results and run scripts are reported in their work.18



10.1 Creating subnetworks of e coli core

In one of the figures of the main text we describe how the number of ECMs and EFMs behaves for various
subnetworks of the e coli core-model. These subnetworks were created with a Python-script that we
called subnetwork creator.py, which is attached as a supplementary file. We created the subnetworks
via an iterative procedure. The smallest subnetwork is constructed by taking only the active reactions
in the FBA-solution. After that, we made a series of knockout-models. We deleted one of the active
reactions, and again ran a Flux Balance Analysis. This knockout-model necessarily had a new set of
active reactions. We took the union of these active reactions with the original active reactions to create
our second model. Then, we again deleted a reaction, did another FBA, and took the active reactions.
As such, we created subnetworks of increasing size for which we could compute the ECMs.

10.2 Clustering the ECM results for visualisation

We have clustered some of the ECM-enumeration results for visualization purposes. All R-scripts are
made available as supplementary files. We first made sure that the set of ECMs was no larger than
a few thousand. For some models, comprising hundreds of thousands ECMs, we had to take a subset
of ECMs with a certain property, for example growth-supporting ECMs. Given this set, we created a
distance matrix that contains the L1-distance between all pairs of ECMs. For some models, we chose
to weigh the L1-distance so that some metabolites are considered more important than others. On this
distance matrix, we performed hierarchical clustering. The metabolites were ordered from top to bottom
by the number of ECMs that used the metabolite as an output minus the number of ECMs that used
the metabolite as an input.

To visualize the clustered ECMs we used two options. For some models we converted all coefficients
to a ternary scale, showing only whether the metabolite in the ECM was taken up, left untouched,
or secreted. For other models we used a shifted logarithmic scale. To be precise, we converted the
stoichiometric coefficients according to:

x =


log
(

x
shiftpos ·minpos

)
if x > 0,

0 if x = 0,

− log
(

x
shiftneg ·maxneg

)
if x < 0,

(74)

where shiftneg , shiftpos are parameters smaller than 1, and minpos,maxneg are respectively the smallest
positive and the largest negative coefficient occurring in the ECMs. This transformation was necessary
to visualize all differences in the coefficients occuring in the ECMs, because these coefficients span many
orders of magnitudes and are both positive and negative. However, we should emphasize that this
transformation can be used for visualization purposes only.

11 User guide

11.1 Prerequisite ingredients for ECM-computation

To compute the ECMs, one needs to provide at least an SBML-model. From the SBML-model, the
following will be extracted by ecmtool

1. a stoichiometry matrix,

2. reversibility information of all reactions,

3. information on which metabolites are external or internal,

4. information on whether external metabolites can be produced, consumed or both

Important notes for the correct parsing of SBML-files by ecmtool

It should be checked carefully that ecmtool has parsed the model corresponding to the user’s intentions.
By far the most issues that users may have with ecmtool are due to incorrect parsing of the SBML-
file. Because several conventions exist for storing several features of the model, ecmtool cannot comply



with all of them. When ecmtool is used as a standalone command line tool the parsing result can be
checked by running ecmtool with the arguments --print reactions True and --print metabolites

True, as described in subsection 11.2.1 below. When ecmtool is used as a Python library, the parsing
result is available in the variable of the network class. Important to check are at least:

1. reversibility information of all reactions. We use the convention that reactions that are
marked as irreversible can only run in the forward direction. Reactions can thus not be backward
irreversible. In this case, the direction of the reaction should be swapped.

2. internal/external-information of metabolites. We use the convention that the metabolite-
IDs of external metabolites are marked by e. The user can change this with the argument
--external compartment. In addition, exchange reactions and external metabolites are recog-
nized using functionality from the cbmpy-library, but this might not catch all.

3. directionality information of external metabolites. Based on the direction and reversibility
of exchange reactions we determine whether a metabolite can be used as an input, an output or as
both. This is what is most often parsed erroneously, due to conflicting conventions about when to
set a reaction as reversible/irreversible in relation to its flux bounds.

Ecmtool can be used in two different modes: either as a standalone command line tool, or as a Python
library for your own scripts. This section describes how to install and use both modes.

11.2 Mode 1: standalone command line tool

In this mode, you can call ecmtool like a normal program from your command line. It reads metabolic
networks in the SBML format, and writes resulting ECMs into a CSV file for later analysis. Most
researchers will use this method. For running ecmtool on computing clusters efficiently, see the Advanced
Usage section in this readme.

Installation

� Download and install Python. Ecmtool is compatible with python 3.x. Ensure both python and
its package manager pip are added to your PATH environment variable. If this last step is omitted,
an error like the following will be thrown when you try to run python: ’python’ is not recognized
as an internal or external command [..].

� Download the latest ecmtool source through git clone, or as a zip file from
https://github.com/tjclement/ecmtool.

� Open a command prompt, and navigate to the ecmtool directory (e.g. cd C:\Users\You\Git\ecmtool,
where the path should be replaced with the path ecmtool was downloaded to).

� Install the dependencies in requirements.txt inside the ecmtool directory (e.g. by running pip install
-r requirements.txt).

� Linux only: install redund of package lrslib (e.g. by running apt install lrslib).

Running

Ecmtool can be ran by executing

python3 main.py {model_path <path/to/model.xml> [arguments]

from the command line, after navigating to the ecmtool directory as described above. The possible
arguments and their default values are printed when you run python main.py --help. After execution
is done, the found conversions have been written to file (default: conversions.csv). The first row of this
CSV file contain the metabolite IDs as read from the SBML model.



11.2.1 Optional arguments

� --model path, type=str, default=’models/active subnetwork KO 5.xml. Relative or abso-
lute path to an SBML model (.xml-file)

� --direct, type=str2bool, default=False. Enable to intersect with equalities directly. Direct
intersection works better than indirect when many metabolites are hidden, and on large networks
(default: False)

� --compress, type=str2bool, default=True. Perform compression to which the conversions are
invariant, and reduce the network size considerably (default: True)

� --out path, default=’conversion cone.csv’. Relative or absolute path to the .csv file you
want to save the calculated conversions to (default: conversion cone.csv)

� --add objective metabolite, type=str2bool, default=True. Add a virtual metabolite con-
taining the stoichiometry of the objective function of the model (default: true).

� --print metabolites, type=str2bool, default=True. Print the names and IDs of metabolites
in the (compressed) metabolic network (default: true)

� --print reactions, type=str2bool, default=False. Print the names and IDs of reactions in
the (compressed) metabolic network (default: true)

� --print conversions, type=str2bool, default=True. Print the calculated conversion modes
(default: true)

� --use external compartment, type=str, default=None. If a string is given, this string indi-
cates how the external compartment in metabolite-ids of SBML-file is marked. By default, dead-end
reaction-detection is used to find external metabolites, and not compartment-information. Please
check if external compartment detection works by checking metabolite information before compres-
sion and with --print metabolites true

� --auto direction, type=str2bool, default=True. Automatically determine external metabo-
lites that can only be consumed or produced (default: true)

� --inputs, type=str, default=’’. Comma-separated list of external metabolite indices, as given
by --print metabolites true (before compression), that can only be consumed

� --outputs, type=str, default=’’. Comma-separated list of external metabolite indices, as
given by --print metabolites true (before compression), that can only be produced. If inputs
are given, but no outputs, then everything not marked as input is marked as output. If inputs and
outputs are given, the possible remainder of external metabolites is marked as both

� --hide, type=str, default=’’. Comma-separated list of external metabolite indices, as given
by --print metabolites true (before compression), that are transformed into internal metabo-
lites by adding bidirectional exchange reactions

� --prohibit, type=str, default=’’. Comma-separated list of external metabolite indices, as
given by --print metabolites true (before compression), that are transformed into internal
metabolites without adding bidirectional exchange reactions. This metabolite can therefore be
used as neither input nor output.

� --tag, type=str, default=’’. Comma-separated list of reaction indices, as given by --print reactions

true (before compression), that will be tagged with new virtual metabolites, such that the reaction
flux appears in ECMs.

� --hide all in or outputs, type=str, default=’’. String that is either empty, input, or out-
put. If it is input or output, after splitting metabolites, all inputs or outputs are hidden (objective
is always excluded.



� --iterative, type=str2bool, default=False. Enable iterative conversion mode enumeration
(might help on large, dense networks) (default: false)

� --only rays, type=str2bool, default=False. Enable to only return extreme rays, and not
elementary modes. This describes the full conversion space, but not all biologically relevant minimal
conversions. See: Clement, 2020 and Urbanczik, 2005.

� --verbose, type=str2bool, default=True. Enable to show detailed console output (default:
true)

� --splitting before polco, type=str2bool, default=True. Enables splitting external metabo-
lites by making virtual input and output metabolites before starting the computation. Setting to
false would do the splitting after first computation step. Which method is faster is complicated
and model-dependent. (default: true)

� --redund after polco, type=str2bool, default=True. (Indirect intersection only) Enables re-
dundant row removal from inequality description of dual cone. Works well with models with rela-
tively many internal metabolites, and when running parrallelised computation using MPI (default:
true)

� --scei, type=str2bool, default=True. Enable to use SCEI compression (default: true)

� --sort order, type=str, default=’min adj’. Order in which internal metabolites should be
set to zero during direct intersection. Default is to minimize the added adjacencies, other options
are: min lp, max lp per adj, min connections

� --intermediate cone path, type=str, default=’’. Filename where intermediate cone result
can be found. If an empty string is given (default), then no intermediate result is picked up and
the calculation is done in full.

� --manual override, type=str, default=’’. (Advanced option). Index indicating which metabo-
lite should be intersected in first step. Can be used in combination with --intermediate cone path

to pick a specific intersection at a specific step.

Example

1 python3 main . py ==model path models / e c o l i c o r e . xml ==au t o d i r e c t i o n t rue ==
out path co r e c onv e r s i on s . csv

11.3 Mode 2: Python library

Ecmtool can also be used as a separate programming interface from within your own Python code.
To do so, install ecmtool using pip (e.g. pip install ecmtool). The most crucial method is ecm-
tool.conversion cone:get conversion cone(), which returns the ECMs of a given stoichiometric matrix.
For information on how to use advanced features like SBML parsing, network compression, and metabo-
lite direction estimation, please see ecmtool/main.py.

Example

1 from ecmtool . network import ex t r a c t sbm l s t o i ch i ome t ry
2 from ecmtool . conve r s i on cone import g e t c onve r s i on cone
3

4 network = ex t r a c t sbm l s t o i ch i ome t ry ( ’ models / sxp toy . xml ’ , add ob j e c t i v e=True )
5 s to i ch i omet ry = network .N
6

7 ecms = ge t conve r s i on cone ( s to i ch iometry , network . e x t e r n a l me t a b o l i t e i n d i c e s ( ) ,
8 network . r e v e r s i b l e r e a c t i o n i n d i c e s ( ) , network . i n pu t me t abo l i t e i n d i c e s ( ) ,
9 network . ou tpu t me tabo l i t e i nd i c e s ( ) )

10



11.4 Advanced usage

After testing how the tool works, most users will want to run their workloads on computing clusters
instead of on single machines. This section describes some of the steps that are useful for running on
clusers

Doubling direct enumeration method speed

The direct enumeration method can be sped up by compiling our LU decomposition code with Cython.
The following describes the steps needed on Linux, but the same concept also applies to Mac OS and
Windows. First make sure all dependencies are satisfied. Then execute:

1 python3 setup . py bu i l d ex t ==i np l a c e
2

3 mv bglu * ecmtool /

Running on a computing cluster with mpiexec

For example:

mpiexec -n 4 python3 main.py --model_path models/e_coli_core.xml

Examples of run commands and necessary computing power

In this part, we provide some descriptions on how the presented results were obtained. All ECMs that
were computed are supplied as supplementary files.

Escherichia coli-model: e coli core

This model, downloadable from bigg.ucsd.edu,19 is excellent for getting to know the workings of
ecmtool, because the runtime is quite short. An example runscript is given by:

1 python3 main . py ==model path models / e c o l i c o r e . xml ==au t o d i r e c t i o n t rue ==
d i r e c t f a l s e ==s p l i t t i n g b e f o r e p o l c o t rue

It is good to get a feel for the different enumeration options, such as --direct, --splitting before polco

and --redund after polco. The enumeration should always give the ECMs that can also be found in
the file conversions ecolicore.csv.

In the main text, we also show the ECMs obtained for this model when all outputs were hidden. This
can be achieved by running

1 python3 main . py ==model path models / e c o l i c o r e . xml ==d i r e c t Fa l se ==
h i d e a l l i n o r o u t p u t s output

In fact, this command provides a shortcut to focus on only inputs, but one could also obtain this result
with giving all indices of output metabolites to the --hide-argument.

If run with the argument --print reactions true, ecmtool prints an indexed list of reactions before
starting the computation. This can be used if a specific reaction is of interest. For example, in the main
text we showed results in which the activity of the pyruvate dehydrogenase-reaction was reported. In
the printed list one can see that this is reaction 50. We can therefore run

1 python3 main . py ==model path models / e c o l i c o r e . xml ==d i r e c t Fa l se ==
h i d e a l l i n o r o u t p u t s output ==tag 50

Helicobacter pylori-model: iIT341

The iIT341-model is also available at bigg.ucsd.edu. The enumeration of all ECMs of this model is
quite computationally intense. The results shown in Supplementary Figure 1, and made available in
iIT minII fullconversioncone.zip, were calculated on a Linux-based virtual computing cluster with
the command:



1 mpiexec =n 4 python3 main . py
2 ==model path models / iIT341 . xml ==d i r e c t f a l s e
3 ==inputs 139 ,262 ,28 ,294 ,300 ,306 ,314 ,231 ,35 ,350 ,259 ,261 ,22 ,356 ,334 ,93 ,293 ,271
4 ==out path iIT . csv
5 ==outputs 16 ,26 ,29 ,33 ,39 ,40 ,59 ,65 ,75 ,81 ,90 ,100 ,110 ,145 ,171 ,174 ,212 ,223 ,224 ,232 ,
6 234 ,235 ,239 ,252 ,253 ,255 ,263 ,265 ,269 ,276 ,277 ,279 ,280 ,283 ,284 ,286 ,291 ,296 ,302 ,308 ,
7 312 ,319 ,320 ,323 ,325 ,329 ,331 ,336 ,341 ,342 ,344 ,345 ,352 ,358 ,361 ,366 ,368 ,370 ,372 ,293
8 ==s p l i t t i n g b e f o r e p o l c o f a l s e

Running with mpiexec -n 4, implies that some of the tasks are spread over 4 computation cores. For this
model, it turned out to be beneficial to use the indirect method, --direct false. When we use indirect
intersection, only the redundancy removal can be parallelised. The indices for the inputs- and outputs-
arguments were determined by first running ecmtool with the default argument --print metabolites

true. In the printed list with indices and metabolites, we could find all metabolites that were mentioned
by the model developers1 in a minimal medium. We used --splitting before polco false, simply
because this seemed to enable faster progress. For now, we cannot really determine when it is wise to
use this option or not, so that trial and error is the best we can do. This computation took several hours
to run.

If one is mostly interested in the conversion of inputs to biomass, it might be sufficient to calculate
the ECMs in the network while all outputs are hidden. In Figure 5 of the main text, we show the results
obtained by this command:

1 ==model path models / iIT341 . xml ==d i r e c t f a l s e
2 ==inputs 139 ,262 ,28 ,294 ,300 ,306 ,314 ,231 ,35 ,350 ,259 ,261 ,22 ,356 ,334 ,93 ,293 ,271
3 ==out path iIT . csv
4 ==outputs 16 ,26 ,29 ,33 ,39 ,40 ,59 ,65 ,75 ,81 ,90 ,100 ,110 ,145 ,171 ,174 ,212 ,223 ,224 ,232 ,
5 234 ,235 ,239 ,252 ,253 ,255 ,263 ,265 ,269 ,276 ,277 ,279 ,280 ,283 ,284 ,286 ,291 ,296 ,302 ,308 ,
6 312 ,319 ,320 ,323 ,325 ,329 ,331 ,336 ,341 ,342 ,344 ,345 ,352 ,358 ,361 ,366 ,368 ,370 ,372 ,293
7 ==h i d e a l l i n o r o u t p u t s output

So, we added the argument –hide all in or outputs output, and removed --splitting before polco

false. The first ensures that all output-metabolites are hidden. Hiding these output metabolites is
only possible if metabolites that are both in- and output are already split before the enumeration step.
Therefore, the argument --splitting before polco false is overridden by ecmtool anyhow.

Escherichia coli-model: iJR904

This large E. coli -model can also be downloaded from bigg.ucsd.edu. We used it to calculate all
relations between glucose and oxygen consumption, and biomass production. These relations are shown
in Figure 6 of the main text. The computation must be done using the direct method, and on many
computation cores. We have used 20 nodes each of which had 16 computing cores, and the computation
took 14.5 hours. The full jobscript that we used was:

1 #!/ bin /bash
2 #SBATCH =N 20
3 #SBATCH =t 48 : 00 : 00
4

5 module load 2019
6 module load Python/3.6.6= i n t e l =2019b
7 export PATH=$PATH:˜/ l r s l i b / l r s l i b =070
8

9 mpiexec python3 ˜/ ecmtool /main . py ==model path ˜/ ecmtool /models / iJR904 . xml
10 ==inputs 374 ,542 ,551 ,589 ,660
11 ==hide 542 ,589 ,660 ,3 ,6 ,20 ,27 ,65 ,68 ,77 ,120 ,122 ,124 ,130 ,133 ,136 ,144 ,146 ,
12 164 ,167 ,169 ,173 ,180 ,189 ,192 ,195 ,197 ,206 ,211 ,219 ,223 ,229 ,233 ,236 ,242 ,244 ,247 ,
13 249 ,260 ,265 ,268 ,280 ,286 ,288 ,305 ,315 ,324 ,328 ,333 ,336 ,338 ,340 ,349 ,352 ,354 ,356 ,
14 358 ,360 ,363 ,366 ,376 ,378 ,380 ,382 ,388 ,393 ,395 ,397 ,399 ,402 ,404 ,413 ,419 ,424 ,427 ,
15 431 ,436 ,447 ,452 ,455 ,459 ,462 ,466 ,474 ,476 ,479 ,481 ,490 ,493 ,497 ,500 ,502 ,504 ,506 ,
16 509 ,510 ,513 ,515 ,517 ,525 ,532 ,534 ,536 ,542 ,545 ,547 ,549 ,555 ,562 ,583 ,589 ,592 ,603 ,
17 611 ,616 ,623 ,633 ,638 ,643 ,649 ,651 ,660 ,662 ,668 ,674 ,680 ,682 ,688 ,692 ,695 ,697 ,699 ,
18 704 ,707 ,709 ,711 ,714 ,742 ,745 ,747 ,750 ,752 ,755 ,759



19 ==out path ˜/ output/ iJR . csv
20 ==d i r e c t t rue

One might notice that the lists of metabolites to hide can become quite long, and therefore it might be
tedious to manually compile these. We therefore first used ecmtool as a Python library, and created a
small script that returned lists of the metabolite indices that should be hidden.

Saccharomyces cerevisiae-model: iND750

This model, also downloaded from bigg.ucsd.edu, was analysed in the paper that originally introduced
ECMs.10 We found that the import and export of many external metabolites was prohibited by the
authors. This is also possible with the ecmtool-argument --prohibit. It makes sure that only the
ECMs are returned that do not involve one of the prohibited metabolites. Although this functionality
enables the calculation of some ECMs for very large models, it might not be very biologically reasonable.

Our runscript and the computed ECMs can be found in the supplementary files iND750 runscript.txt

and iND750 indirect.csv.
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