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QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Fluorescence correlation spectroscopy  

GFP and mCherry fluorescence values were converted to absolute concentrations using 

fluorescence correlation spectroscopy (FCS), performed as described previously (Bracha 

et al., 2018) with minor modifications. Data for diffusion and concentration of indicated 

fluorescent fusion proteins were obtained with 30-second FCS measurement time. The 

measurements were performed on U2OS G3BP1/2 2KO (“G3BP KO”) cell populations 

expressing iLID-mGFP or mCherry-sspB, fusion protein conditions that were chosen 

based on the assumption that such non-native fusion proteins would be monomeric and 

feature no major endogenous binding partners. Images were taken using a Nikon A1 

laser scanning confocal microscope with an oil immersion objective (Plan Apo 60X/1.4 

numerical aperture, Nikon). All measurements and data analysis were performed using 

the SymPhoTime Software (PicoQuant). The autocorrelation function for simple diffusion 

is: 

 

 

 

The variables in the above equation are defined as follows:  

G(0) is magnitude at short time scales; τ is the lag time; τD is the half decay time; and   is 

the ratio of axial to radial of measurement volume (         ). Here,     = 0.19 m 

and   = 5.1, which is determined by the fluorophore dye Alexa488 in water. The 

parameters τD and G(0) are optimized in the fit and are used to determine the diffusion 

coefficient (     
 /4τD)  and molecule concentration (    

 

    
          ). 

 

The fluorescence to concentration calibration curves displayed in Figure S1C were used 

for all experiments that quantitatively assess the concentrations of mCherry- and mGFP-

tagged fusion proteins in WT and G3BP KO U2OS cells. Such FCS calibration curves 
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yielded several findings that support the precision of such estimates. These are detailed 

below. 

 

First, independently performed mCherry FCS experiments yielded concentration 

estimates that were <5% different from previous measurements (Bracha et al., 2018). 

Further, the aforementioned study used an autocatalytic P2A system to co-express 

mGFP and mCherry at equimolar ratios, with GFP concentrations extrapolated from the 

FCS calibration curves determined for mCherry. This indirectly extrapolated calibration 

curve predicted GFP concentrations that differed by <20% from the independently 

obtained calibrations and estimations used in this study. 

 

Second, the slope determined in Figure 3B, which quantifies stoichiometry between 

USP10 and G3BP required to differentiate cells that form stress granules from those that 

are unable to, is remarkably close to 1 (~0.98). A slope of 1 is predicted for such a 

competitive inhibitor (“cap”) expressed at concentrations far greater than its Kd and is 

further confirmed by nearly equivalent slopes for other strong inhibitors (“caps” e.g. 

USP10 NIM and CAPRIN1 NIM). 

  

Third, we estimated the concentration of G3BP1/2 in U2OS cell cytoplasm by adding the 

G3BP concentration for rescue (620 nM) (Figure 3B) and USP10 concentration for SG 

inhibition (1560 nM) (Figure S3B) to extrapolate a concentration of ~2180 nM. This 

value is approximately equal to independently obtained mass spectrometry values in 

HeLa cells (1808 nM in cytoplasm, a value extrapolated from the reported estimate of 

1446 nM in whole cells, based on the assumption that the nucleus accounts for 20% of 

total volume and all G3BP is located to the cytosol (Hein et al., 2015)). Importantly, 

Western blot confirms similar levels of both G3BP1 and G3BP2 in HeLa and U2OS cells 

(Figure S1B). 

 

Fourth, we determined that mGFP-G3BP1 and G3BP1-mCherry feature identical SG 

rescue concentration thresholds (Figure S1D, within 50 nM of each other), despite 

different fluorescent protein tags. Taken together, these observations give confidence 
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that our FCS calibration curves are highly accurate for estimating fluorescent protein 

concentration in living cells. 

 
Image analysis 

All images were analyzed using a combination of manual image segmentation (ImageJ), 

custom semi-automated workflows in ImageJ, and automated analysis in MATLAB 

2018b. In all experiments, regions of interest were selected in ImageJ and average 

cytoplasmic intensities were calculated using the aforementioned FCS calibration curves. 

The presence of stress granules was, in cases other than the cycling experiments, 

determined by manual scoring based upon co-localization with a protein marker of stress 

granules that features diffuse distribution in the cytoplasm in the absence of stress (and 

further, is diffuse in the cytoplasm of stressed G3BP KO cells without ectopic expression 

of a protein that rescues stress granule defects).  

 

Manual image segmentation 

The average fluorescence intensity for mCherry and mGFP in an individual cell was used 

to approximate the concentration of associated fusion proteins. This was determined by 

using manual image segmentation (ImageJ) to draw 4.5 x 4.5 m square ROIs in 

cytoplasmic regions featuring homogenous distribution of fluorescence (i.e. regions with 

low density of membrane-bound organelles like the Golgi). The aforementioned FCS 

calibration curves were then used to determine the protein’s concentration. Presence or 

absence of stress granules was manually annotated. For Corelet phase diagrams, phase 

separation was assessed based on whether visible “puncta” formed following a 5-minute 

activation time course (6-second intervals between images). Only fully activated cells 

were considered to avoid confounding effects related to diffusion-based capture (Bracha 

et al., 2018). 

 

Light-dark cycling experiments 

Individual regions of interest, which remained in the field of view throughout the time 

course, were manually selected. Standard deviations were calculated from the measured 

mCherry intensity and were normalized by the standard deviation at the first frame taken.  
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G3BP rescue competition data analysis in G3BP KO U2OS cells 

The concentration of each cell was determined via manual image segmentation as 

previously described, and absence or presence of stress granules was annotated. To 

determine a boundary from the data, a support vector machine (SVM) trained using the 

concentrations of the two components as explanatory variables and the categorical 

stress granule state as a response variable by applying the fitcsvm() function in the 

MATLAB Statistics and Machine Learning package using the default solver. Briefly, a 

support vector machine constructs a linear decision surface based on boundary points 

(“support vectors”), with the assumption that the data is linearly separable. In this two-

dimensional case, the parameters of slope and intercept were extracted to calculate the 

minimal G3BP concentration for stress granule formation as well as the stoichiometry of 

interactions with proteins of interest (i.e. the slope of the corresponding line).  

 

Phase diagrams and calculation of threshold valence 

For each phase diagram, mean concentrations of both iLID-GFP-Fe core and mCherry-

sspB-tagged proteins were calculated and assigned to the category of having or not 

having stress granules. To determine phase threshold boundaries in an automated and 

unbiased fashion, an SVM regressor was again used, using the core concentration and 

log2-transformed valence as explanatory variables with the presence of phase separated 

structures as a categorical response variable. However, because the data was not 

linearly separable, a polynomial kernel with degree=2 was used to account for the 

curvature of the phase threshold. Then, to calculate the decision surface, the score of 

the SVM was calculated at all points in a 50-by-50 grid in the phase diagram, and a 

contour line representing the phase threshold was drawn connecting points with a score 

of 0 using MATLAB’s contour() function. Specific values for threshold valence at 

specified core concentrations were then calculated by linearly interpolating the zero-

score contour line.  

 

Quantification of threshold concentration for inhibition of stress granule assembly 

(WT cells) or rescue (G3BP KO cells) 
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For each experiment, the concentration of the protein of interest was determined for 

each cell, and the presence (or absence) of stress granules was categorized. The 

threshold concentration of inhibition (or rescue) was defined as the concentration of 

protein of interest at which cells had a 50 percent chance of having stress granules. 

Specifically, the probability density was calculated by binning the concentration 

distribution using a square root number rule. Within each bin, the probability of having 

stress granules was calculated as the number of cells with stress granules over the total 

number of cells in that bin. This results in a monotonic function; its value at a probability 

of 0.5 was then interpolated to determine the threshold concentration of inhibition or 

rescue. This was repeated for each replicate and standard error of the mean between 

replicates was used to determine error bars. The bin size was used as the error if it was 

greater than that calculated for the SEM or in experiments with a single replicate. 

 

Partitioning coefficient image analysis 

To determine partition coefficients (PCs) of fluorescently tagged proteins of interest into 

stress granules (marker = GFP-CAPRIN1 or mCherry-CAPRIN1), confocal microscopy 

images were taken at three different settings to prevent oversaturation of the images in 

both fluorescent channels (488, GFP; 546, mCherry). For each set of images, the image 

with the highest intensities yet lacking saturated pixels was analyzed. Stress granules 

(SGs) were first segmented in the CAPRIN1 channel by applying a Laplacian of 

Gaussians (LoG) filter with a kernel size of 6-pixels to the image. The resulting image 

was then thresholded and a mask from pixels with a LoG intensity of greater than 1.5 

standard deviations was generated. Pixels near the border of the image or SGs 

containing fewer than 9-pixels were removed from the analysis. To determine the 

intensity inside SGs while avoiding intensity gradients near the edge of the SGs, masks 

were thinned. Likewise, to calculate the background intensity near but outside the SGs, 

an annulus was constructed by subtracting a mask thickened 8-times from that thickened 

4-times from the original thresholded image (bwmorph, MATLAB2018b). Then, for each 

identified SG, an average intensity inside and outside the SG was calculated by 

background subtracting and averaging the intensities of the corresponding pixels in the 

fluorescently tagged protein of interest channel based on the aforementioned 
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segmentation of the CAPRIN1 channel. The partition coefficient (PC) was calculated by 

solving the following linear system: PC*Iin=Iout (mldivide, MATLAB2018b). Error was 

calculated from the standard error of the mean of intensity Iin and Iout and then 

propagated by combining in quadrature. 

 

 

Model of PPI network phase separation 

 

We adapted the SAFT formalism (CHAPMAN et al., 1989) to model a mixture of colloidal 

particles with associative interactions, in which each binding site can engage in at most 

one bond at a time. A colloid in this model refers either to a protein monomer or complex, 

or to a substrate monomer. Denoting the number of binding sites of type  on a colloid of 

type  by , we used a prescribed PPI network to specify which binding site pairs 

 are allowed to interact. Our SAFT-based approach requires two key 

approximations (Jacobs et al., 2014): First, we used a mixture of colloids with no 

attractive interactions as the reference state, which means that spatial correlations due 

to associative interactions are not taken into account. Second, the functional form of the 

free energy assumes that correlations among binding site availabilities can be ignored. 

 

Defining the volume fraction occupied by colloids of type  as , the total dimensionless 

Helmholtz free energy density, , is (Jacobs et al., 2014; Michelsen and Hendriks, 

2001) 

 

 

 

 

 

 



 52 

where  is the free energy of a reference system of colloids with no attractive 

interactions;  and  are the associative contributions to the chemical potential 

of colloid type  and the pressure, respectively; and  denotes the fraction of binding 

sites of type  on a colloid of type  that are unbound at equilibrium. The expression for 

 is given by the chemical equilibrium equations 

 

 

 

which must be solved self-consistently at fixed . The interaction parameters  

are non-zero only for binding site pairs that are connected in the prescribed PPI network. 

We choose to work in the strong-binding regime, taking  for all interacting 

binding site pairs, so that  is determined primarily by the topology of the PPI network. 

 

Phase coexistence and free-energy landscape calculations 

 

We identified the conditions for phase coexistence in two steps. First, we calculated the 

convex hull of a grid of points   (Mao et al., 2019; Wolff et al., 2011). 

We identified facets of the hull that correspond to coexistence regions by comparing the 

distances between the vertices of the facets to the minimum distance between adjacent 

points on the grid. In this way, we concluded that at most three phases can 

simultaneously coexist given the networks in Figure 7A,B, and that at most two phases 

can coexist given the networks in Figure 7C,D. The values of  at the vertices of a 

facet approximate the coexistence concentrations at the chemical potential vector, 

, determined from the facet normal vector. 

 

We then used the discretized convex hull results as a starting point for higher-precision 

phase-coexistence calculations. These off-grid calculations were used to tune  and 

 to ensure equal chemical potentials and pressures among all phases, as required 

for coexistence at equilibrium (Rubinstein, 2003). However, specifying three-phase (two-

phase) coexistence in a mixture of four colloid types leaves two (three) other degrees of 
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freedom undetermined. We therefore needed to specify the chemical potential 

differences among three components in Figure 7A,B and among four components in 

Figure 7C,D. In Figure 7A, we started from the coexistence facet with  closest in 

chemical potential space to the centroid of all three-phase coexistence facets, and then 

fixed the chemical potential differences  and 

. For the sake of comparison, we chose the same fixed chemical 

potential differences in Figure 7B-D. In Figure 7C,D, we chose the additional chemical 

potential difference  to be equal to the value obtained from the three-

phase coexistence calculation in Figure 7A. 

 

To generate the free-energy plots shown in Figure 7, we calculated 

 

 

 

at the coexistence chemical potential vector . We then plotted  along a 

linear path through concentration space, , between each pair of coexisting phases. 

In Figure 7C,D, where there is no stable  phase, we calculated the free energy along a 

linear path to the location of the  phase in panel A. The compositions reported on the 

free-energy plots are the volume fractions of the components present in each phase, 

normalized by the total colloid volume fraction in that phase and rounded to the nearest 

5%. 

 

We note in the main text that the increased free-energy barrier height between the  and 

 phases in Figure 7B tends to disfavor wetting of these phases. Strictly speaking, the 

three-phase junction ( , , and dilute) pictured in the cartoon in Figure 7A is 

mechanically stable when the surface tension between the  and  phases, , is less 

than the sum of the surface tensions between the other pairs of phases,  

(Gennes, 2004). According to the Cahn--Hilliard theory of planar interfaces (CAHN and 
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HILLIARD, 1958) , where  is the distance along 

a linear path in concentration space between the phases  and . Assuming that the 

constant of proportionality is roughly the same for all pairs of phases, we find that 

 in Figure 7A, while  in Figure 7B. Nevertheless, the 

true morphologies depend on the exact values of these proportionality constants, the 

minimum-free-energy paths through concentration space that connect the phases, the 

curvature of the physical interfaces, and other details that are beyond the scope of this 

minimal model. 

Importantly, the qualitative features of these plots, including the number of phases in the 

coexistence region and the relative heights of the barriers, are relatively insensitive to the 

choice of  values. We also verified that these qualitative features are not sensitive to 

variations in the relative binding interaction parameters. 

 

Data and Code Availability 

The raw imaging datasets and associated custom MATLAB code supporting the current 

study have not been deposited in a public repository because of their large size (~1 TB) 

but are available from the corresponding author on request. 

 

 

 

 

 

 

 

 

 

 

 


