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August 13, 20201st Editorial Decision

August 13, 2020 

Re: JCB manuscript  #202006180 

Dr. Richard J Youle 
Nat ional Inst itute of Neurological Disorders and Stroke 
10213 Montgomery Ave 
Kensington, MD 20895 

Dear Richard, 

Thank you for submit t ing your Tools manuscript  ent it led "Image-based pooled whole genome
CRISPR screening for Parkin and TFEB subcellular localizat ion". We apologize for the delay in
providing you with a decision. The manuscript  has been evaluated by three expert  reviewers, one of
which also assessed the companion paper from Ron Vale's group, and their reports are appended
below. 

As you will see, although two of the reviewers expressed enthusiasm for the ut ility of this
methodology for the cell biology community, they also raised a number of significant and valid
concerns. One primary issue is the lack of adequate informat ion and sufficient  descript ion of key
methodology and method validat ion. More expansive descript ions of the methodology and
pipeline/workflow are necessary. There is insufficient  descript ion and analysis of the Parkin
recruitment and TFEB nuclear localizat ion screens, which validate the approach. In addit ion, the
reviewers point  out that  data presentat ion and writ ing are not accurate, and the manuscript  does
not place and compare this approach in the context  of previously published photoact ivatable
screening approaches. 

The extent of revisions necessary to address the reviewers' concerns are significant. Thus, we are
returning it  to you. 
However, given interest  in the topic, we would be open to an appeal and potent ial resubmission to
JCB of a significant ly revised and extended manuscript  that  completely addresses the reviewers'
concerns. We should note that, while we agree with reviewer #1 that a mechanist ic extension
would be interest ing and increase the impact of the work, we don't  feel that  it  would be necessary
for a Tools manuscript  and so we would not require it  for appeal/resubmission. 

As you know, you may contact  the journal office to discuss an appeal of this decision or you may
submit  an appeal direct ly through our manuscript  submission system once you have completed
your revisions. Please note that the paper would, of course, be subject  to re-review by the same
reviewers (if possible). 

Regardless of how you choose to proceed, we hope that the comments below will prove
construct ive as your work progresses. 

Thank you again for allowing us to consider this work. 

Sincerely, 



Jodi Nunnari, Ph.D. 
Editor-in-Chief 
The Journal of Cell Biology 

Tim Spencer, PhD 
Execut ive Editor 
Journal of Cell Biology 

--------------------------------------------------------------------------- 

Reviewer #1 (Comments to the Authors (Required)): 

The manuscript  by Kanfer, Youle and coworkers is built  on the idea to implement a CRISPRi-based
screen by using imaging of adherent cells that  express a fluorescent reporter - which allows them
to ident ify specific changes in reporter localizat ion - and then select  individual cells with a part icular
reporter signal by photoact ivat ion for subsequent FACS sort ing. While the idea of using imaging for
feature select ion for CRISPR screening is not totally new (for example Goda's group, 2018, Cell
175:266-276 used this for cells in solut ion), I think this is the first  report  of using imaging of adherent
cells for CRISPR screening and also to make use of a photoact ivat ion step for cell select ion in this
format. Given the large number of available fluorescent reporters based on localizat ion changes in
cells, there are many potent ial applicat ions for this type of screening pipeline. In addit ion to the
novelty of using adherent cells and select ion by photoact ivat ion in a CRISPR screen, the main
novelty of their approach is the use of machine learning and convolut ional neural network models
for image analysis that  allow them select  which cells to mark by photoact ivat ion. To demonstrate
the validity of their approach, they show the use of the pipeline for two types of screens. The
second is a genome-wide screen on TFEB localizat ion that ident ifies potent ially new regulators of
the nuclear localizat ion of TFEB which is a crit ical t ranscript ional feedback mechanisms in the
mTORC1 signal t ransduct ion pathway. 

Given that the use of machine learning and image analysis in a CRISPR screen is not totally new, I
expected more mechanist ic data demonstrat ing that the pipeline and approach they developed
can lead to finding a mechanist ically relevant new regulator of the mTORC1/TFEB signaling
pathway. This is my only major point  that  requires that they provide some addit ional mechanist ic
data on at  least  one of their hits. The other minor points I am adding below can likely be addressed
by changes to the representat ion of data and analysis. 

Major point : 
Some more funct ional characterizat ion is needed for at  least  one of their hits from the CRISPRi
screen. For example, they could focus on the phosphatase inhibitor PP1R1B (DARP32) for which
there is a plausible hypothesis of how it  may work in the mTORC1 pathway. This could strengthen
their argument that this type of screen is useful to find new regulators of nuclear t ranslocat ion and
ult imately understand molecular mechanisms. They could for example ask whether PP1R1B acts
direct ly in the mTORC1 pathway by direct ly or indirect ly regulat ing TFEB phosphorylat ion (which is,
as I understand, the main mechanism of TFEB nuclear localizat ion). An effect  on the rate of TFEB
dephosphorylat ion could for example be measured by using acute inhibit ion of protein
phosphatases (using ocadeic acid or similar compounds; or alternat ively a mTORC1 inhibitor such
as rapamycin) and then monitoring the nuclear localizat ion of GFP-TFEB. A related test  is to
measure whether mTORC1 act ivity for the sgRNA target ing PP1R1B is different by measuring one
or more of the known substrates such as S6K or 4E-BP. 



Minor points: 

1. Why did SVM classificat ion fail to predict  TFEB nuclear localizat ion accurately - TFEB localizat ion
seems to be a clear difference in distribut ion that should be readily captured by an SVM algorithm.
More detailed is needed why a SVM classificat ion dies not work in this case. 
2. A more detailed analysis should be provided how the three subpoolscreen in the TFEB screen
differ from each other. This would allow one to better understand how reproducible the screen is. In
addit ion, they should add a discussion how many cells and subpool screens are needed to reach
saturat ion using this method. For example, would a doubling of the number of screens or cells st ill
significant ly increase accuracy? 
3. The imaging step with one second and an analysis of 5 seconds are both quite long. Is there a
way to accelerate this? A discussion should be added how a faster microscope and faster analysis
can accelerate these steps. 
4. They also need to discuss the limitat ion of photoact ivat ion in more detail. Does it  take for each
cell 3 sec of photoact ivat ion - would it  be 30 seconds if they would select  10 cells in the image?
Could they instead use a stronger laser or different fluorescent protein to make the photoact ivat ion
step much shorter? A discussion is needed whether/how the t ime to image, analyze and
photoact ivate could be at  least  10 t imes faster to make the method more pract ically useful
considering the long-t ime it  took them to complete the subpool screens. 
5. The ent ire Fig 2 is more of a methodological detail and should be moved into the suppl. materials
sect ion. 
6. More precise experimental details are needed in all Fig legends (or in the main text  describing the
figures). This will allow the reader to better understand what the actual experiments were and how
the data was processed without having to consult  the methods sect ion. 
7. Fig 6 lacks a control sgRNA. Also, fewer t ime points would make the same point  in the figure (a
focus on the t ime points where the difference in localizat ion is greatest  relat ive to control would be
best). 

Reviewer #2 (Comments to the Authors (Required)): 

The authors present a novel pooled screening approach based on CRISPRi and machine learning.
After reading the abstract  of this paper I was very excited to read the whole paper as the premise,
using machine learning to ident ify 'hits' in relocalizat ion screens coupled with fluorescence
act ivat ion and cell sort ing to retrieve them, I think is very clever and thorough validat ion would be a
tremendous advance for the community. 

This "Tool" art icle is divided into two main parts. First ly, a proof-of-concept experiment by using the
known Parkin recruitment to mitochondria by PINK1 and secondly, a genome-wide screen
ident ifying new effectors of TFEB shutt ling. 

In both studies machine learning is used to rapidly ident ify candidate hits for fluorescence
act ivat ion. A relat ively straightforward SVM classifier was used for the proof-of-concept study and
a more sophist icated deep learning approach was used for the TFEB screen. 

As a "Tool" art icle it  must be relat ively straight forward for the readership of JCB to follow the
implementat ion of the method being described. However, I found the manuscript  extremely difficult



to follow and I work in the area. Furthermore, this kind of tool art icle should clearly demonstrate the
capabilit ies and limitat ions of the "tool". Again, I found this informat ion very difficult  to find in the
text  and even more difficult  to fully appreciate. 

For the 'proof-of-principle' screen "The Draq5 channel is used for nuclear detect ion and the GFP-
Parkin image is used to ident ify cell borders" Yet the first  ment ion of Draq5 is in the methods
sect ion that follows the main manuscript  and the quote above is from the capt ion for a
supplementary figure. Even after reading the whole manuscript  and looking for the details - it  is not
clear to me how individual cells were ident ified and segmented. 

Looking at  the figures, the segmentat ion is not very good which is surprising because it  is usually
quite facile to segment cells using only the Draq5 channel and here the authors used two channels.
Figure 2a supposedly out lines the steps in segmentat ion but starts with an image of mitochondria
which was clearly not used to create the mask in the next image. This second image is the
individual cells and is used for the coordinates for photoact ivat ion. I am not clear what the third
image is or what it  is for. Below they show the result ing segmentat ion in which there are clearly
mult iple instances of single segmentat ion boundaries surrounding mult iple cells. I don't  think a
Draq5 image is shown anywhere. 

When using the Halo-tag in the second screen the authors again do not show any halo-tag images.
And the image that they do show includes "a cell" complete with nucleus and cytoplasm (olive/lime
green nucleus mask near the center of figure 4f) where there is no evidence of a cell at  all. 

The authors show convincingly the proof of concept by detect ing PINK1 as most significant hit  in
the Parkin t ranslocat ion screen. However, assuming that I followed the manuscript  and understand
Figure 3c this conclusion is overstated. It  was actually because I could not understand the locat ion
of the PINK1 dot in the figure that I started looking carefully in the manuscript . It  appears that PINK1
guides were doped into the library at  10%. It  is not at  all surprising that they were able to retrieve
posit ive control guides that const ituted 10% of the total and makes the claims of sensit ivity for the
screen highly overstated. To claim that three replicates are needed based on this data is very
suspect. Looking at  the rest  of the data in 3b, I see no clear delineat ion of potent ial hits - which dot
is PINK1? 

Feature select ion is a crucial part  for a successful classificat ion. It  would be of interest  what
features are selected in the SVM classifier. How much do the features vary? Please explain how the
features were reduced. I think that the idea is that  highly correlated features were dropped - which
is a standard procedure but not clear here. 

Actually, I fail to see the complexity in either screen and the need for machine learning. In my
experience mitochondrial localizat ion as opposed to cytoplasmic localizat ion can be readily scored
by simply measuring the variance across the cytoplasmic area of the cell. Similarly the t raining
images shown for the nuclear cytoplasmic localizat ion determinat ion - probably the single most
common high content screen performed by the community - are sufficient ly clear that  the authors
should not have needed to use deep learning to score the cells. 

Furthermore, they present in the TFEB screen 64 genes that cause a retent ion of TFEB within the
nucleus. In a second validat ion screen 21 out of 64 were validated. But beyond that the
phenomenon could be reproduced, the validat ion is not comprehensive. Maybe I am missing
something but I don't  follow the arguments at  the top of page 7 suggest ing the results validate the
screen. In addit ion to standard validat ion approaches why don't  the authors measure changes in



TFEB regulated gene expression? 

While likely the problem is in the presentat ion of the data, I found the precision recall curves difficult
to understand for the TFEB screen. How is this being calculated? What is the gold standard? If you
don't  know the answer how is it  possible to calculate a precision-recall curve? 

Overall - as at t ract ive as the concept presented in the manuscript  is, the manuscript  needs a full
renovat ion if it  is to have impact in the community. 

Minor points: 
For the authors considerat ion. 
Why is there a probability value discrepancy in Fig. 6 a (top panel, 1h, sgTGFBR1). Two nuclei side
by side with similar intensity but a notable difference in the probability values. Given the problems
with the segmentat ion alluded to above and no segmentat ion data shown here it  is hard for me to
interpret  the numbers provided. 

Both dCas9 (pC13N-dCas9-BFP-KRAB) and sgRNAs (mU6-BstXI-BlpI-BFP vector) are tagged with
BFP. It  would be helpful if the authors briefly describe (in addit ion to the citat ion "Tian et  al., 2019")
in the method sect ion how only the sgRNA expression is assessed by the BFP signal. 

Fig 1 g and Fig. 2 f: typo "field of view" 
Figure capt ion 3: typo "fluorescence" 
Page 5 wrong citat ion formatt ing 
Throughout the text  the authors write 12,500 sgRNAs, however on page 4 they ment ion 12,775
guides. 
For better visualizat ion it  is recommended to rethink the font color, e.g. in Fig S2b. Some yellow
digits are hard to read, especially on a white background. Also in Fig S4, the red digits are not easy
to read. The red circle is a bit  too thin and might be overlooked. 
Fig. S 2 b, it  would be helpful if the authors could label the Pa mCh channel like they did in Fig. 4 f
with "pre-act ivated" and "act ivated". 
Fig. 4 b, TC medium was used in the figure, however the authors used complete medium (cm) in the
figure capt ion. 
Could you specify (page 17, "init ially t rained 2,234 images") if images means individual cells. 
Please be consistent in writ ing PINK1. 
On page 23, please could the authors write out FC as fold change once and then abbreviate it . 
In Fig. S1 c, the authors show an immunofluorescence experiment on CDH2 and TRANS to assess
potent dCas9 clones. However, in the method sect ion this experiment is not described. 
The authors should provide sequences of sgRNAs (e.g. sgTRANS, sgCDH2, sgPPP1R1B, sg-mTOR,
sgCREB53, sgTGFBR1). 

Reviewer #3 (Comments to the Authors (Required)): 

The authors present AI-PS, a method for performing pooled opt ical screens in cultured cell lines.
Pooled opt ical screening is an important applicat ion, and advances in this area would be of broad
impact. Like other similar approaches, AI-PS combines automated microscopy with a
photoact ivatable fluorescent protein to allow the marking of cells with a desired phenotype. The
manuscript  is extremely vague, making evaluat ion of the work difficult . However, based on what I
was able to glean, AI-PS appears to be significant ly worse than these previous approaches.



Important controls are missing and crit ical analyses are incorrect . Moreover, no fair at tempt is made
to compare AI-PS to previous photoact ivatable protein-based approaches or to other methods for
conduct ing arrayed or pooled opt ical screens Thus, my enthusiasm for this manuscript  is low and I
strongly suggest that  it  not  be published in its current form. 

General comments 

-The authors completely ignore over a decade of prior work by many groups using photact ivatable
fluorescent proteins to enable the recovery of cells of interest . Either they were unaware of this
previous work or, cynically, chose to ignore it . In part icular, this work is similar to a manuscript
published recent ly (PMID 32500953). The authors should cite and fairly discuss previous related
work, both in the introduct ion when ment ioning approaches for pooled screens, and later when
discussing the strengths and weaknesses of their approach. 

-Unfortunately, I do not believe that the data presented substant iate either the performance claims
made about the method or the results of the screens performed. In part icular, evaluat ion of the
performance both of the cell classificat ion algorithms and the fidelity of cell photoact ivat ion and
sort ing is lacking. 

-The lack of separat ion of the photoact ivated populat ions from the unact ivated populat ions in
Figure 3b and S3b suggests that the method does not work very well. Other photoact ivat ion-based
approaches have done much better in this regard. Obviously, the authors are not going to repeat
everything they've done, but their approach is clearly worse than other similar approaches. 

-The descript ion of the experiments and analyses is oftent imes confusing and occasionally
impenetrable. See below for many examples. 

-Two key stat ist ical analyses, of the power of AI-PS and of the GFP-TFEB screen, appear to be
incorrect . 

-The figures are confusing, with panels occurring out of order and some missing citat ions in the
text . 

-Given that the main point  is to present a method for pooled opt ical screening, the manuscript
should contain a careful comparison of AI-PS to other methods for pooled opt ical screening. The
lack of this comparison must be remedied. 

Specific comments 

Page 3/Figure 1 - The organizat ion of Figure 1 is extremely confusing, reflected by the fact  that  the
first  panel called out in the text  is Figure 1e. The authors should reorganize this figure to match the
flow of the text . 

Page 3/Figure 1 - CCCP should be defined. 

Pages 3, 4 - General readability would be improved if the Parkin experimental system was described
at least  a lit t le in the text  (e.g. what do the drugs do, etc). 

Page 4 - The descript ion of the SVM is inadequate both here and in the methods. More informat ion



regarding the details should be given. Important ly, the performance of the model should be more
thoroughly described, especially in terms of biological replicate performance (image classificat ion
algorithms are notoriously challenged by batch effects). 

Page 4 - Related to the above comment, it  is not at  all clear how cross-validat ion and test  sets
were handled. In part icular, it  is not clear whether final performance was evaluated using a test  set
never used in model t raining. 

Page 4 - Clearly, there was feature select ion but no details are given here or in the methods about
how feature select ion was performed. These must be added. 

Page 4 - The authors do not present sufficient  detail regarding the fidelity of AI-PS. For example,
given the photoact ivat ion condit ions chosen, how many photoact ivated (posit ive) cells are
recovered? And, among recovered cells, how many are false posit ives? How do these quant it ies
change as posit ive cells become rarer in the screened populat ion? 

Page 4 - Related to the previous comment, there appears to be some sort  of validat ion experiment
shown in SF 2c. But, this experiment is not referenced in the text  and it  is not described in sufficient
detail in the figure legend to ascertain what was done. Presumably, it  is some sort  of demixing
experiment where posit ive (PINK1+) cells are marked in some way and then sorted out? If so, that 's
great and should be explained, discussed. However, details like the number of replicates, etc, are
missing. 

Page 4 - It  is great that  the authors built  a Shiny GUI for their SVM. But, Figure 2 seems like a waste
for most readers. Crit ical methodological and performance details (see previous q's) could be
answered using main figure space instead. 

Page 4 - "Extended data figure" I think this should be Figure S2? 

Page 5 - "The most abundant sgRNAs ident ified in the photoact ivated samples were targeted
against  PINK1..." This should be "The most enriched..." because a fold change plot  is shown and, if I
understand correct ly, the authors are looking at  sorted/init ial sgRNA frequencies. 

Page 5 - I don't  fully understand the power calculat ion that was performed and shown in SF2d. The
methods descript ion needs clarifying. I puzzled over it  for a while and honest ly can't  figure it  out .
But, I'm pret ty sure its the wrong thing to do, because the authors are using a t -test  based metric
to compare two samples (I am guessing it 's control and PINK1/posit ive read counts in the sorted
and naive populat ions across their biological replicates). Of course, in a real screen many sgRNAs
are compared in each replicate. Much more complicated math is typically used to analyze such data
(e.g. the negat ive binomial-based models used in EdgeR, which the authors use/cite) which
incorporate per-sgRNA variance, per-gene variance, replicate level variance and false discovery rate
control. It  seems to me that any meaningful power analysis would have to do the same.
Nonetheless, it  is an important quest ion and the authors should either more fully describe and
defend what they did or fix it . 

Page 5 - Related to the previous comment, "...sample size est imat ion indicated that three biological
repeats are sufficient  for detect ing the desired genet ic link in our experimental setup..." This is
extremely confusing. The authors claim they detected the PINK1 "genet ic link" and indeed that is
what is shown in Figure 3c. But here they say they would need 3 replicates to detect  it? What is
meant by this statement? 



Page 5/Figure 3c - Where did the log2 fold change threshold come from. If arbit rary, the authors
should say that. 

Page 5 - The authors show that their SVM approach performs poorly for TFEB nuclear
translocat ion. But, more informat ion is needed. Presumably they went through the same feature
select ion process as for the Parkin screen? All the same quest ions as raised above apply regarding
what was done, how the SVM was trained, etc. 

Pages 5, 6 - How did the CNN perform once trained. A model test ing set of ~5,000 images is
ment ioned in the methods (which is great!) but  the performance is not shown on the test  set . 

Page 6 and SF3c - Related to the previous comment "TFEB-GFP phenotype classificat ion
performance by SVM. Precision-Recall Curve from ~5,000 single cell images obtained from starved
cells. Image collect ion began 8 hours after starvat ion init iated and cont inued for another 10 hours.
The accuracy was computed from the integral area under the Precision-Recall Curve (AUC, area
under the curve). The AUC was calculated per subpooled library (designated by color), from a pool
of 3 biological repeats." This makes no sense. A PR AUC from a test  set  (I guess I learned that their
test  set  was derived from starved cells in this SF legend quote - it  should be in the main text  and
methods, see previous comment) makes sense. But then "The AUC was calculated per subpooled
library..." makes no sense. The test  images were collected and the model evaluated on them. I don't
see how (addit ional) images from the library could be used to evaluate CNN performance. 

Page 6 - " The ent ire photoact ivated and sorted gene abundance ranking list ..." The authors should
say a lit t le bit  in the main text  about how they combined the replicates and scored each gene. 

Page 6 - The authors should give a sense of how many cells were sorted in each
sublibrary/replicate. In fact , a supplementary table is needed summarizing each replicate of both
screens in terms of number of cells sorted, reads acquired, etc. 

Pages 6, 23 - From page 6 "A second validat ion screen was conducted of the 64 enriched genes
using two new sgRNAs." From page 23 "For the secondary validat ion, the best two sgRNA with FC
higher than two standard deviat ions from the non-target ing-sgRNA controls and roast test  FDR <
15%." Even though the second sentence is a fragment, I think it  contradicts the first  and means
that the two best sgRNAs for each significant hit  were chosen, and not "two new sgRNAs"
target ing hits, as the first  sentence implies. This is a good example of the major readability problems
plaguing this paper, and must be clarified. 

Page 6 - The authors claim to have validated 21 of 64 hits, but  appear to not have corrected for the
64 ANOVA tests they performed. 

Page 7 - "The speed of AI-PS screening relies on the simultaneous execut ion of four steps: image
capture, segmentat ion, generat ion of classificat ion region of interest , and photoact ivat ion of the
region of interest ." In fact , these steps occur sequent ially, not  simultaneously. 

Page 8 - The authors state " We validated this by ident ifying PINK1 as the only significant hit
required for Parkin t ranslocat ion to damaged mitochondria within the genome guide sub-library of
kinases, phosphatases and the druggable genome, demonstrat ing an except ional signal-to-noise
rat io when using the method." Is there strong evidence that PINK1 is the only hit  that  should be
found? The authors should cite and discuss such evidence. Also, I strongly disagree that this one



example somehow validates the "except ional signal-to-noise rat io" of the method, since the TFEB
screen (generously) had a false posit ive rate of something like 39/64 or about 60%. 

Pages 8, 9 - The discussion should contain a clear, fair comparison of the performance of AI-PS to
arrayed screening methods in terms of cost , t ime, accuracy and the like. The most important
drawback of AI-PS ignoring all the technical issues I raised, is that  the phenotype must be pre-
selected to allow for model t raining. Arrayed methods (and also in-situ sequencing) do not suffer
from this limitat ion, which must be ment ioned. 

Page 25 - In the validat ion screen, the actual metric used to quant ify nuclear GFP-TFEB is not
clearly stated. 

Page 17 - "For opt imizat ion of the model, we performed iterat ions and calculated performance by
area under the receiver operat ing characterist ic (ROC) curve or precision-recall curve (in the case of
asymmetric phenotype representat ion). The performance values were plot ted against  iterat ion to
prevent data overfit t ing." This is inadequate. Where are these ROC/PR curves? How many
iterat ions (presumably of X-fold cross-validat ion)? 

Page 17 - "A training set composed of 107,226 single-cell example images of GFP-TFEB in the
nucleus or cytosol was produced." Based on the SF3 legend, I think they collected starved and non-
starved cell images and used these as labels for t raining. If so, this is probably not a great idea. In
part icular, I am virtually certain there is variance over GFP-TFEB translocat ion into the nucleus in
the starved condit ion (and also probably variance over GFP-TFEB cytoplasmic localizat ion in non-
starved condit ions). At  a minimum, the authors should go back to their imaging data and score, for a
non-trivial number of cells, the degree of TFEB nuclear localizat ion in each condit ion using any
number of parametric methods (e.g. average pixel intensity in nucleus vs cytoplasm, etc). Showing
this would at  least  give the reader a sense of how good we could expect the CNN, as t rained, to be.
A better way to do things would have been to manually curate GFP-TFEB nuclear and GFP-TFEB
cytoplasmic cells and use transfer learning to re-train an exist ing CNN. 

Pages 17, 18 - "Model performance" The descript ion here is inadequate. Was this done for both
types of models or just  the CNN? How were images collapsed into single cells? 

Page 19 - " To handle out lier cells, several features were computed and the out lier features were
removed." This is insufficient ly detailed. Which, and what was the decision boundary for feature
removal? 

Figure 1c - The panel as shown is inadequate. Details like the number of cells t racked, replicates
performed, etc are needed. Also, presumably, error est imates could be generated per t imepoint
(since at  least  many cells must have been tracked). 

Figure 1d - It  is hard to appreciate that the upper left  quadrant mitochondria are green (or at  least
they should be green because that is where GFP is in those cells). 

Figure 3a - Same comment as above - hard to see mito+GFP. 

Figure 3b - I can't  quite figure out what is being shown here, but I think it  is library cells following
photoact ivat ion. If that  is so, an unact ivated control populat ion should be shown. Troublingly, the
act ivated populat ion (presumably the ones in red) are not dist inct ly separated from the unact ivated
populat ion (presumably blue). If this is so, it  is a major problem and significant ly worse than other



similar methods. Also, all flow plots should include a descript ion of the number of cells sorted in total.

Figure 4a - Not cited in text . 

Figure S1 - A table explaining the full names/meaning of the features in S1a should be included. 

Figures S3/4 - These are cited out of order.



1st Revision - Authors' Response to Reviewers: October 17, 2020
DEPARTMENT OF HEALTH & HUMAN SERVICES National Institutes of Health 
  National Institute of Neurological 
  Disorders and Stroke  
 
   
 
 

   Richard J. Youle 

35 Convent Drive, 2C917 

Bethesda, Maryland 20892 

Phone: (301) 496-6628 

E-mail: youle@helix.nih.gov 

 

         October 14
th

, 2020 

 

Dear Jodi and Tim,  

 

On behalf of all authors, we would like to thank you and reviewers for sharing the time 

and expertise in reading and providing valuable comments on our manuscript “Image-based 

pooled whole genome CRISPR screening for intracellular phenotypes – Parkin and TFEB 

subcellular localization”.   

 The comments are very helpful and addressing them greatly improves our manuscript. 

Reviewers one and two agree that the method is novel and interesting. One major complaint by 

reviewer three is the lack of comparison of our method to existing similar methods. We add to 

the discussion a comparison with several other papers that somewhat overlap with ours including 

(Hasle et al., 2020; Feldman et al., 2018; Wheeler et al., 2020).  

A consensus of all the reviewers is that the manuscript needs to be substantially revised 

and rewritten with more information added to the main text from the methods section.  The 

reviewers indicate that important technical information is missing. More specifically, there are 

three subject areas we are requested to elaborate on: 1. Tool performance, 2. Image analysis and 

processing 3. Statistical methods. The revised manuscript answers all the reviewer comments, 

including reanalyzing of the data, changing data presentation and further validated one hit 

derived from our whole genome screen. In the following rebuttal, comments to the reviewers and 

editors are labeled in Orange, direct citations from the revised manuscript are in red and the 

location of the changes with page and line numbers are in blue.  

 

With appreciation,  

 

Gil Kanfer and Richard Youle 

 

 

 

 

Reviewer #1 (Comments to the Authors (Required)):  

 

The manuscript by Kanfer, Youle and coworkers is built on the idea to implement a CRISPRi-

based screen by using imaging of adherent cells that express a fluorescent reporter - which 

allows them to identify specific changes in reporter localization - and then select individual cells 

with a particular reporter signal by photoactivation for subsequent FACS sorting. While the idea 

of using imaging for feature selection for CRISPR screening is not totally new (for example 

Goda's group, 2018, Cell 175:266-276 used this for cells in solution), I think this is the first 

 

mailto:youle@helix.nih.gov
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report of using imaging of adherent cells for CRISPR screening and also to make use of a 

photoactivation step for cell selection in this format. Given the large number of available 

fluorescent reporters based on localization changes in cells, there are many potential applications 

for this type of screening pipeline. In addition to the novelty of using adherent cells and selection 

by photoactivation in a CRISPR screen, the main novelty of their approach is the use of machine 

learning and convolutional neural network models for image analysis that allow them select 

which cells to mark by photoactivation. To demonstrate the validity of their approach, they show 

the use of the pipeline for two types of screens. The second is a genome-wide screen on TFEB 

localization that identifies potentially new regulators of the nuclear localization of TFEB which 

is a critical transcriptional feedback mechanisms in the mTORC1 signal transduction pathway.  

 

Given that the use of machine learning and image analysis in a CRISPR screen is not totally new, 

I expected more mechanistic data demonstrating that the pipeline and approach they developed 

can lead to finding a mechanistically relevant new regulator of the mTORC1/TFEB signaling 

pathway. This is my only major point that requires that they provide some additional mechanistic 

data on at least one of their hits. The other minor points I am adding below can likely be 

addressed by changes to the representation of data and analysis.  

 

Major point:  

 

1) Some more functional characterization is needed for at least one of their hits from the 

CRISPRi screen. For example, they could focus on the phosphatase inhibitor PP1R1B (DARP32) 

for which there is a plausible hypothesis of how it may work in the mTORC1 pathway. This 

could strengthen their argument that this type of screen is useful to find new regulators of nuclear 

translocation and ultimately understand molecular mechanisms. They could for example ask 

whether PP1R1B acts directly in the mTORC1 pathway by directly or indirectly regulating 

TFEB phosphorylation (which is, as I understand, the main mechanism of TFEB nuclear 

localization). An effect on the rate of TFEB dephosphorylation could for example be measured 

by using acute inhibition of protein phosphatases (using ocadeic acid or similar compounds; or 

alternatively a mTORC1 inhibitor such as rapamycin) and then monitoring the nuclear 

localization of GFP-TFEB. A related test is to measure whether mTORC1 activity for the 

sgRNA targeting PP1R1B is different by measuring one or more of the known substrates such as 

S6K or 4E-BP.  

 

We further investigated the TFEB redistribution regulator CREB5 because it was our top hit with 

the strongest effect. We found that the knock down (KD) of CREB5 reduced the expression of 

LC3B and two lysosomal genes. Further validating CREB5 activity, rescuing CREB5 in CREB5 

KD cells rescued TFEB cytosolic redistribution and the expression of the TFEB target genes. A 

paragraph has been added to the result section, titled: “TFEB nuclear translocation is 

regulated by CREB5” page 11, line 312. Fig 9, b and c   

 

Minor points:  

 

1. Why did SVM classification fail to predict TFEB nuclear localization accurately - 

TFEB localization seems to be a clear difference in distribution that should be readily captured 

by an SVM algorithm. More detailed is needed why a SVM classification dies not work in this 

case.  

 

To address this issue, we added the following text to the results and discussion sections. 
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 Added to results: page 8, line 235  

Overall, it is not clear why the CNN model shows higher performance than the SVM. Our 

speculation is that the difference is most likely that uneven illumination of image examples 

introducing in the training set influenced the segmentation step of our CNN model,  

Added to discussion: page 14, line 418 

“Prediction of TFEB nuclear translocation by the deep learning approach was more accurate than 

the SVM classification model, possibly because of discrepancies in classification accuracy owing 

to uneven fluorescence levels of the TFEB signal. Although the cell line was carefully generated 

from a single clone, over several passages the TFEB expression level diverged across the 

population. The use of low magnification objective (20X) with a low numerical aperture value of 

0.75 further amplified these variations. To address this, uneven illuminated images were 

introduced in our CNN classifier builder by adding an augmentation step to our image batch 

generator prior to training. In future screening designs there are several steps that can be used to 

overcome this issue. First, knocking in GFP into the TFEB or gene of interest locus may 

decrease expression variability. In addition, higher magnification objectives equipped with better 

NA lenses would decrease the illumination heterogenicity.”    

 

2a. A more detailed analysis should be provided how the three subpool screen in the TFEB 

screen differ from each other. This would allow one to better understand how reproducible the 

screen is.  

 

To assess the variation between the triplicate read counts of each subpool, we plotted the 

coefficient of variation between the triplicate screens against the log2-CPM normalized mean 

count per sgRNA. From this analysis we conclude that the overall in group variation between the 

triplicate screens is minimal. Every subpooled library contains 500 non-targeting gRNAs. The 

distribution of these gRNAs and the number of detectable gRNA per subpooled library also 

support a minimal variation.  However, there is considerable variation between the different 

guide subpool samples comparing photoactivated and unactivated cells. The between subpool 

sgRNA’s variation is reflected in our abundance analysis since in one pool, the membrane 

protein pool (new Fig. 6b) related genes were highly enriched in our gene-set analysis indicating 

a higher false positive rate and higher false negative rate than, for example, subpool H3 or H4. 

Hence, we cannot exclude that some hits were missed in our analysis. This also explains the 

relatively high false positive hit rate, which falls away in our secondary validation. The 

coefficient of variation has been added to results: page 9, line 243 and Fig. 6 b i-vii 

 

2b) In addition, they should add a discussion how many cells and subpool screens are needed to 

reach saturation using this method. For example, would a doubling of the number of screens or 

cells still significantly increase accuracy?  

 

This point is similar to that of reviewer #3, point 4 and we thank the reviewers for pointing out 

this issue. Indeed, our choice of power analysis strategy was not well thought out and we should 

have considered the parameters the reviewers mention. To fix the power analysis issue we used a 

simulation strategy. We used the R based package PROPER to estimate sample size based on a 

negative binomial model which includes dispersion distribution (Wu et al., 2015). We added the 

statistical power of analysis to the results section on page 7, line 188 and Fig 3, e 

 

 

2c) Page 5/Figure 3c - Where did the log2 fold change threshold come from. If arbitrary, the 

authors should say that.   
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We have added to the results the following “The log2-fold change was modeled based on the 

non-targeting negative control distribution.” We also added a histogram plot showing non-

targeting negative control distribution. Please see: 

page 7, line 180 and Fig 3, c  

 

3. The imaging step with one second and an analysis of 5 seconds are both quite long. Is there a 

way to accelerate this? A discussion should be added how a faster microscope and faster analysis 

can accelerate these steps.  

 

In the discussion we have added the following text to explain a deep learning based object 

segmentation approach which could lead to five to ten fold computational time reduction for the 

segmentation step. 

See page 15, line 432 

 

We also elaborate on how a faster CMOS camera and larger FOV capabilities also will improve 

our tool in the discussion. 

page 15, line 440  

 “in the future, simultaneous imaging with two CEMOS cameras will reduce capture time. And 

finally, large-format camera sensors with larger FOV capturing will greatly improve the overall 

screen since more cells can be screened and analyzed. “ 

 

4. They also need to discuss the limitation of photoactivation in more detail. Does it take for each 

cell 3 sec of photoactivation - would it be 30 seconds if they would select 10 cells in the image? 

Could they instead use a stronger laser or different fluorescent protein to make the 

photoactivation step much shorter? A discussion is needed whether/how the time to image, 

analyze and photoactivate could be at least 10 times faster to make the method more practically 

useful considering the long-time it took them to complete the subpool screens. 

 

We apologize for the lack of clarity and now understand how Fig. 1g was misleading. We 

improved the wording in the results as follows.  

page 5, line 136  

“The selected cells were photoswitched by illumination of 50 msec/pixel dwell time with 80% 

UV laser intensity. This parameter was chosen so as to reduce the photoactivation time, eliminate 

unwanted activation of adjacent cells and maximize signal intensity.”   

In the discussion we add: page 15, line 452    

“The tool we present here is best suited for low phenotype alteration hit rates, i.e., when only 

0.5% to 1% of the cells are called per field of view captured to minimize photoactivation time. 

For example, in the current TFEB screen, a mean of three cells were detected and activated per 

field of view. Therefore, for the current screen a galvo-miniscanner photoactivation unit was 

sufficient, however, in a scenario where the phenotype altering hit rate is much higher, a faster 

photoactivation unit such as DMD illumination module would be more suitable.”  

 

5. The entire Fig 2 is more of a methodological detail and should be moved into the suppl. 

materials section.  

 

We moved Fig. 2 to the Suppl. Materials as suggested. 

 

6. More precise experimental details are needed in all Fig legends (or in the main text describing 
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the figures). This will allow the reader to better understand what the actual experiments were and 

how the data was processed without having to consult the methods section.  

 

We have extended and elaborated all figure legends and the main text. 

 

7. Fig 6 lacks a control sgRNA. Also, fewer time points would make the same point in the figure 

(a focus on the time points where the difference in localization is greatest relative to control 

would be best).  

 

Figure 9a was modified according to the reviewer suggestions. 

 

 

Reviewer #2 (Comments to the Authors (Required)):  

 

The authors present a novel pooled screening approach based on CRISPRi and machine learning. 

After reading the abstract of this paper I was very excited to read the whole paper as the premise, 

using machine learning to identify 'hits' in relocalization screens coupled with fluorescence 

activation and cell sorting to retrieve them, I think is very clever and thorough validation would 

be a tremendous advance for the community.  

 

This "Tool" article is divided into two main parts. Firstly, a proof-of-concept experiment by 

using the known Parkin recruitment to mitochondria by PINK1 and secondly, a genome-wide 

screen identifying new effectors of TFEB shuttling.  

 

In both studies machine learning is used to rapidly identify candidate hits for fluorescence 

activation. A relatively straightforward SVM classifier was used for the proof-of-concept study 

and a more sophisticated deep learning approach was used for the TFEB screen.  

 

As a "Tool" article it must be relatively straight forward for the readership of JCB to follow the 

implementation of the method being described. However, I found the manuscript extremely 

difficult to follow and I work in the area. Furthermore, this kind of tool article should clearly 

demonstrate the capabilities and limitations of the "tool". Again, I found this information very 

difficult to find in the text and even more difficult to fully appreciate.  

 

1) For the 'proof-of-principle' screen "The Draq5 channel is used for nuclear detection and the 

GFP-Parkin image is used to identify cell borders" Yet the first mention of Draq5 is in the 

methods section that follows the main manuscript and the quote above is from the caption for a 

supplementary figure. Even after reading the whole manuscript and looking for the details - it is 

not clear to me how individual cells were identified and segmented.  

 

We add the Draq5 images to fig 1f. We also add the following to the discussion. 

page 12, line 341.  

“The effective segmentation of live cells is critical in order to ensure efficiency in training and 

avoid erroneous predictions. We found that the best way to segment mammalian cells utilizing 

the R package, EBImage, was to use two cellular markers in two different channels. Draq5 was 

used to mark the nuclei, which provided the “seeds” for segmentation. The other marker provides 

the cellular “borders, or cytosolic volume of the cell. The latter is important for the effective 

segmentation at higher confluency of cells, which maximizes the number of cells screened. 

Similar two-channel-approaches are commonly used in cellular segmentation (Wählby et al., 
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2002; Quelhas et al., 2010; Al-Kofahi et al., 2018). Three of the four most commonly 

differentiated fluorescence channels are used for nuclei detection (far red), photo-activation 

(red), and CRISPRi guide RNA expression (blue). Thus, AI-PS utilizes the remaining green / 

GFP channel to visualize both the phenotype queried and the cell borders. Deep learning models 

are becoming a more popular tool, but any gain in accuracy they provide is countered by the 

computational power and time required to deploy such models during the AI-PS segmentation 

step.”   

 

2) Looking at the figures, the segmentation is not very good which is surprising because it is 

usually quite facile to segment cells using only the Draq5 channel and here the authors used two 

channels.  

 

We apologize for our poor selection of images showing the segmentation step we used. We 

present more representative examples of our Image segmentation procedure and we extend the 

description by adding the following text and data to the results section.  

page 5, line 129 and Fig. S1c 

“The accuracy of the segmentation procedure was compared to the gold standard manual 

segmentation using the NIS-elements imaging software. The segmentation was evaluated by 

calculating the intersection over union (IOU). Comparing the IOU of the current segmentation 

procedure to CellProfiler showed very similar segmentation scores (Fig S1c). "   

 

3) Figure 2a supposedly outlines the steps in segmentation but starts with an image of 

mitochondria which was clearly not used to create the mask in the next image. This second 

image is the individual cells and is used for the coordinates for photoactivation. I am not clear 

what the third image is or what it is for. Below they show the resulting segmentation in which 

there are clearly multiple instances of single segmentation boundaries surrounding multiple cells. 

I don't think a Draq5 image is shown anywhere.  

 

The reviewer is correct, the screen snapshot from our Shiny APP was misleading. We are very 

sorry for that and added better examples of the Shiny-APP segmentation procedure. See Fig. S2 

for a better version of the APP.  

As stating in Point #1 Draq5 images were added to Fig. 1 f.  

 

4) When using the Halo-tag in the second screen the authors again do not show any halo-tag 

images. And the image that they do show includes "a cell" complete with nucleus and cytoplasm 

(olive/lime green nucleus mask near the center of figure 4f) where there is no evidence of a cell 

at all.  

 

Please see the corrected image in Fig 5b. It was an image contrast problem. 

 

5) The authors show convincingly the proof of concept by detecting PINK1 as most significant 

hit in the Parkin translocation screen. However, assuming that I followed the manuscript and 

understand Figure 3c this conclusion is overstated. It was actually because I could not understand 

the location of the PINK1 dot in the figure that I started looking carefully in the manuscript. It 

appears that PINK1 guides were doped into the library at 10%. It is not at all surprising that they 

were able to retrieve positive control guides that constituted 10% of the total and makes the 

claims of sensitivity for the screen highly overstated. To claim that three replicates are needed 

based on this data is very suspect. Looking at the rest of the data in 3b, I see no clear delineation 

of potential hits - which dot is PINK1?  
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Please refer also to a similar issue with Reviewer #3 Point 3. We failed to explain this well in the 

text so we entirely rewrote this section. To be clear, we retrieved PINK1 guides from a guide 

library that was not doped with PINK1 guides. A paragraph was added to the result section, 

titled: “Photoactivation accuracy and performance” page 11, line 148. See fig. 2 a, for the 

method illustration. In Fig 3 d, we improved the volcano plot visibility.  

 

6) Feature selection is a crucial part for a successful classification. It would be of interest what 

features are selected in the SVM classifier. How much do the features vary? Please explain how 

the features were reduced. I think that the idea is that highly correlated features were dropped - 

which is a standard procedure but not clear here.  

 

We now explain the feature selection in building the SVM classification model. We moved the 

PCA plot from the supplement (Fig. S1a) to the main figures. We added a new Table to 

summarize the five-features selected. The following text has been added to the result section: 

page 4, line 109.  and  Fig. 1 d,e.  

 “To build the SVM classification model, 19 features were computed from 2500 single 

cell images of cytosolic or mitochondrial GFP-Parkin (Fig. 1d). The features were computed 

using the R image processing and analysis package, EBImage (Pau, 2009). To prevent classifier 

over-fitting and reduce the computational cost, five cellular features measuring the 5% intensity 

quantile, standard deviation of intensity, minimum radius, eccentricity and area, that showed 

distinct variation were selected (Fig 1e). The selected features and labelled cell images were 

computationally applied on a nonlinear SVM algorithm for creating the classification model 

(Fig. S1 a).”  

 

7) Actually, I fail to see the complexity in either screen and the need for machine learning. In my 

experience mitochondrial localization as opposed to cytoplasmic localization can be readily 

scored by simply measuring the variance across the cytoplasmic area of the cell. Similarly, the 

training images shown for the nuclear cytoplasmic localization determination - probably the 

single most common high content screen performed by the community - are sufficiently clear 

that the authors should not have needed to use deep learning to score the cells.  

 

We agree that both of these phenotypes likely could be properly analysed and detected with 

standard image analysis techniques. However, we present here an alternative way of preforming 

“on the fly” analysis. We provide the codes and user friendly open source program for the 

community so future phenotypic genetic screen for more subtle phenotypes will be feasible.   

 

8) Furthermore, they present in the TFEB screen 64 genes that cause a retention of TFEB within 

the nucleus. In a second validation screen 21 out of 64 were validated. But beyond that the 

phenomenon could be reproduced, the validation is not comprehensive. Maybe I am missing 

something but I don't follow the arguments at the top of page 7 suggesting the results validate the 

screen. In addition to standard validation approaches why don't the authors measure changes in 

TFEB regulated gene expression? Some more functional characterization is needed for at least 

one of their hits from the CRISPRi screen. 

 

This point is similar to that of reviewer #1 major point 1. Please refer there for how we further 

assessed CREB5 activity. 
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9) While likely the problem is in the presentation of the data, I found the precision recall curves 

difficult to understand for the TFEB screen. How is this being calculated? What is the gold 

standard? If you don't know the answer how is it possible to calculate a precision-recall curve?  

 

We moved the explanation of the test from the Methods section to the Results section and also 

provide the code we built to address it. We understand that the Machine learning performance 

evaluation was not clear and caused confusion. We add the following to the main text:  

page 8, line 217.   

“The models were trained using two datasets, one for each phenotypic classification, that was 

made up of image files of individual cells. The single-cell images were generated using the R-

based segmentation script deployed by AI-PS and manually classified.”  

In addition, we also added the following details to the Methods section.  

page 25, line 720.   

“To train the CNN model, the files of each dataset were split into three groups: training (80%), 

validation (15%), and testing (5%). The validation set was used during model development to 

evaluate the model’s performance during training and tuning classification hyperparameters. 

Validation accuracy was important for detecting model overfitting. After training, the model was 

then evaluated using the testing image set. The validation and testing designated images were 

never used during training, allowing for the assessment of a model’s generalizability. Both SVM 

and CNN models were evaluated for their performance on the testing dataset; ability to produce 

prediction values matching the cell image’s “true” class label.” 

 

10) Overall - as attractive as the concept presented in the manuscript is, the manuscript needs a 

full renovation if it is to have impact in the community.  

 

We apologize for the writing and extensively revamped the text. All the answers to reviewer 

comments have been now integrated in the text and more tool performance and validation data 

are added as mentioned to individual reviewer comments. 

 

Minor points:  

 

For the authors consideration.  

 

11) Why is there a probability value discrepancy in Fig. 6 a (top panel, 1h, sgTGFBR1). Two 

nuclei side by side with similar intensity but a notable difference in the probability values. Given 

the problems with the segmentation alluded to above and no segmentation data shown here it is 

hard for me to interpret the numbers provided.  

The reviewer is correct, the probability value difference is most likely because of the 

segmentation. We add the following explanation to the discussion.  

page 15, line 443.   

“Another limitation of AI-PS is that to complete a whole genome screen we image 600,000 cell 

batches in three repeats. To minimize the overall screening time we reduce the number of fields 

of view to be screened by seeding cells at 90% confluency. The high confluency allows more 

cells to be screened, but results in slight reduction in the accuracy of segmentation. Therefore, in 

the future, to improve segmentation by allowing lower cell seeding density one could 

compensate by increasing screen image acquisition times.  Screening of fixed cells with a 

reversible fixation method to allow cell sorting following photoactivation would help extend 

screen image acquisition time.”  
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12) Both dCas9 (pC13N-dCas9-BFP-KRAB) and sgRNAs (mU6-BstXI-BlpI-BFP vector) are 

tagged with BFP. It would be helpful if the authors briefly describe (in addition to the citation 

"Tian et al., 2019") in the method section how only the sgRNA expression is assessed by the 

BFP signal.  

  

We thank the reviewer for this comment. As both dCAS9 and the sgRNA vectors are BFP 

labeled, we noticed that the best KD effects are observed in single cells in which the dCas9 BFP 

signal is the dimmer. We add the following explanation in the methods section: 

“Cells were single-cloned and selected for dim dCas9 BFP signal that yielded the largest 

knockdown effects”    

 

13) Fig 1 g and Fig. 2 f: typo "field of view" 

We appreciate this and the following nine corrections. We have corrected all the following as 

requested up to point 23 below. 

 

14) Figure caption 3: typo "fluorescence"  

 

15) Page 5 wrong citation formatting  

 

16) Throughout the text the authors write 12,500 sgRNAs, however on page 4 they mention 

12,775 guides.  

 

17) For better visualization it is recommended to rethink the font color, e.g. in Fig S2b. Some 

yellow digits are hard to read, especially on a white background. Also in Fig S4, the red digits 

are not easy to read. The red circle is a bit too thin and might be overlooked.  

 

18) Fig. S 2 b, it would be helpful if the authors could label the Pa mCh channel like they did in 

Fig. 4 f with "pre-activated" and "activated".  

 

19) Fig. 4 b, TC medium was used in the figure, however the authors used complete medium 

(cm) in the figure caption.  

 

20) Could you specify (page 17, "initially trained 2,234 images") if images means individual 

cells.  

 

21) Please be consistent in writing PINK1.  

 

22) On page 23, please could the authors write out FC as fold change once and then abbreviate 

it.  

 

23) In Fig. S1 c, the authors show an immunofluorescence experiment on CDH2 and TRANS to 

assess potent dCas9 clones. However, in the method section this experiment is not described.  

 

We have further described the dCas9 clone test. The description below was added to the method 

section page 23 line 658.  

“The U2OS-dCas9-KRAB cell line was then subcloned and the dCas9-KRAB activity assessed 

to select the most potent clones for further use by live plasma membrane immunostaining. In 

brief, dCas9-KRAB U2OS clones were induced with lentivirus expressing gRNA targeting 

Transferrin receptor or N-Cadherin. Follow four days of induction, cells were seeded on an 
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Imaging chamber and immunostained with antibody against Transferrin receptor (Biolegend, 

#A015) diluted 1:100 or N-Cadherin (Biolegends, #8c11) diluted 1:500.”   

 

 

24) The authors should provide sequences of sgRNAs (e.g. sgTRANS, sgCDH2, sgPPP1R1B, 

sg-mTOR, sgCREB53, sgTGFBR1).  

 

In Table S2, second tab, we added asterisks to the guide sequences used for the secondary 

screen. 

 

Reviewer #3 (Comments to the Authors (Required)):  

 

The authors present AI-PS, a method for performing pooled optical screens in cultured cell lines. 

Pooled optical screening is an important application, and advances in this area would be of broad 

impact. Like other similar approaches, AI-PS combines automated microscopy with a 

photoactivatable fluorescent protein to allow the marking of cells with a desired phenotype. The 

manuscript is extremely vague, making evaluation of the work difficult. However, based on what 

I was able to glean, AI-PS appears to be significantly worse than these previous approaches. 

Important controls are missing and critical analyses are incorrect. Moreover, no fair attempt is 

made to compare AI-PS to previous photoactivatable protein-based approaches or to other 

methods for conducting arrayed or pooled optical screens Thus, my enthusiasm for this 

manuscript is low and I strongly suggest that it not be published in its current form.  

 

General comments  

 

1) -The authors completely ignore over a decade of prior work by many groups using 

photactivatable fluorescent proteins to enable the recovery of cells of interest. Either they were 

unaware of this previous work or, cynically, chose to ignore it. In particular, this work is similar 

to a manuscript published recently (PMID 32500953). The authors should cite and fairly discuss 

previous related work, both in the introduction when mentioning approaches for pooled screens, 

and later when discussing the strengths and weaknesses of their approach.  

 

We apologize for the incomplete referencing – it was unintentional. We had focused our 

literature searches on image based genetic screening methods not on the uses of photoactivatable 

FP selection methods related to ours. We revised the Introduction accordingly and add mention 

of the Fowler paper (Hasle et al., 2020) as suggested. We also cite an early paper using 

photoactivation to select denoted cells from tissues (Victora et al., 2010). We appreciate the 

importance of this criticism and if there are other papers we are unaware of, please tell us. 

 

2) -Unfortunately, I do not believe that the data presented substantiate either the performance 

claims made about the method or the results of the screens performed. In particular, evaluation of 

the performance both of the cell classification algorithms and the fidelity of cell photoactivation 

and sorting is lacking. 

 

Please see our answers to specific issues below. 

 

3) -The lack of separation of the photoactivated populations from the unactivated populations in 

Figure 3b and S3b suggests that the method does not work very well. Other photoactivation-

based approaches have done much better in this regard. Obviously, the authors are not going to 
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repeat everything they've done, but their approach is clearly worse than other similar 

approaches.  

 

This relates to reviewer #2, point 5. The performance of the phenotype classification and sorting 

of photoactivated cells were reevaluated separately to address this issue. For testing the cell 

separation performance, we evaluated the sorting accuracy of the detected and photoactivated 

cells from the entire population by experimentally mixing cells blocked for Parkin recruitment 

by PINK1 KD with wildtype cells. A full paragraph is added to the result section, titled: 

“Photoactivation accuracy and performance” page 11, line 148. See Fig. 2.  

 

4) -Two key statistical analyses, of the power of AI-PS and of the GFP-TFEB screen, appear to 

be incorrect.  

 

Thank you, this is the same issue raised by reviewer #1. Please see that explanation and the new 

data included to address this under comments to Reviewer #1, point 2b. 

 

5) -The figures are confusing, with panels occurring out of order and some missing citations in 

the text.  

We apologize - we rearranged the text and Figure panels to follow in order. 

 

6) -Given that the main point is to present a method for pooled optical screening, the manuscript 

should contain a careful comparison of AI-PS to other methods for pooled optical screening. The 

lack of this comparison must be remedied.  

We added to the introduction:  

Page 2 line 55 

The usage of image based pooled genetic screens linking phenotypes to genotypes was 

previously reported in three independent studies in which in-situ barcoded sequencing was 

coupled to phenotypes.  First this approach was used to identify photostable and brighter variants 

of a fluorescent protein, by testing 60,000 mutation variants (Emanuel et al., 2017). Then an in-

situ platform was integrated with Crispr genetic screens for identify genes involved in RNA 

nuclear localization, while another Crispr screen used in-situ sequencing imaging to identify 

factors associated with NFkB translocation regulation. These later two methods screened 162 

CRISPR guides in Wang et al. (Wang et al., 2019) and 3063 guides in Feldman et al. (Feldman et 

al., 2018). More recently a semi arrayed 12,500 gRNA Crispr screen was used to identify 

regulators of stress granule formation (Wheeler et al., 2020). These methods enable the 

investigation of protein pathways regulating subcellular organization and positioning in an 

unbiased manner. In addition to unbiased CRISPR screens linking microscopic phenotypes to 

genotypes, single-cell images linking microscopic phenotypes to genotypes was established by a 

new method called single cell magneto-optical capture  (Binan et al., 2019).  Although these 

processes are elegant and will improve genetic studies, they are not well suited for high 

throughput large scale screens. Hence, we propose that a simple photoactivation of cells with 

desired phenotypes coupled to cell sorting will reduce image based screen complexity. 

Previously, B lymphocytes isolation and characterization were conducted from photoactivatable 

transgenic mice, by coupling photoactivation and flow cytometry (Victora et al., 2010). In 

addition, in a more recent study, photoactivation coupled to flow cytometry enabled the 

investigation of the link between the morphology response to a drug and the genetic profile at 

single cell resolution (Hasle et al., 2020). 

To the discussion we add:  

Page 14 line 403. 
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“The use of machine learning, photoconversion and deep sequencing in separate applications are 

not new. In the current AI-PS we show an improvement of scalability of pooled optical screens 

in comparison to similar approaches already reported. However, we show that in comparison to a 

previous pooled visual genetic screen (Feldman et al., 2018), only 32% of the primary screen hits 

were validated to directedly affect TFEB translocation in a secondary assay. We cannot rule out 

that this lower validation rate is a result of the large scale of the current screen which increases 

the complexity and might increase variation. In the future, in order to increase the discovery rate 

of large AI-PS screens, a few considerations are recommended. First, in the current study we 

observed that increasing the biological replicates from three to five, resulted in significant power 

increase. Second, as discussed previously, faster and larger imaging fields will allow greater 

screening sample size. In addition, from our Flow-cytometry data we learned that greater than 

0.5% frequency of the desired cell phenotype decreases false positives.” 

 

7) Page 3/Figure 1 -  The organization of Figure 1 is extremely confusing, reflected by the fact 

that the first panel called out in the text is Figure 1e. The authors should reorganize this figure to 

match the flow of the text.  

 

The figures were reorganized according to the reviewers comments.  

 

8) Page 3/Figure 1 - CCCP should be defined.  

 

Thank you, we did this. 

 

9) Pages 3, 4 - General readability would be improved if the Parkin experimental system was 

described at least a little in the text (e.g. what do the drugs do, etc).  

 

We revised accordingly. 

 

10) Page 4 - The description of the SVM is inadequate both here and in the methods. More 

information regarding the details should be given. Importantly, the performance of the model 

should be more thoroughly described, especially in terms of biological replicate performance 

(image classification algorithms are notoriously challenged by batch effects).  

 

Similar to reviewer #1, point 2 – we add the requested information as described in detail above to 

reviewer #1. A more detailed description of SVM is included in the main text: Page 4 line 106 

Fig. 1 d and e. In addition, we also included replicate variation analysis, Page 9 line 244 and Fig. 

6a and b.  

 

11) Page 4 - Related to the above comment, it is not at all clear how cross-validation and test sets 

were handled. In particular, it is not clear whether final performance was evaluated using a test 

set never used in model training.  

 

We indeed assessed performance using a test set not used for training. Please see our detailed 

response above to the similar point made by reviewer #2, point 9.  

 

12) Page 4 - Clearly, there was feature selection but no details are given here or in the methods 

about how feature selection was performed. These must be added.  
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Again, this point is the same as reviewer #2, point 6. Please see our detailed explanation to Rev. 

2 on how we revised the manuscript accordingly. 

 

13) Page 4 - The authors do not present sufficient detail regarding the fidelity of AI-PS. For 

example, given the photoactivation conditions chosen, how many photoactivated (positive) cells 

are recovered? And, among recovered cells, how many are false positives? How do these 

quantities change as positive cells become rarer in the screened population?  

 

Reviewer #2 made the same helpful point. We addressed this in more detail as described to 

Reviewer #2  point 5, by serially diluting cells with PINK1 guides into parental cells without 

such guides and evaluated the recovery efficiency by FACS. These results are discussed in detail 

above to Rev. 2 and also above to this Reviewer #3 point 3. 

 

14) Page 4 - Related to the previous comment, there appears to be some sort of validation 

experiment shown in SF 2c. But, this experiment is not referenced in the text and it is not 

described in sufficient detail in the figure legend to ascertain what was done. Presumably, it is 

some sort of demixing experiment where positive (PINK1+) cells are marked in some way and 

then sorted out? If so, that's great and should be explained, discussed. However, details like the 

number of replicates, etc, are missing.  

 

Please see Reviewer #2 point 5 and this Reviewer #3 point 3 above. We moved these data to the 

main text on page 11, line 148. See also new Fig. 2. 

 

15) Page 4 - It is great that the authors built a Shiny GUI for their SVM. But, Figure 2 seems like 

a waste for most readers. Critical methodological and performance details (see previous q's) 

could be answered using main figure space instead.  

 

We moved the shiny-APP figure to Supplementary Materials and Fig. S2. We further described 

the APP in the Figure legend. We also provide a detailed explanation and Figures for how to use 

our shiny app https://github.com/hbaldwin07/GK_shiny_app.  

 

16) Page 4 - "Extended data figure" I think this should be Figure S2?  

 

Because we rearranged the Figures the previous version of Figure S2 is now not included in the 

revised manuscript.   

 

17) Page 5 - "The most abundant sgRNAs identified in the photoactivated samples were targeted 

against PINK1..." This should be "The most enriched..." because a fold change plot is shown 

and, if I understand correctly, the authors are looking at sorted/initial sgRNA frequencies.  

 

We appreciate this point and have changed the words exactly as requested. 

 

18) Page 5 - I don't fully understand the power calculation that was performed and shown in 

SF2d. The methods description needs clarifying. I puzzled over it for a while and honestly can't 

figure it out. But, I'm pretty sure its the wrong thing to do, because the authors are using a t-test 

based metric to compare two samples (I am guessing it's control and PINK1/positive read counts 

in the sorted and naive populations across their biological replicates). Of course, in a real screen 

many sgRNAs are compared in each replicate. Much more complicated math is typically used to 

analyze such data (e.g. the negative binomial-based models used in EdgeR, which the authors 

https://github.com/hbaldwin07/GK_shiny_app
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use/cite) which incorporate per-sgRNA variance, per-gene variance, replicate level variance and 

false discovery rate control. It seems to me that any meaningful power analysis would have to do 

the same. Nonetheless, it is an important question and the authors should either more fully 

describe and defend what they did or fix it.  

 

Reviewer #1 made the same point. Indeed, our choice of power analysis strategy was not correct. 

Please see out detailed comments on this issue to Reviewer #1, point #3. The revised statistical 

power estimation was added to the main text on page 7 line 188, and Fig. 3 e. Also see page 9 

line 259, and Fig. 7 b.  

 

19) Page 5 - Related to the previous comment, "...sample size estimation indicated that three 

biological repeats are sufficient for detecting the desired genetic link in our experimental 

setup..." This is extremely confusing. The authors claim they detected the PINK1 "genetic link" 

and indeed that is what is shown in Figure 3c. But here they say they would need 3 replicates to 

detect it? What is meant by this statement?  

 

Please see our detailed comment on this issue to reviewer #1 point 3.  

The statistical power simulation was conducted on the data acquired in the current study and 

shows that 3 repeats are sufficient. However, for future usage of the methods 5 repeats would 

result in greater detection performance. We also add to the discussion the following for 

clarification: 

Page 14 line 411: 

“First, in the current study we observed that increasing the biological replicates from three to 

five, resulted in significant power increase. Second, as discussed previously, faster and larger 

imaging fields will allow greater screening sample size. In addition, from our Flow-cytometry 

data we learned that greater than 0.5% frequency of the desired cell phenotype decreases false 

positives.”  

  

20) Page 5/Figure 3c - Where did the log2 fold change threshold come from. If arbitrary, the 

authors should say that.  

 

Please see our comments on this issue to Reviewer #1 point 2c and new Figure panel.  

The is now in the text on page 6, line 177 and in Fig 3c.  

 

21) Page 5 - The authors show that their SVM approach performs poorly for TFEB nuclear 

translocation. But, more information is needed. Presumably they went through the same feature 

selection process as for the Parkin screen? All the same questions as raised above apply 

regarding what was done, how the SVM was trained, etc.  

 

Thank you, we explained this issue above for reviewer #1, minor point 1. 

see results: page 8, line 235.  

discussion: page 14, line 418. 

 

22) Pages 5, 6 – How did the CNN perform once trained. A model testing set of ~5,000 images is 

mentioned in the methods (which is great!) but the performance is not shown on the test set.  

 

This is the same issue as Reviewer #2, point 9. We apologize and understand that our text was 

not clear and important information was missing. The performance analysis is always on the test 

set and not on the training set.  We add the following information to the main text:  
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page 8, line 218.   

“The models were trained using two datasets, one for each phenotypic classification that was 

made up of image files of individual cells. The single-cell images were generated using the R-

based segmentation script deployed by AI-PS and manually classified.”  

In addition, we will also added the following additional details to the method section.  

page 24, line 697.   

“To train the CNN model, the files of each dataset were split into three groups: training (80%), 

validation (15%), and testing (5%). The validation set was used during model development to 

evaluate the model’s performance during training and tuning classification hyperparameters. 

Validation accuracy was important for detecting model overfitting. After training, the model was 

then evaluated using the testing set. The validation and testing designated images were never 

used during training, allowing for the assessment of a model’s generalizability. Both SVM and 

CNN models were evaluated for their performance on the testing dataset; ability to produce 

prediction values matching the cell image’s “true” class label.” 

 

23) Page 6 and SF3c - Related to the previous comment "TFEB-GFP phenotype classification 

performance by SVM. Precision-Recall Curve from ~5,000 single cell images obtained from 

starved cells. Image collection began 8 hours after starvation initiated and continued for another 

10 hours. The accuracy was computed from the integral area under the Precision-Recall Curve 

(AUC, area under the curve). The AUC was calculated per subpooled library (designated by 

color), from a pool of 3 biological repeats." This makes no sense. A PR AUC from a test set (I 

guess I learned that their test set was derived from starved cells in this SF legend quote - it 

should be in the main text and methods, see previous comment) makes sense. But then "The 

AUC was calculated per subpooled library..." makes no sense. The test images were collected 

and the model evaluated on them. I don't see how (additional) images from the library could be 

used to evaluate CNN performance.  

 

The reviewer is absolutely correct, we now have rewritten the section and added it to the main 

text for clarity. It is similar to reviewer #2, point 9. In addition, we are sorry for this incorrect 

description and re-wrote the figure legend:  

Page 41, line 1203, Figure S4:  

“GFP-TFEB phenotype classification performance by SVM, Precision-Recall curve from 7,848 

single cell images obtained from HBSS starved and fed cells. For the starved cell population, 

image collection began 8 hours after starvation was initiated and continued for another 10 hours. 

Accuracy is computed from the integral area under the Precision-Recall Curve (AUC, Area 

Under the Curve).” 

 

24) Page 6 - " The entire photoactivated and sorted gene abundance ranking list..." The authors 

should say a little bit in the main text about how they combined the replicates and scored each 

gene.  

 

We add the following explanation to the main text:  

Page 9 line 264: 

“For calculating gene enrichment we subjected the sgRNA list to the rotation gene set test, 

provided by the R package EdgeR.” 

 

25) Page 6 - The authors should give a sense of how many cells were sorted in each 

sublibrary/replicate. In fact, a supplementary table is needed summarizing each replicate of both 

screens in terms of number of cells sorted, reads acquired, etc.  
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This is similar to Reviewer #1, point 2a. We added a Table as requested by this reviewer. See 

new Table S3 and comments to Rev. 1. 

“Table S3. TFEB cell numbers and NGS read numbers. In the first tab, total number of cells 

sorted from the photoactivated samples per library per biological repeat. In the second tab, Total 

number of reads detected from the NGS analysis. “ 

 

26) Pages 6, 23 - From page 6 "A second validation screen was conducted of the 64 enriched 

genes using two new sgRNAs." From page 23 "For the secondary validation, the best two 

sgRNA with FC higher than two standard deviations from the non-targeting-sgRNA controls and 

roast test FDR < 15%." Even though the second sentence is a fragment, I think it contradicts the 

first and means that the two best sgRNAs for each significant hit were chosen, and not "two new 

sgRNAs" targeting hits, as the first sentence implies. This is a good example of the major 

readability problems plaguing this paper, and must be clarified.  

 

We apologize for this mistake – we clarified it as follows. 

Page 10, line 276 

“A second validation screen was conducted of the 64 enriched genes using the top ranked 

primary screen identified sgRNAs.” 

 

27) Page 6 - The authors claim to have validated 21 of 64 hits, but appear to not have corrected 

for the 64 ANOVA tests they performed.  

 

We added the sentence, “p-values were Benjamini-Hochberg corrected” on  

Page 10 line 285 

 

28) Page 7 - "The speed of AI-PS screening relies on the simultaneous execution of four steps: 

image capture, segmentation, generation of classification region of interest, and photoactivation 

of the region of interest." In fact, these steps occur sequentially, not simultaneously.  

 

The reviewer is correct – we changed the wording to sequentially. 

 

29) Page 8 - The authors state " We validated this by identifying PINK1 as the only significant 

hit required for Parkin translocation to damaged mitochondria within the genome guide sub-

library of kinases, phosphatases and the druggable genome, demonstrating an exceptional signal-

to-noise ratio when using the method." Is there strong evidence that PINK1 is the only hit that 

should be found? The authors should cite and discuss such evidence. Also, I strongly disagree 

that this one example somehow validates the "exceptional signal-to-noise ratio" of the method, 

since the TFEB screen (generously) had a false positive rate of something like 39/64 or about 

60%.  

 

We softened the claim with the following wording. 

page 12 line 358. 

"We validated this by identifying PINK1 as the only known reported hit required for Parkin 

translocation to damaged mitochondria within the genome guide sub-library of kinases, 

phosphatases and the druggable genome, demonstrating the validity of the method”. 

 

30) Pages 8, 9 - The discussion should contain a clear, fair comparison of the performance of AI-

PS to arrayed screening methods in terms of cost, time, accuracy and the like. The most 
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important drawback of AI-PS ignoring all the technical issues I raised, is that the phenotype must 

be pre-selected to allow for model training. Arrayed methods (and also in-situ sequencing) do 

not suffer from this limitation, which must be mentioned.  

 

The author is correct - we now stress this limitation in the discussion with the following text. 

Page 14 line 397. 

“While machine learning methods require larger training datasets, they have a clear advantage 

over standard image analysis algorithms in the classification and prediction of subtle subcellular 

phenotypes. Classification models built with deep learning are the least influenced by human 

bias, since they independently decide on the image features important for distinguishing the two 

(or more) phenotypes. However, one limitation for such screens is that only pre-defined 

phenotypes can be assessed.”’ 

 

31) Page 25 - In the validation screen, the actual metric used to quantify nuclear GFP-TFEB is 

not clearly stated.  

We added the following text to the results section. 

Page 10 line 280. 

 “For validating the screen, the TFEB-GFP positioning score was computed using a CNN 

based classification algorithm. The mean prediction score over time was calculated and 

subtracted from the non-targeting control sgRNA. To determine if there is a significant 

prediction score difference between the non-targeting control sgRNA and the target sgRNA we 

used repeated measure ANOVA.”  

 

32) Page 17 - "For optimization of the model, we performed iterations and calculated 

performance by area under the receiver operating characteristic (ROC) curve or precision-recall 

curve (in the case of asymmetric phenotype representation). The performance values were 

plotted against iteration to prevent data overfitting." This is inadequate. Where are these 

ROC/PR curves? How many iterations (presumably of X-fold cross-validation)?  

We added the following text to the results section.  

Page 5 line 117 

“For optimization of the model, we performed iterations and calculated performance by area 

under the precision-recall curve. To prevent overfitting, we shuffled the feature data and split it 

into two unique groups, a test set and a training image set. Then, we fit an SVM model on the 

training set and evaluated it on the test set. Then an accuracy score was calculated. This 

procedure was iterated 100 times where every observation was allowed to be used in the training 

set or test set only once.”   

In addition, we added a Table indicating the features used for creating the SVM model in Fig. 1 d 

and e.   

 

33) Page 17 - "A training set composed of 107,226 single-cell example images of GFP-TFEB in 

the nucleus or cytosol was produced." Based on the SF3 legend, I think they collected starved 

and non-starved cell images and used these as labels for training. If so, this is probably not a 

great idea. In particular, I am virtually certain there is variance over GFP-TFEB translocation 

into the nucleus in the starved condition (and also probably variance over GFP-TFEB 

cytoplasmic localization in non-starved conditions). At a minimum, the authors should go back 

to their imaging data and score, for a non-trivial number of cells, the degree of TFEB nuclear 

localization in each condition using any number of parametric methods (e.g. average pixel 

intensity in nucleus vs cytoplasm, etc). Showing this would at least give the reader a sense of 

how good we could expect the CNN, as trained, to be. A better way to do things would have 
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been to manually curate GFP-TFEB nuclear and GFP-TFEB cytoplasmic cells and use transfer 

learning to re-train an existing CNN.  

  

As requested we compared the accuracy of the CNN model to the average pixel intensity in the 

nucleus vs the cytoplasm. The accuracy of pixel intensity computing is slightly greater, 90% vs 

88%, however, the CNN model classification prediction is better in specificity, 97% vs 83%. In 

the nature of the current screen, as the frequency of the desired cell phenotype is low, specificity 

is more important than sensitivity. These results indicate that in the case of the TFEB 

translocation classification problem, both of the methods preform almost equally and sufficiently 

for this task. The explanation is included in the result section:  

Page 8 line 223 and see also fig. S4d and e.  

 

34) Pages 17, 18 - "Model performance" The description here is inadequate. Was this done for 

both types of models or just the CNN? How were images collapsed into single cells?  

 

Yes, this was done for both the Machine Learning and CNN models. We add the following 

sentence to the method section under “cell segmentation……”  

Page 25 line 729 

“After the mask was generated, the images were collapsed into single cell images using the 

EBimage function stackObjects according to the mask. The function generates 150px by 150px 

boxes and assigned zero for all the pixels outside of the ROI mask”.    

 

35) Page 19 - " To handle outlier cells, several features were computed and the outlier features 

were removed." This is insufficiently detailed. Which, and what was the decision boundary for 

feature removal?  

 

We address this issue by adding the following explanation to the Methods section: 

Page 27 line 785 

 “To handle outlier cells, the mean intensity and area of the segmented cell outline were 

calculated. Using the R package SCORE significant outliers values are calculated and removed”.  

 

36) Figure 1c - The panel as shown is inadequate. Details like the number of cells tracked, 

replicates performed, etc are needed. Also, presumably, error estimates could be generated per 

timepoint (since at least many cells must have been tracked).  

 

Thank you. We regenerated the curves that are now shown in Fig. 1c and we plotted all the data 

as requested. We switched this new analysis for the old Fig. 1c.  

 

37) Figure 1d - It is hard to appreciate that the upper left quadrant mitochondria are green (or at 

least they should be green because that is where GFP is in those cells).  

 

Thank you, we made the mitochondrial borders thinner to fix this issue. 

 

38) Figure 3a - Same comment as above - hard to see mito+GFP.  

 

Thank you, we addressed as above. 

 

39) Figure 3b - I can't quite figure out what is being shown here, but I think it is library cells 

following photoactivation. If that is so, an unactivated control population should be shown. 
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Troublingly, the activated population (presumably the ones in red) are not distinctly separated 

from the unactivated population (presumably blue). If this is so, it is a major problem and 

significantly worse than other similar methods. Also, all flow plots should include a description 

of the number of cells sorted in total.  

 

We realize that the FACS plots in the current form are misleading. The reason is that we sorted 

an average of approximately between 500-2000 cells per sort. To get better assessment of the 

scatter plot we aggregated all the sorts together and normalized the signal intensity. Since this 

approach is misleading, we now show a single example plot from our screen instead the 

aggregate plot.  

Fig. 3 b and Fig. 5 c 

In addition, the flow cytometry (fcs) files from the TFEB screen and the R script analysis and 

gating information is provided and can be found in our GitHub repository:  

https://github.com/gkanfer/AI-PS/tree/master/facs 

 

40) Figure 4a - Not cited in text.  

 

Thank you, we changed the figures, so it is not relevant anymore.  

 

41) Figure S1 - A table explaining the full names/meaning of the features in S1a should be 

included.  

 

This is now in Fig 1e 

 

42) Figures S3/4 - These are cited out of order. 

  

Thank you, we corrected this. 
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based pooled whole genome CRISPR screening for subcellular phenotypes". Feel free to edit  that
as you see fit . 

5) Materials and methods: Should be comprehensive and not simply reference a previous
publicat ion for details on how an experiment was performed. Please provide full descript ions (at
least  in brief) in the text  for readers who may not have access to referenced manuscripts. The text
should not refer to methods "...as previously described." 

6) Please be sure to provide the sequences for all of your primers/oligos and RNAi constructs in the
materials and methods. You must also indicate in the methods the source, species, and catalog
numbers (where appropriate) for all of your ant ibodies. 

7) Microscope image acquisit ion: The following informat ion must be provided about the acquisit ion
and processing of images: 
a. Make and model of microscope 
b. Type, magnificat ion, and numerical aperture of the object ive lenses 
c. Temperature 
d. imaging medium 
e. Fluorochromes 
f. Camera make and model 
g. Acquisit ion software 
h. Any software used for image processing subsequent to data acquisit ion. Please include details
and types of operat ions involved (e.g., type of deconvolut ion, 3D reconst itut ions, surface or volume
rendering, gamma adjustments, etc.). 

8) References: There is no limit  to the number of references cited in a manuscript . References
should be cited parenthet ically in the text  by author and year of publicat ion. Abbreviate the names
of journals according to PubMed. 

9) Supplemental materials: There are strict  limits on the allowable amount of supplemental data.
Tools may have up to 5 supplemental figures. At the moment, you are below this limit  but  please
bear it  in mind when revising. 



Please also note that tables, like figures, should be provided as individual, editable files. A summary
of all supplemental material should appear at  the end of the Materials and methods sect ion. 

10) eTOC summary: A ~40-50 word summary that describes the context  and significance of the
findings for a general readership should be included on the t it le page. The statement should be
writ ten in the present tense and refer to the work in the third person. It  should begin with "First
author name(s) et  al..." to match our preferred style. 

11) Conflict  of interest  statement: JCB requires inclusion of a statement in the acknowledgements
regarding compet ing financial interests. If no compet ing financial interests exist , please include the
following statement: "The authors declare no compet ing financial interests." If compet ing interests
are declared, please follow your statement of these compet ing interests with the following
statement: "The authors declare no further compet ing financial interests." 

12) A separate author contribut ion sect ion is required following the Acknowledgments in all
research manuscripts. All authors should be ment ioned and designated by their first  and middle
init ials and full surnames. We encourage use of the CRediT nomenclature (ht tps://casrai.org/credit /). 

13) ORCID IDs: ORCID IDs are unique ident ifiers allowing researchers to create a record of their
various scholarly contribut ions in a single place. At resubmission of your final files, please consider
providing an ORCID ID for as many contribut ing authors as possible. 

-- An editable version of the final text  (.DOC or .DOCX) is needed for copyedit ing (no PDFs). 

-- High-resolut ion figure and video files: See our detailed guidelines for preparing your product ion-
ready images, ht tps://jcb.rupress.org/fig-vid-guidelines. 

-- Cover images: If you have any striking images related to this story, we would be happy to
consider them for inclusion on the journal cover. Submit ted images may also be chosen for
highlight ing on the journal table of contents or JCB homepage carousel. Images should be uploaded
as TIFF or EPS files and must be at  least  300 dpi resolut ion. 

**It  is JCB policy that if requested, original data images must be made available to the editors.
Failure to provide original images upon request will result  in unavoidable delays in publicat ion.
Please ensure that you have access to all original data images prior to final submission.** 

**The license to publish form must be signed before your manuscript  can be sent to product ion. A
link to the electronic license to publish form will be sent to the corresponding author only. Please
take a moment to check your funder requirements before choosing the appropriate license.** 

Thank you for your at tent ion to these final processing requirements. Please revise and format the
manuscript  and upload materials within 7 days. If complicat ions arising from measures taken to
prevent the spread of COVID-19 will prevent you from meet ing this deadline (e.g. if you cannot
retrieve necessary files from your laboratory, etc.), please let  us know and we can work with you to
determine a suitable revision period. 

Please contact  the journal office with any quest ions, cellbio@rockefeller.edu or call (212) 327-8588. 

Thank you for this interest ing contribut ion, we look forward to publishing your paper in Journal of



Cell Biology. 

Sincerely, 

Jodi Nunnari, PhD 
Editor-in-Chief 
The Journal of Cell Biology 

Tim Spencer, PhD 
Execut ive Editor 
Journal of Cell Biology 

------------------------------------------------------------------------------ 
Reviewer #1 (Comments to the Authors (Required)): 

The authors have addressed all my minor comments. They have also added data on the role of
CREB5 which suggests that different hits from their screen are funct ionally relevant which
increases the usefulness of the screen for other researchers. 

Reviewer #2 (Comments to the Authors (Required)): 

In this revision the authors have responded sat isfactorily to the requests of the reviewers. However,
the issue of the general ut ility of the CNN compared to a parametric classifier is not fully addressed.
At the bottom of page 10 and top of page 11 the authors indicate that mTOR was not scored as a
hit  because the mTOR phenotype is not sufficient ly close to the deep learning model. The authors
need to point  out that  in this case the parametric intensity measure "pixel intensity computat ion"
would have ident ified mTOR as a hit . Therefore in any specific screen there can be both
computat ional and accuracy advantages to using parametric classifiers designed based on
knowledge of the system being analyzed. 

Reviewer #3 (Comments to the Authors (Required)): 

The authors have adequately addressed my concerns.



2nd Revision - Authors' Response to Reviewers: November 20, 2020

1) Text limits: Character count for Tools is < 40,000, not including spaces. Count 
includes title page, abstract, introduction, results, discussion, and 
acknowledgments. Count does not include materials and methods, figure legends, 
references, tables, or supplemental legends. You are currently well below this 
limit but please bear it in mind when revising.  
 
The word count is: ~29,000 

 

2) Figure formatting: Scale bars must be present on all microscopy images, 
including inset magnifications. Molecular weight or nucleic acid size markers 
must be included on all gel electrophoresis, including cropped gels. Therefore, 
please add molecular weight markers to the gels in Figure 9b.  
 
Done 

 

3) Statistical analysis: Error bars on graphic representations of numerical data 
must be clearly described in the figure legend. The number of independent data 
points (n) represented in a graph must be indicated in the legend. Statistical 
methods should be explained in full in the materials and methods. For figures 
presenting pooled data the statistical measure should be defined in the figure 
legends. Please also be sure to indicate the statistical tests used in each of your 
experiments (both in the figure legend itself and in a separate methods section) 
as well as the parameters of the test (for example, if you ran a t-test, please 
indicate if it was one- or two-sided, etc.). Also, since you used parametric tests in 
your study (e.g. t-tests, ANOVA, etc.), you should have first determined whether 
the data was normally distributed before selecting that test. In the stats section 
of the methods, please indicate how you tested for normality. If you did not test 
for normality, you must state something to the effect that "Data distribution was 
assumed to be normal but this was not formally tested."  
 
For Fig3 c and Fig8 c we added the sentence affirming distributions were assumed to 
be normal.  
 

4) Title: The title should be less than 100 characters including spaces. While your 
current title is certainly accurate, we think that the appeal of this work will 
extend beyond those researchers interested in Parkin and/or TFEB function. 
Thus, in order to enhance the accessibility of the paper for a broad cell biology, 
we recommend broadening the title somewhat. One possible title is: "Image-
based pooled whole genome CRISPR screening for subcellular phenotypes". Feel 
free to edit that as you see fit.  
 



We agree with the suggested title and made it, “Image-based pooled whole genome 
CRISPRi screening for subcellular phenotypes” 

 

5) Materials and methods: Should be comprehensive and not simply reference a 
previous publication for details on how an experiment was performed. Please 
provide full descriptions (at least in brief) in the text for readers who may not 
have access to referenced manuscripts. The text should not refer to methods "...as 
previously described."  
 
Done 

 

6) Please be sure to provide the sequences for all of your primers/oligos and 
RNAi constructs in the materials and methods. You must also indicate in the 
methods the source, species, and catalog numbers (where appropriate) for all of 
your antibodies.  
 
Done 

 

7) Microscope image acquisition: The following information must be provided 
about the acquisition and processing of images:  
a. Make and model of microscope  
b. Type, magnification, and numerical aperture of the objective lenses  
c. Temperature  
d. imaging medium  
e. Fluorochromes  
f. Camera make and model  
g. Acquisition software  
h. Any software used for image processing subsequent to data acquisition. Please 
include details and types of operations involved (e.g., type of deconvolution, 3D 
reconstitutions, surface or volume rendering, gamma adjustments, etc.).  
 
Done 
 

8) References: There is no limit to the number of references cited in a 
manuscript. References should be cited parenthetically in the text by author and 
year of publication. Abbreviate the names of journals according to PubMed.  
 
Done 
 

9) Supplemental materials: There are strict limits on the allowable amount of 
supplemental data. Tools may have up to 5 supplemental figures. At the moment, 
you are below this limit but please bear it in mind when revising.  



Please also note that tables, like figures, should be provided as individual, 
editable files. A summary of all supplemental material should appear at the end 
of the Materials and methods section.  
 
Summary follows: 
 
Fig. S1 shows the SVM classification plot and the SVM classification and segmentation 
performance. Fig. S2 presents a summary of the AI-PS shiny APP platform. Fig. S3 
shows the CNN classification architecture and performance while Fig. S4 addresses 
TFEB translocation prediction by the SVM classification model. Fig. S5 summarizes the 
network interaction and clustering of the hits retrieved from the whole genome CRISPR 
screen. 
 

 

10) eTOC summary: A ~40-50 word summary that describes the context and 
significance of the findings for a general readership should be included on the 
title page. The statement should be written in the present tense and refer to the 
work in the third person. It should begin with "First author name(s) et al..." to 
match our preferred style.  
 
Kanfer et al. developed a novel forward genetic CRISPR screening approach 
termed Artificial-Intelligence Photoswitchable Screening (AI-PS). Using this platform to 
"convert" single cells into “separate” wells through application of deep learning 
algorithms that detect subcellular phenotypes allowed identification of novel regulators 

involved in nuclear translocation of TFEB.  

 
11) Conflict of interest statement: JCB requires inclusion of a statement in the 
acknowledgements regarding competing financial interests. If no competing 
financial interests exist, please include the following statement: "The authors 
declare no competing financial interests." If competing interests are declared, 
please follow your statement of these competing interests with the following 
statement: "The authors declare no further competing financial interests."  
 
Done 

 

12) A separate author contribution section is required following the 
Acknowledgments in all research manuscripts. All authors should be mentioned 
and designated by their first and middle initials and full surnames. We encourage 
use of the CRediT nomenclature (https://casrai.org/credit/).  
 
Done  

 

13) ORCID IDs: ORCID IDs are unique identifiers allowing researchers to create a 

https://casrai.org/credit


record of their various scholarly contributions in a single place. At resubmission 
of your final files, please consider providing an ORCID ID for as many 
contributing authors as possible.  
 
Done 
 

-- An editable version of the final text (.DOC or .DOCX) is needed for copyediting 
(no PDFs).  
 

-- High-resolution figure and video files: See our detailed guidelines for preparing 
your production-ready images, https://jcb.rupress.org/fig-vid-guidelines.  
 

-- Cover images: If you have any striking images related to this story, we would 
be happy to consider them for inclusion on the journal cover. Submitted images 
may also be chosen for highlighting on the journal table of contents or JCB 
homepage carousel. Images should be uploaded as TIFF or EPS files and must be 
at least 300 dpi resolution.  
 

**It is JCB policy that if requested, original data images must be made available to 
the editors. Failure to provide original images upon request will result in 
unavoidable delays in publication. Please ensure that you have access to all 
original data images prior to final submission.**  
 

**The license to publish form must be signed before your manuscript can be sent 
to production. A link to the electronic license to publish form will be sent to the 
corresponding author only. Please take a moment to check your funder 
requirements before choosing the appropriate license.**  
 

Thank you for your attention to these final processing requirements. Please 
revise and format the manuscript and upload materials within 7 days. If 
complications arising from measures taken to prevent the spread of COVID-19 
will prevent you from meeting this deadline (e.g. if you cannot retrieve necessary 
files from your laboratory, etc.), please let us know and we can work with you to 
determine a suitable revision period.  
 

Please contact the journal office with any questions, cellbio@rockefeller.edu or call 
(212) 327-8588.  
 

Thank you for this interesting contribution, we look forward to publishing your 
paper in Journal of Cell Biology.  
 

Sincerely,  

https://jcb.rupress.org/fig-vid-guidelines
mailto:cellbio@rockefeller.edu


 

Jodi Nunnari, PhD  
Editor-in-Chief  
The Journal of Cell Biology  
 

Tim Spencer, PhD  
Executive Editor  
Journal of Cell Biology  
 
 

------------------------------------------------------------------------------  
Reviewer #1 (Comments to the Authors (Required)):  
 

The authors have addressed all my minor comments. They have also added data 
on the role of CREB5 which suggests that different hits from their screen are 
functionally relevant which increases the usefulness of the screen for other 
researchers.  
 
 

Reviewer #2 (Comments to the Authors (Required)):  
 

In this revision the authors have responded satisfactorily to the requests of the 
reviewers. However, the issue of the general utility of the CNN compared to a 
parametric classifier is not fully addressed. At the bottom of page 10 and top of 
page 11 the authors indicate that mTOR was not scored as a hit because the 
mTOR phenotype is not sufficiently close to the deep learning model. The authors 
need to point out that in this case the parametric intensity measure "pixel 
intensity computation" would have identified mTOR as a hit. Therefore in any 
specific screen there can be both computational and accuracy advantages to 
using parametric classifiers designed based on knowledge of the system being 
analyzed.  
 
We have added the following sentence on lines 308-310 as suggested – “A parametric 
pixel intensity computation model may have detected such an unanticipated 
phenotype.” 
 

Reviewer #3 (Comments to the Authors (Required)):  
 

The authors have adequately addressed my concerns. 
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