

advances.sciencemag.org/cgi/content/full/7/4/eabc5539/DC1

## Supplementary Materials for

# Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKa stability via selective autophagy

Xing Li, Qian Xia, Meng Mao, Huijuan Zhou, Lu Zheng, Yi Wang, Zhen Zeng, Lulu Yan, Yin Zhao, Jing Shi\*

\*Corresponding author. Email: sj@mails.tjmu.edu.cn

Published 20 January 2021, *Sci. Adv.* 7, eabc5539 (2021) DOI: 10.1126/sciadv.abc5539

#### This PDF file includes:

Figs. S1 to S10 Tables S1 to S3

#### **Supplementary Figures**

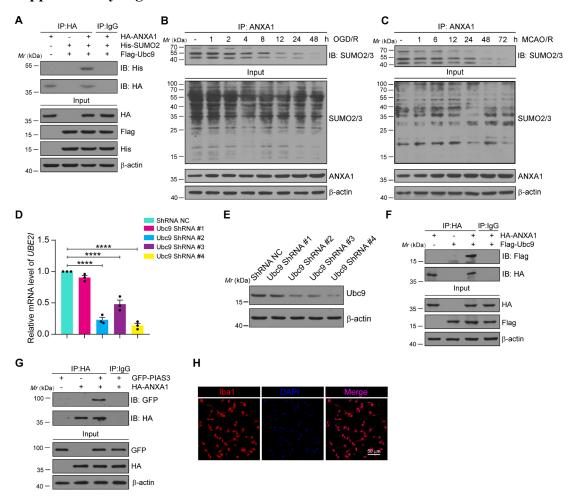



Fig. S1. ANXA1 is modified by SUMOylation. (A) SUMO2 is conjugated covalently to ANXA1. HEK293T cells were transduced with the indicated plasmids. Cell lysates were subjected to IP with anti-HA antibody, followed by immunoblotting with anti-His antibody. (B) The time course of SUMOylation of ANXA1 induced by 1 h of OGD treatment in primary microglial cells was assessed. Total lysates of primary microglial cells were obtained at various time points following OGD challenge. (C) The time course of SUMOylation of ANXA1 in microglia/macrophages isolated from sham-operated and 1 h MCAO-operated mice with varying durations of reperfusion as indicated. (D and E) The knockdown efficiency of four different Ubc9 ShRNA plasmids on the transcription (D) and expression (E) of Ubc9 in HEK293T cell lines. (F) Interaction between ANXA1 and Ubc9 in HEK293T cells was confirmed by the IP method. (G) Interaction between ANXA1 and PIAS3 in HEK293T cells was confirmed by the IP method. (H) Immunofluorescence analysis shows the purity of primary cultured microglial cells. Cells were fixed and stained for microglia specific marker Iba1 (red). Scale bar, 50 μm. Data in panel D are presented as the mean ± S.E.M. and analysed by one-way ANOVA followed by Dunnett's post hoc test. \*\*\*\*P<0.0001, n = 3 per group.

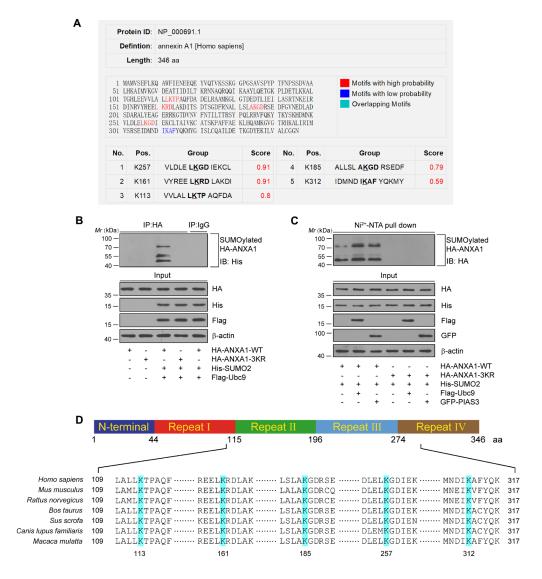



Fig. S2. K113, K161 and K257 are the major SUMOylation sites in ANXA1. (A) SUMOylation sites of human ANXA1 protein were predicted by the Abgent program SUMOplot<sup>TM</sup> (http://www.abgent.com/sumoplot). (B) ANXA1 triple-mutant greatly reduced SUMOylation of ANXA1. HEK293T cells were co-transfected with His-SUMO2 and HA-tagged wild-type ANXA1 (HA-ANXA1-WT) or ANXA1 triple-mutant (HA-ANXA1-3KR). After 24 h, cells lysates were used for IP experiment with anti-HA antibody or normal IgG. The precipitates and whole cell lysates were detected by immunoblotting assay. (C) Ubc9 and PIAS3 could not enhance SUMOylation level of ANXA1 triple-mutant (3KR). HEK293T cells were transduced with indicated plasmids and then lysed for Ni<sup>2+</sup>-NTA affinity pull-down assay. Immunoblots were conducted to examine the levels of ANXA1 SUMO modification. (D) Schematic of human ANXA1 protein and amino acid sequence alignment of ANXA1 sequences from different species as indicated. The conserved SUMOylation motif lysines are shown in turquoise. Data represent of three independent experiments.

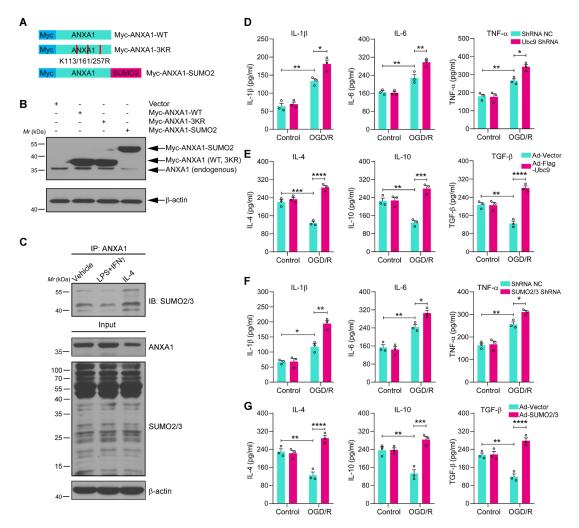



Fig. S3. SUMOylation of endogenous ANXA1 promoted the anti-inflammatory phenotype polarization of microglia. (A) Schematic diagram of Myc-ANXA1-WT, Myc-ANXA1-3KR, and Myc-ANXA1-SUMO2 fusion constructs. The location of the KR mutation is shown in red. (B) Immunoblot analysis of ANXA1 and Myc-ANXA1-WT, Myc-ANXA1-3KR, and Myc-ANXA1-SUMO2 using an anti-ANXA1 antibody in whole cell lysates prepared from HEK293T cells overexpressing the indicated Myc-tagged proteins. β-actin was used as a loading control. Data are representative of three independent experiments. (C) IL-4 treatment enhanced the SUMOylation of endogenous ANXA1, whereas LPS plus IFN-y treatment decreased the SUMOylation of endogenous ANXA1 in primary cultured microglia. (D and E) Interference of Ubc9 expression exacerbated OGD/R-induced mRNA expression of pro-inflammatory marker genes (D), whereas Ubc9 overexpression promoted the mRNA expression of anti-inflammatory marker genes (E) in primary cultured microglia. (F and G) Interference of the expression of SUMO2/3 exacerbated OGD/R-induced mRNA expression of pro-inflammatory marker genes (F), whereas the overexpression of SUMO2/3 promoted the mRNA expression of anti-inflammatory marker genes (G) in primary cultured microglia. Data are presented as the mean  $\pm$  S.E.M. and analysed by twoway ANOVA followed by Tukey's post hoc test. n.s. for P > 0.05, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.01, \*\* 0.001 and \*\*\*\*P < 0.0001.

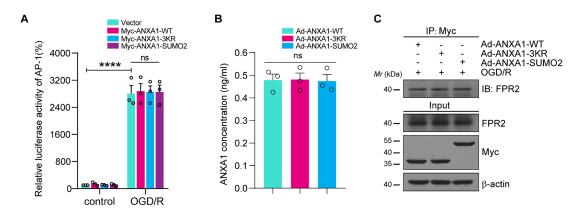



Fig. S4. SUMOylation modification of ANXA1 had no effect on its secretion and FPR2 receptor binding. (A) Dual luciferase reporter assay results showing the transcriptional activity of AP-1. HEK293T cells were transduced with pAP-1-luc reporter and pRL-TK-luc plasmids, together with empty vector or wild-type ANXA1, triple-mutant ANXA1 and the constitutive SUMOylation mimic plasmids and then subjected to OGD/R treatment. After 24 h, the AP-1 luciferase activity was analysed. (B) The secretion of ANXA1 in microglial cell supernatants upon the indicated stimulation and treatment were detected by ELISA. Quantitative analysis was performed. (C) Representative blots of co-IP experiments showing the interaction of ANXA1 with FPR2 in primary cultured microglia. Data are presented as the mean  $\pm$  S.E.M. and analysed by two-way ANOVA (A) or one-way ANOVA (B) followed by Tukey's post hoc test. n.s. for P > 0.05, \*\*\*\*P < 0.0001.

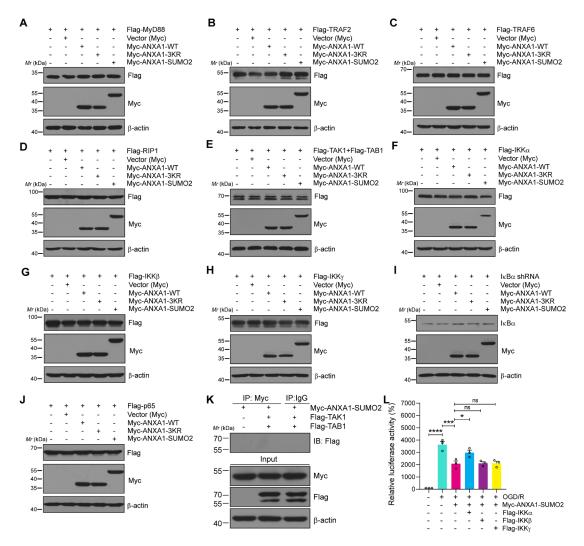
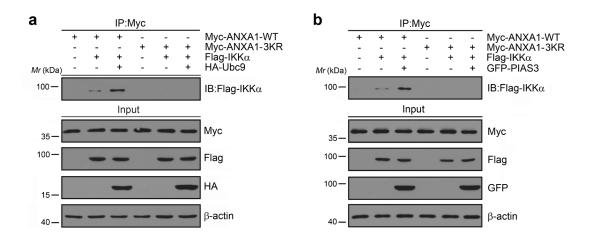




Fig. S5. The cell lysates of Fig. 3F were detected by immunoblots analysis. (A to J) HEK293T cells were transfected with NF-κB-luc, pRL-TK, MyD88, TRAF2, TRAF6, RIP1, TAK1+TAB1, IKK $\alpha$ , IKK $\beta$ , IKK $\gamma$ , IκB $\alpha$  shRNA or p65, along with wild-type or SUMOylation mutants ANXA1. The protein expression levels were detected by immunoblots analysis using the indicated antibodies. (**K**) Representative blots of co-IP experiments show no interaction of ANXA1 with TAK1 or TAB1. Myc-ANXA1-SUMO2 expression plasmid together with empty vector or TAK1 and TAB1 were transduced into HEK293T cells. After 24 h, whole cell lysates were collected and used for the co-IP and immunoblotting experiments. (**L**) Dual luciferase reporter assay results show the transcriptional activity of NF-κB p65. HEK293T cells were transduced with pNF-κB-luc reporter and pRL-TK-luc plasmids, together with empty vector or ANXA1-SUMO2 plasmids and then subjected to OGD/R treatment. After 12 h, cells were transfected with IKK $\alpha$ , IKK $\beta$ , IKK $\gamma$ , respectively. Then 12 h later, the NF-κB luciferase activity was analysed. Data are expressed as mean ± S.E.M. and analysed by one-way ANOVA followed by Tukey's post hoc test. n.s. for P > 0.05, \*P < 0.05, \*P < 0.05, \*\*P < 0.001 and \*\*\*\*P < 0.0001, P = 0.0001



**Fig. S6. Ubc9 and PIAS3 enhances the binding of ANXA1 with IKKα.** (**A** and **B**) Ubc9 and PIAS3 enhances the binding of exogenous ANXA1 with IKKα. HEK293T cells were transfected with plasmids for Flag-IKKα and wild-type or triple-mutant of ANXA1 along with HA-Ubc9 or GFP-PIAS3. A co-IP assay was used to determine the interaction between Myc-ANXA1 and Flag-IKKα. Data are representative of three independent experiments.

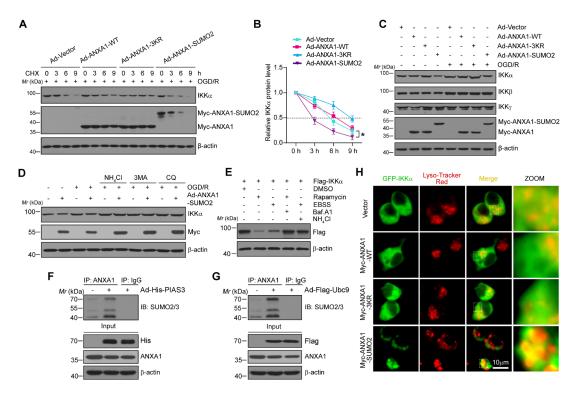



Fig. S7. SUMOylated ANXA1 mediates the autophagy-dependent degradation of IKKα. (A and B) SUMO conjugation of ANXA1 reduces the half-life of endogenous ΙΚΚα in primary microglial cells. Protein level of IKKα was analysed by immunoblotting. Representative blots are shown in (A), and the quantification of relative protein levels is shown in (B). (C) Representative immunoblots indicate the effects of SUMOylated ANXA1 on the protein levels of the endogenous IKK $\alpha$ , IKK $\beta$  or IKK $\gamma$  in microglia. (D) Immunoblot analysis show endogenous IKK $\alpha$  of microglia cells infected with adenoviral vectors carrying Myc-tagged wild-type ANXA1 and then treated with DMSO, MG132, NH<sub>4</sub>Cl, 3MA and CQ for 6 h. (E) Representative immunoblots show the protein level of Flag-IKKα. HEK293T cells were transduced with plasmid for Flag-IKKα and treated with Rapamycin (250 nM), Bafilomycin A1 (800 nM), NH<sub>4</sub>Cl (20 mM), or incubated with EBSS. (F and G) PIAS3 and Ubc9 enhanced the SUMOylation level and decreased the protein level of endogenous ANXA1. Primary microglial cells were transduced with adenoviral vectors carrying His-PIAS3 and Flag-Ubc9, and a co-IP assay was used to determine the SUMOylation level and protein level of endogenous ANXA1. (H) HEK293T cells were transiently transfected with GFP-IKKα and Myc-tagged wild-type or SUMOylation mutations of ANXA1. The colocalization of GFP-IKKα and LysoTracker Red was analysed by fluorescence microscopy. Enlarged images show the colocalization of the two signals. Scale bar, 10  $\mu$ m. Data in panel **B** are presented as the mean  $\pm$ S.E.M. and analysed by two-way RM ANOVA followed by Tukey's post hoc test. \*P < 0.05, n = 3per group.

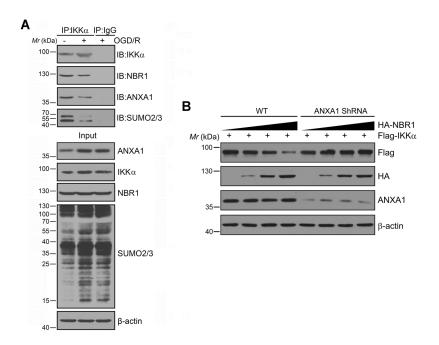



Fig. S8. ANXA1 forms a complex with SUMO2, IKK $\alpha$  and NBR1 and mediates the degradation of IKK $\alpha$  by NBR1. (A) OGD/R decreased the interaction of IKK $\alpha$  with NBR1, ANXA1, and SUMO2. Primary microglial cells were stimulated with OGD/R or left unstimulated. Then, the cells were lysed, and cell lysates was subjected to co-IP analysis by anti-IKK $\alpha$  followed by immunoblotting. (B) ANXA1 mediates the degradation of IKK $\alpha$  by NBR1. Wild-type or ANXA1-knockdown HEK293T cells were transfected with increasing amounts of HA-NBR1 plasmids (0, 1, 2, 4  $\mu$ g), along with the Flag-IKK $\alpha$  plasmids. Cells were harvested at 24 h after transfection and analysed by immunoblotting with the indicated antibodies. Data are representative of three independent experiments.

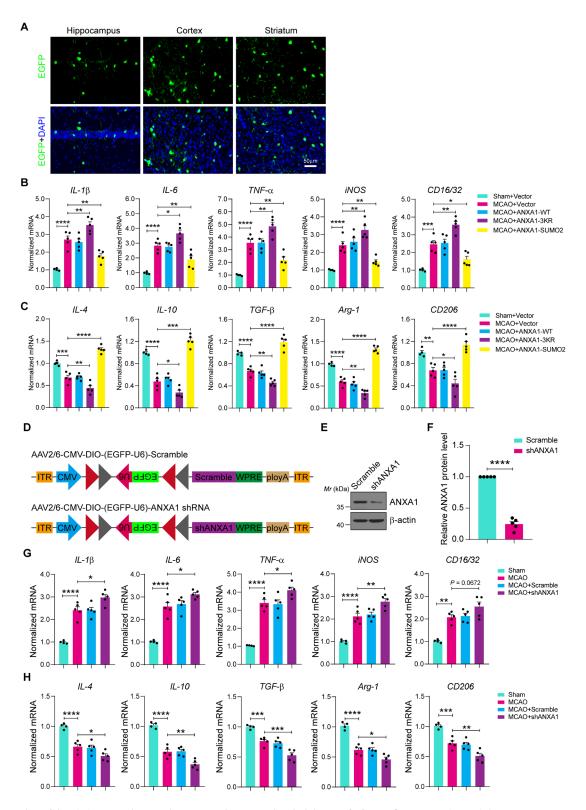



Fig. S9. AAV-mediated introduction or inhibition of SUMOylated ANXA1 altered the phenotypic polarization of microglia/macrophages in ischemic stroke mice. (A) Representative images of GFP signals in the hippocampus CA1 region, cerebral cortex, and striatum of Cx3cr1-Cre mice injected with the AAV vectors at day 49 after the injection. Scale bar, 50 μm. (B and C) SUMOylated ANXA1 but not the wild-type or the triple-mutant of ANXA1 reversed MCAO-induced mRNA expression of pro-inflammatory marker genes (B) and promoted the mRNA

expression of anti-inflammatory marker genes (C) in microglia/macrophages isolated from ischemic stroke mice. (D) Schematic of Cx3cr1-Cre-dependent AAV vectors for microglia/macrophages ANXA1 silencing. (E and F) Representative immunoblotting of ANXA1 and quantification of ANXA1 expression in the isolated microglia/macrophages from Cx3cr1-Cre mice injected with AAV at 4 wk. (G and H) AAV mediated microglia/macrophages ANXA1 silencing exacerbated MCAO-induced mRNA expression of pro-inflammatory marker genes (G) and attenuated the mRNA expression of anti-inflammatory marker genes (H) in microglia/macrophage cells isolated from ischemic stroke mice. The mRNA levels of pro-inflammatory mediators and anti-inflammatory mediators were detected by qPCR. Data are presented as the mean  $\pm$  S.E.M. and analysed by two-tailed unpaired t test (F) or one-way ANOVA followed by Dunnett's post hoc test (B, C, G, H). \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001 and \*\*\*\*\*P < 0.0001.

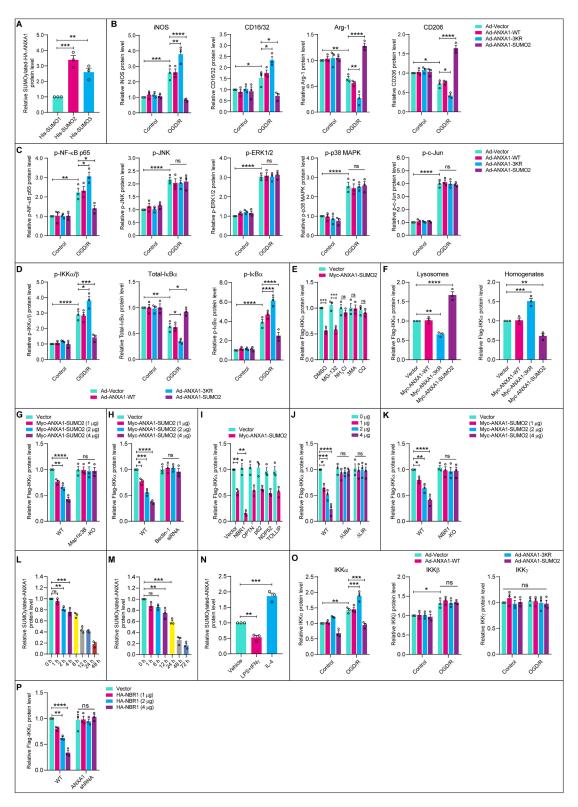



Fig. S10. Quantification of the immunoblot results (Figs. 1, 2, 3, 5, 6 and Figs. S1, S2, S7, S8). (A) The quantification analysis of the immunoblots of Fig. 1A. Normalized SUMOylated-HA-ANXA1 to corresponding loading control is summarized for three independent experiments. (B) The quantification analysis of immunoblots of Fig. 2C. Normalized iNOS, CD16/32, Arg-1 and CD206 to corresponding loading control are summarized for three independent experiments. (C and D) The quantification analysis of immunoblots of Fig. 3, A and B. Normalized phospho-NF-κB p65,

-JNK, -ERK1/2, -p38 MAPK, -c-Jun, -IKKα/β, -IκBα and total IκBα to corresponding loading control are summarized for three independent experiments. (E to H) The quantification analysis of immunoblots of Fig. 5, F, I, L and M. Normalized Flag-IKKα to corresponding loading control are summarized for three independent experiments. (I to K) The quantification analysis of immunoblots of Fig. 6, B, K and L. Normalized Flag-IKKα to corresponding loading control are summarized for three independent experiments. (L and M) The quantification analysis of immunoblots of Fig. S1, B and C. Normalized SUMOylated-ANXA1 to corresponding loading control are summarized for three independent experiments. (N) The quantification analysis of immunoblots of Fig. S3C. Normalized SUMOylated-ANXA1 to corresponding loading control is summarized for three independent experiments. (O) The quantification analysis of immunoblots of Fig. S7C. Normalized IKKα, IKKβ, IKKγ to corresponding loading control is summarized for three independent experiments. (P) The quantification analysis of immunoblots of Fig. S8B. Normalized Flag-IKKα to corresponding loading control were summarized for three independent experiments. Statistical difference in panel A, F, L, M, N were determined using one-way ANOVA followed by Dunnett's post hoc test, and all others were analysed by two-way ANOVA followed by Tukey's post hoc test. Data are presented as mean  $\pm$  S.E.M. n.s. for P > 0.05, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001 and \*\*\*\*P < 0.0001.

## Supplementary Table 1. Antibodies employed in this study.

| Antibody                   | Species     | Type       | IB        | IF      | Source         | Identifier |
|----------------------------|-------------|------------|-----------|---------|----------------|------------|
| НА                         | Mouse       | Mono-      | 1:1000    |         | Santa Cruz     | sc-7392    |
| Flag                       | Mouse       | Mono-      | 1:2000    |         | Santa Cruz     | sc-166355  |
| His                        | Rabbit      | Poly-      | 1:1000    |         | Sigma-Aldrich  | SAB1306085 |
| Ubc9                       | Mouse       | Mono-      | 1:1000    |         | Santa Cruz     | sc-271057  |
| GFP                        | Mouse       | Mono-      | 1:2000    |         | Santa Cruz     | sc-9996    |
| ANXA1                      | Mouse       | Mono-      | 1:1000    | 1:200   | Santa Cruz     | sc-12740   |
| SUMO-2/3                   | Rabbit      | Mono-      | 1:1000    | 1:200   | Cell Signaling | #4971      |
| β-actin                    | Mouse       | Mono-      | 1:1000    |         | Santa Cruz     | sc-47778   |
| iNOS                       | Rabbit      | Poly-      | 1:500     | 1:200   | Proteintech    | 18985-1-AP |
| CD16/32                    | Mouse       | Poly-      | 1:500     |         | R&D systems    | AF1460     |
| Arg-1                      | Rabbit      | Mono-      | 1:1000    | 1:200   | Cell Signaling | #93668     |
| CD206                      | Mouse       | Poly-      | 1:500     |         | R&D systems    | AF2535     |
| NF-κB p65                  | Rabbit      | Mono-      | 1:1000    | 1:200   | Cell Signaling | #8242      |
| Phospho-NF-κB p65          | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #3033      |
| JNK                        | Rabbit      | Poly-      | 1:2000    |         | R&D systems    | AF1387     |
| Phospho-JNK                | Rabbit      | Mono-      | 1:1000    |         | R&D systems    | MAB1205    |
| ERK1/2                     | Mouse       | Mono-      | 1:1000    |         | R&D systems    | MAB1576    |
| Phospho-ERK1/2             | Rabbit      | Poly-      | 1:1000    |         | R&D systems    | AF1018     |
| p38 MAPK                   | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #8690      |
| Phospho-p38 MAPK           | Rabbit      | Poly-      | 1:1000    |         | R&D systems    | AF869      |
| c-Jun                      | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #9165      |
| Phospho-c-Jun              | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #3270      |
| Phospho-IKK $\alpha/\beta$ | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #2697      |
| ΙκΒα                       | Mouse       | Mono-      | 1:1000    |         | Cell Signaling | #4814      |
| Phospho-ΙκΒα               | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #2859      |
| α-tubulin                  | Mouse       | Mono-      | 1:2000    |         | Santa Cruz     | sc-8035    |
| Histone H3                 | Rabbit      | Mono-      | 1:2000    |         | Cell Signaling | #4499      |
| Myc                        | Mouse       | Mono-      | 1:1000    |         | Santa Cruz     | sc-40      |
| ΙΚΚα                       | Mouse       | Mono-      | 1:1000    |         | Cell Signaling | #11930     |
| ΙΚΚβ                       | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #8943      |
| ΙΚΚγ                       | Mouse       | Mono-      | 1:1000    |         | Santa Cruz     | sc-8032    |
| LAMP2A                     | Rabbit      | Mono-      | 1:1000    |         | Abcam          | ab125068   |
| LC3B                       | Rabbit      | Poly-      | 1:1000    |         | Abcam          | ab48394    |
| Beclin1                    | Rabbit      | Poly-      | 1:1000    |         | Abcam          | ab62557    |
| NBR1                       | Rabbit      | Mono-      | 1:1000    |         | Cell Signaling | #9891      |
| Iba1                       | Rabbit      | Poly-      |           | 1:500   | Wako           | #019-19741 |
| Abbreviations: IB Im       | munahlattir | ng: IF Imr | munofluor | escence |                |            |

Abbreviations: IB, Immunoblotting; IF, Immunofluorescence.

## **Supplementary Table 2. Primers used in this study.**

| Primer name Pr | imer sequences (5'- 3 | ") |
|----------------|-----------------------|----|
|----------------|-----------------------|----|

|                    | Forward                 | Reverse                 |  |  |  |
|--------------------|-------------------------|-------------------------|--|--|--|
| Quantitative l     | RT-PCR primers          |                         |  |  |  |
| IL- $1\beta$       | GAAAGACGGCACACCCAC      | TGTGACCCTGAGCGACCT      |  |  |  |
| IL-6               | TCTCTGGGAAATCGTGGAA     | GATGGTCTTGGTCCTTAGCC    |  |  |  |
| TNF-α              | ACGGCATGGATCTCAAAGAC    | AGATAGCAAATCGGCTGACG    |  |  |  |
| iNOS               | GCTTGTCTCTGGGTCCTCTG    | CTCACTGGGACAGCACAGAA    |  |  |  |
| CD16               | GGCTGTGGTGAAACTGGAC     | GGTTGGCTTTTGGGATAGA     |  |  |  |
| Arg-1              | CAAGACAGGGCTCCTTTCAG    | TGGCTTATGGTTACCCTCCC    |  |  |  |
| IL-4               | CCCCAGCTAGTTGTCATCC     | AGGACGTTTGGCACATCCAT    |  |  |  |
| IL-10              | CTGCCTGCTCTTACTGACTG    | AAATCACTCTTCACCTGCTC    |  |  |  |
| $TGF$ - $\beta$    | TGCGCTTGCAGAGATTAAAA    | CGTCAAAAGACAGCCACTCA    |  |  |  |
| CD206              | TCAGCTATTGGACGCGAGGCA   | TCCGGGTTGCAAGTTGCCGT    |  |  |  |
| UBE2I              | GAAAGGGACTCCGTGGGAAG    | GCTTGAGCTGGGTCTTGGAT    |  |  |  |
| CHUK               | GACTTGATGGAATCTCTGGA    | GATGCCATATTTCTTTCTGC    |  |  |  |
| GAPDH              | AGGAGCGAGACCCCACTAACA   | AGGGGGCTAAGCAGTTGGT     |  |  |  |
| Genotyping primers |                         |                         |  |  |  |
| Cx3cr1 Cre         | CAACGAGTGATGAGGTTCGCAAG | ACACCAGAGACGGAAATCCATCG |  |  |  |

## Supplementary Table 3. The statistical analysis results for all figures.

| Figure | 10              | Primary          | Post-hoc              | P value                                    | Degrees of Freedom |
|--------|-----------------|------------------|-----------------------|--------------------------------------------|--------------------|
| Number | n               | statistic        | test                  | r value                                    | & F Value          |
|        |                 |                  |                       | $IL-1\beta, P < 0.0001$                    | $F_{3,24} = 30.91$ |
|        |                 | t                | Tulvary'a ma at       | <i>IL-6, P</i> < 0.0001                    | $F_{3,24} = 14.84$ |
| 2A     | n = 4 per       | two-way          | Tukey's post          | <i>TNF-<math>\alpha</math>, P</i> < 0.0001 | $F_{3,24} = 21.18$ |
|        | group           | ANOVA            | hoc test              | iNOS, P < 0.0001                           | $F_{3,24} = 28.56$ |
|        |                 |                  |                       | CD16/32, P < 0.0001                        | $F_{3,24} = 29.92$ |
|        |                 |                  |                       | <i>Arg-1, P</i> < 0.0001                   | $F_{3,24} = 16.60$ |
|        | 4               |                  |                       | <i>TGF-<math>\beta</math>, P</i> < 0.0001  | $F_{3,24} = 20.61$ |
| 2B     | n = 4 per       | two-way          | Tukey's post          | <i>IL-4, P</i> < 0.0001                    | $F_{3,24} = 20.91$ |
|        | group           | ANOVA            | hoc test              | <i>IL-10, P</i> < 0.0001                   | $F_{3,24} = 31.83$ |
|        |                 |                  |                       | CD206, P < 0.0001                          | $F_{3,24} = 30.16$ |
|        | 4               | 4                | T-1                   | IL-1 $\beta$ , $P < 0.0001$                | $F_{3,24} = 34.60$ |
| 2D     | n = 4 per       | two-way          | Tukey's post          | IL-6, <i>P</i> < 0.0001                    | $F_{3,24} = 36.65$ |
|        | group           | ANOVA            | hoc test              | TNF- $\alpha$ , $P < 0.0001$               | $F_{3,24} = 29.56$ |
|        | 4               | 4                | T-1                   | IL-4, P < 0.0001                           | $F_{3,24} = 23.40$ |
| 2E     | n = 4 per       | two-way<br>ANOVA | Tukey's post hoc test | IL-10, P < 0.0001                          | $F_{3,24} = 21.90$ |
|        | group           | ANOVA            | noc test              | TGF-β, $P < 0.0001$                        | $F_{3,24} = 34.72$ |
| 2G     | n = 6 per       | two-way          | Tukey's post          | D < 0.0001                                 | E = 116.5          |
| 20     | group           | ANOVA            | hoc test              | P < 0.0001                                 | $F_{3,40} = 116.5$ |
| 2H     | n = 6 per       | two-way          | Tukey's post hoc test | P < 0.0001                                 | $F_{3,40} = 61.02$ |
| 211    | group           | ANOVA            |                       | 1 \ 0.0001                                 | 7 3,40 01.02       |
| 3C     | n = 3 per       | two-way          | Tukey's post          | P < 0.0001                                 | $F_{3,16} = 29.61$ |
| 30     | group           | ANOVA            | hoc test              | 1 (0.0001                                  |                    |
| 3D     | n = 3 per       | two-way          | Tukey's post          | P < 0.0001                                 | $F_{3.16} = 27.94$ |
|        | group           | ANOVA            | hoc test              | 1 010001                                   | 1 3,16 - 27.34     |
| 3F     | n = 3 per       | two-way          | Tukey's post          | P = 0.0007                                 | $F_{3,16} = 9.734$ |
|        | group           | ANOVA            | hoc test              | 1 010007                                   | 2 3,10             |
| 3G     | n = 3 per       | two-way          | Tukey's post          | P < 0.0001                                 | $F_{3,16} = 25.90$ |
|        | group           | ANOVA            | hoc test              |                                            | 5,10               |
|        | n = 50          | two-way          | Tukey's post          |                                            | $F_{7,784} = 2032$ |
| 3I     | cells per       | ANOVA            | hoc test              | P < 0.0001                                 |                    |
|        | group           |                  |                       | M D00 D : 0 0001                           | E 20.04            |
| 4A     |                 |                  |                       | MyD88, P < 0.0001                          | $F_{5,12} = 39.94$ |
|        |                 |                  |                       | TRAF2, P < 0.0001                          | $F_{5,12} = 42.15$ |
|        |                 |                  |                       | TRAF6, P < 0.0001                          | $F_{5,12} = 31.86$ |
|        | n = 3 per group | two-way          | Tukey's post          | RIP1, P < 0.0001                           | $F_{5,12} = 31.39$ |
|        |                 | ANOVA            | hoc test              | TAK1+TAB1, P < 0.0001                      | $F_{5,12} = 49.68$ |
|        |                 |                  |                       |                                            |                    |
|        |                 |                  |                       | IKKα, P < 0.0001                           | $F_{5,12} = 40.42$ |
|        |                 |                  |                       | IKKβ, $P < 0.0001$                         | $F_{5,12} = 72.41$ |
|        |                 |                  |                       | IKK $\gamma$ , $P < 0.0001$                | $F_{5,12} = 27.17$ |

|      |                               |                      |                         | I.D. IDNIA D             |                      |
|------|-------------------------------|----------------------|-------------------------|--------------------------|----------------------|
|      |                               |                      |                         | IκBα shRNA, $P < 0.0001$ | $F_{5,12} = 27.70$   |
|      |                               |                      |                         |                          | E - 44.22            |
|      | 50                            |                      |                         | p65, P < 0.0001          | $F_{5,12} = 44.22$   |
| 4G   | n = 50 cells per              | one-way<br>ANOVA     | Dunnett's post hoc test | P < 0.0001               | $F_{3,196} = 590.4$  |
|      | group                         | ANOVA                | post noc test           |                          |                      |
|      |                               | two-way              |                         |                          |                      |
| 5B   | n = 3 per                     | repeated<br>measures | Tukey's post            | <i>P</i> < 0.0001        | $F_{9,24} = 8.926$   |
| J.B. | group                         | (RM)                 | hoc test                | 1 0.0001                 | 1 9,24 0.720         |
|      |                               | ANOVA                |                         |                          |                      |
| 5C   | n = 3 per                     | two-way              | Tukey's post            | P = 0.9756               | $F_{9,32} = 0.2799$  |
|      | group                         | ANOVA                | hoc test                |                          | 7,32 177             |
|      |                               | two-way              |                         |                          |                      |
| 5E   | n = 3 per                     | repeated<br>measures | Tukey's post            | <i>P</i> < 0.0001        | $F_{9,24} = 7.278$   |
|      | group                         | (RM)                 | hoc test                |                          | 7,24 / - / - /       |
|      |                               | ANOVA                |                         |                          |                      |
|      | n = 50                        | one-way              | Dunnett's               |                          |                      |
| 5K   | cells per                     | ANOVA                | post hoc test           | P < 0.0001               | $F_{3,196} = 967.3$  |
|      | $\frac{\text{group}}{n = 50}$ |                      |                         |                          |                      |
| 6H   | cells per                     | one-way              | Dunnett's               | P < 0.0001               | $F_{3,196} = 780.6$  |
|      | group                         | ANOVA                | post hoc test           |                          |                      |
|      | n =9                          |                      |                         |                          |                      |
| 7E   | mice                          | one-way              | Dunnett's               | P < 0.0001               | $F_{3,32} = 40.47$   |
|      | per<br>group                  | ANOVA                | post hoc test           |                          |                      |
|      |                               | Kruskal–             |                         |                          |                      |
|      | n = 10 or                     | Wallis               | Dunmatt's               |                          |                      |
| 7F   | 12 mice per                   | non-                 | Dunnett's post hoc test | P < 0.0001               |                      |
|      | group                         | parametric           | post not test           |                          |                      |
|      |                               | test                 |                         |                          |                      |
|      | n = 10 or $12$ mice           | two-way              | Tukey's post            |                          |                      |
| 7G   | per                           | RM                   | hoc test                | P = 0.0443               | $F_{20,265} = 1.637$ |
|      | group                         | ANOVA                |                         |                          |                      |
|      | <i>n</i> =10 or               |                      |                         |                          |                      |
| 7H   | 12 mice                       | one-way              | Dunnett's               | P < 0.0001               | $F_{4,53} = 19.62$   |
| '11  | per                           | ANOVA                | post hoc test           |                          |                      |
|      | group $n = 10$ or             |                      |                         |                          |                      |
| 7I   | 12 mice                       | one-way              | Dunnett's               | P < 0.0001               | $F_{4,53} = 18.52$   |
| /1   | per                           | ANOVA                | post hoc test           |                          |                      |
|      | _                             | <u> </u>             | <u> </u>                |                          |                      |

|     | group                              |                                                  |                          |                                                                                   |                                                             |
|-----|------------------------------------|--------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|
| 7J  | n=10 or<br>12 mice<br>per<br>group | Kruskal–<br>Wallis<br>non-<br>parametric<br>test | Dunnett's post hoc test  | P < 0.0001                                                                        |                                                             |
| 7L  | n=10 or<br>12 mice<br>per<br>group | two-way<br>ANOVA                                 | Tukey's post hoc test    | P = 0.8770                                                                        | $F_{4,106} = 0.3006$                                        |
| 7M  | n=10 or<br>12 mice<br>per<br>group | one-way<br>ANOVA                                 | Dunnett's post hoc test  | P < 0.0001                                                                        | $F_{4,53} = 19.05$                                          |
| 7N  | n=10 or<br>12 mice<br>per<br>group | one-way<br>ANOVA                                 | Dunnett's post hoc test  | P < 0.0001                                                                        | $F_{4,53} = 42.91$                                          |
| S1D | n = 3 per group                    | one-way<br>ANOVA                                 | Dunnett's post hoc test  | P < 0.0001                                                                        | $F_{4,10} = 92.89$                                          |
| S3D | n = 3 per group                    | two-way<br>ANOVA                                 | Tukey's post hoc test    | IL-1 $\beta$ , $P = 0.0322$<br>IL-6, $P = 0.0064$<br>TNF- $\alpha$ , $P = 0.0166$ | $F_{1,8} = 6.698$<br>$F_{1,8} = 13.39$<br>$F_{1,8} = 9.103$ |
| S3E | n = 3 per group                    | two-way<br>ANOVA                                 | Tukey's post hoc test    | IL-4, $P < 0.0001$<br>IL-10, $P = 0.0003$<br>TGF- $\beta$ , $P < 0.0001$          | $F_{1,8} = 68.76$ $F_{1,8} = 35.22$ $F_{1,8} = 55.58$       |
| S3F | n = 3 per group                    | two-way<br>ANOVA                                 | Tukey's post hoc test    | IL-1 $\beta$ , $P = 0.0034$<br>IL-6, $P = 0.0168$<br>TNF- $\alpha$ , $P = 0.0414$ | $F_{1,8} = 16.84$ $F_{1,8} = 9.059$ $F_{1,8} = 5.891$       |
| S3G | n = 3 per group                    | two-way<br>ANOVA                                 | Tukey's post<br>hoc test | IL-4, $P = 0.0002$<br>IL-10, $P = 0.0006$<br>TGF- $\beta$ , $P = 0.0002$          | $F_{1,8} = 43.48$ $F_{1,8} = 30.30$ $F_{1,8} = 42.19$       |
| S4A | n = 3 per group                    | two-way<br>ANOVA                                 | Tukey's post hoc test    | P < 0.0001                                                                        | $F_{3,16} = 29.61$                                          |
| S4B | n = 3 per group                    | one-way<br>ANOVA                                 | Tukey's post<br>hoc test | P = 0.9885                                                                        | $F_{2,6} = 0.01161$                                         |
| S5L | n = 3 per group                    | one-way<br>ANOVA                                 | Tukey's post hoc test    | P < 0.0001                                                                        | $F_{5,12} = 41.36$                                          |
| S7B | n = 3 per group                    | two-way<br>RM<br>ANOVA                           | Tukey's post hoc test    | P = 0.0051                                                                        | $F_{9,24} = 3.681$                                          |
| S9B | n=4 or 5 mice                      | one-way<br>ANOVA                                 | Dunnett's post hoc test  | <i>IL-1β</i> , <i>P</i> < 0.0001 <i>IL-6</i> , <i>P</i> < 0.0001                  | $F_{4,19} = 31.69$<br>$F_{4,19} = 26.80$                    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | per          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | $TNF-\alpha, P < 0.0001$                      | $F_{4,19} = 27.26$                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------|---------------------------------------|
| $S9C = \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way per group $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way post hoc test $ \begin{cases} n = 5 \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ two-tailed unpaired t test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way per ANOVA group $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por} \\ \text{group} \end{cases} $ one-way per ANOVA group $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way per ANOVA group $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way per ANOVA group $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way per ANOVA group $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way per ANOVA group $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per} \\ \text{group} \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{per group} \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way proup $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{por ber and } \end{cases} $ one-way post hoc test $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{mice} \\ \text{mice} \end{cases} $ one-way proup $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{mice} \end{cases} $ one-way proup $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{mice} \end{cases} $ one-way proup $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ \text{mice} \end{cases} $ one-way proup $ \begin{cases} n = 4 \text{ or 5} \\ \text{mice} \\ mice$ |      | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Sroup        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                               | , , , , , , , , , , , , , , , , , , , |
| $ \begin{array}{c} & n=4 \text{ or 5} \\ & \text{mice} \\ & \text{per} \\ & \text{proup} \\ \end{array} \\ & \text{NOVA} \\ & \text{group} \\ \\ & \text{Post hoc test} \\ \\ & \text{Post hoc test} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{4,19} = 86.88}{F_{4,19} = 64.09} \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{4,19} = 105.8}{F_{4,19} = 27.74} \\ \\ & \text{NOVA} \\ & \text{group} \\ \\ & \text{SPG} \\ \\ & \text{Per} \\ & \text{group} \\ \\ & \text{SPG} \\ \\ & \text{per} \\ & \text{group} \\ \\ & \text{SPG} \\ \\ & \text{per} \\ & \text{group} \\ \\ & \text{NOVA} \\ & \text{group} \\ \\ & \text{NOVA} \\ & \text{post hoc test} \\ \\ & \text{post hoc test} \\ \\ & \text{Dunnett's} \\ & \text{post hoc test} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{4,19} = 105.8}{F_{4,19} = 27.74} \\ \\ & P < 0.0001 \\ & \frac{F_{4,19} = 27.74}{F_{4,19} = 27.74} \\ \\ & P < 0.0001 \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{4,19} = 27.74} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{3,15} = 33.58} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{3,15} = 35.21} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{3,15} = 35.21} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 38.58}{F_{3,15} = 35.21} \\ \\ & \frac{II10, P < 0.0001}{Arg-I. P < 0.0001} \\ & \frac{F_{3,15} = 35.58}{F_{3,15} = 27.12} \\ \\ & \frac{II10, P < 0.0001}{F_{3,15} = 33.58} \\ \\ & \frac{II10, P < 0.0001}{F_{3,15} = 33.58} \\ \\ & II.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ·                                             | ,                                     |
| S9C mice per group Shock test post hock test per group S9G mice per ANOVA post hock test per group S9G mice per ANOVA post hock test per ANOVA post hock test per group S10A m = 3 per group S10B mice proup ANOVA s10B post hock test s10B $n = 3$ per group ANOVA proup ANOVA s10C per group ANOVA proup ANOVA s10C per group AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | n = 4  or  5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                               | ·                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S9C  | mice         | one-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dunnett's     |                                               |                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,0  | per          | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | post hoc test | ,                                             | ,                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | group        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                               | · · · · · · · · · · · · · · · · · · · |
| S9G $\stackrel{n=4 \text{ or 5}}{\text{mice}}$ one-way per ANOVA group $\stackrel{n=4 \text{ or 5}}{\text{mice}}$ one-way post hoc test $\stackrel{n=4 \text{ or 5}}{\text{mice}}$ one-way group $\stackrel{n=4 \text{ or 5}}{\text{mice}}$ one-way per ANOVA group $\stackrel{n=4 \text{ or 5}}{\text{mice}}$ one-way per ANOVA group $\stackrel{n=4 \text{ or 5}}{\text{mice}}$ one-way group $\stackrel{n=4 \text{ or 5}}{\text{mice}}$ one-way group $\stackrel{n=4 \text{ or 5}}{\text{MOVA}}$ $\stackrel{n=3 \text{ per group}}{\text{moup}}$ $\stackrel{n=4 \text{ or 5}}{\text{ANOVA}}$ $\stackrel{n=3 \text{ per group}}{\text{moup}}$ $\stackrel{n=4 \text{ or 5}}{\text{ANOVA}}$ $\stackrel{n=3 \text{ per group}}{\text{moup}}$ $\stackrel{n=3 \text{ per group}}{\text{ANOVA}}$ $\stackrel{n=3 \text{ per group}}{\text{moup}}$ $\stackrel{n=3 \text{ per group}}{\text{ANOVA}}$ $\stackrel{n=3 \text{ per group}}{\text{hoc test}}$ $\stackrel{n=3 \text{ per group}}{\text{ANOVA}}$ $\stackrel{n=3 \text{ per group}}{\text{hoc test}}$ $\stackrel{n=3 \text{ per group}}{\text{ANOVA}}$ $n=3 \text{ per $                                                                                                                                      | S9F  | mice<br>per  | unpaired t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                               | 14,19 27171                           |
| S9G mice per group one-way ANOVA per group $ANOVA$ post hoc test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | n=4 or 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <i>IL-1</i> $\beta$ , $P < 0.0001$            | $F_{3,15} = 38.58$                    |
| S9G per group ANOVA post hoc test $\frac{TNF-\alpha, P < 0.0001}{iNOS, P < 0.0001}$ $F_{3,15} = 47.69$ $iNOS, P < 0.0001$ $F_{3,15} = 35.21$ $CD16/32, P < 0.0001$ $F_{3,15} = 19.88$ $IL-4, P < 0.0001$ $F_{3,15} = 26.83$ $IL-10, P < 0.0001$ $F_{3,15} = 26.83$ $IL-10, P < 0.0001$ $F_{3,15} = 55.83$ $IL-10, P < 0.0001$ $IL-10, P < 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |              | one-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dunnett's     | <i>IL-6, P</i> < 0.0001                       | $F_{3,15} = 44.40$                    |
| $ \begin{array}{c} & iNOS, P < 0.0001 & F_{3,15} = 35.21 \\ \hline & CD16/32, P < 0.0001 & F_{3,15} = 19.88 \\ \hline & n = 4 \text{ or 5} \\ & \text{mice} \\ & \text{per} \\ & \text{group} \end{array} \\ & \text{one-way} \\ & \text{group} \\ & \text{ANOVA} \\ & \text{post hoc test} \\ & \text{post hoc test} \\ & \text{post hoc test} \\ & \frac{IL-4, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 26.83}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 32.75}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 27.12}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 27.12}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,15} = 25.85}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{F_{3,16} = 21.86}{E-55.83} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{IL-10, P < 0.0001}{E-3,15} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{IL-10, P < 0.0001}{E-3,15} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{IL-10, P < 0.0001}{E-3,15} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{IL-10, P < 0.0001}{E-3,15} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{IL-10, P < 0.0001}{E-3,15} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{IL-10, P < 0.0001}{E-3,15} \\ \hline & \frac{IL-10, P < 0.0001}{E-3,15} & \frac{IL-10, P < 0.0001}{E-3,15} \\ \hline & IL-10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S9G  |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | <i>TNF-<math>\alpha</math></i> , $P < 0.0001$ | $F_{3,15} = 47.69$                    |
| S9H $= 4 \text{ or } 5$ mice per group $= 5.000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | -            | 71110 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | post noc test | iNOS, $P < 0.0001$                            | $F_{3,15} = 35.21$                    |
| S9H $= 4 \text{ or 5}$ mice per group $= 4 \text{ NOVA}$ one-way per group $= 4 \text{ NOVA}$ and $= 4 \text{ or 5}$ mice per group $= 4 \text{ NOVA}$ and $= 4 \text{ NOVA}$ post hoc test $= 4 \text{ NOVA}$ post hoc t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | group        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <i>CD16/32, P</i> < 0.0001                    | $F_{3,15} = 19.88$                    |
| S9H mice per group one-way ANOVA post hoc test post hoc test post hoc test $\frac{IL-10, P < 0.0001}{TGF-\beta, P < 0.0001}$ $F_{3,15} = 55.83$ $TGF-\beta, P < 0.0001$ $F_{3,15} = 32.75$ $Arg-1, P < 0.0001$ $F_{3,15} = 41.70$ $CD206, P < 0.0001$ $F_{3,15} = 27.12$ $P = 0.0008$ $P_{2,6} = 29.91$ $P = 0.0008$ $P_{2,6} = 20.000$ $P_{3,16} = 21.86$ $P = 0.0000$ $P_{3,16} = 10.19$ $P = 0.0000$ $P_{3,16} = 33.34$ $P = 0.000$ $P_{3,16} = 33.34$ $P = 0.000$ $P_{3,16} = 33.34$ $P = 0.000$ $P $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | n -1 or 5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <i>IL-4, P</i> < 0.0001                       | $F_{3,15} = 26.83$                    |
| S9H per group ANOVA post hoc test $\frac{TGF-\beta, P < 0.0001}{Arg-1, P < 0.0001}$ $F_{3,15} = 32.75$ $\frac{Arg-1, P < 0.0001}{CD206, P < 0.0001}$ $F_{3,15} = 41.70$ $\frac{Arg-1, P < 0.0001}{CD206, P < 0.0001}$ $F_{3,15} = 27.12$ $\frac{100000}{ANOVA}$ $\frac{100000}{ANOVA}$ $\frac{100000}{ANOVA}$ $\frac{100000}{ANOVA}$ $\frac{100000}{Arg-1, P < 0.0001}$ $\frac{100000}{Arg-1, P < 0.0000}$ $\frac{100000}{Arg-1, P < 0.000}$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |              | one-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dunnett's     | <i>IL-10, P</i> < 0.0001                      | $F_{3,15} = 55.83$                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S9H  |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | <i>TGF-</i> $\beta$ , $P < 0.0001$            | $F_{3,15} = 32.75$                    |
| S10A $n = 3$ per group one-way ANOVA post hoc test $P = 0.0008$ $F_{3,15} = 27.12$ $P = 0.0008$ $P_{2,6} = 29.91$ $P = 0.0001$ $P_{3,16} = 21.86$ $P = 0.0001$ $P_{3,16} = 10.19$ $P = 0.0001$ $P_{3,16} = 33.34$ $P = 0.0001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | -            | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | post noc test | <i>Arg-1, P</i> < 0.0001                      | $F_{3,15} = 41.70$                    |
| S10A group ANOVA post hoc test $P = 0.0008$ $F_{2,6} = 29.91$ S10B $n = 3$ per two-way group ANOVA hoc test $P = 0.0008$ $P = 0.0008$ $P = 0.0008$ $P = 0.0001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | group        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <i>CD206, P</i> < 0.0001                      | $F_{3,15} = 27.12$                    |
| S10B $n = 3$ per group two-way ANOVA $n = 3$ per group ANOVA $n = 3$ per group ANOVA $n = 3$ per group two-way hoc test $n = 3$ per group $n = 3$ per group two-way hoc test $n = 3$ per group $n = 3$ per group two-way hoc test $n = 3$ per group $n = 3$ per group two-way hoc test $n = 3$ per group two-way hoc test $n = 3$ per group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S10A | •            | , and the second |               | P = 0.0008                                    | $F_{2,6} = 29.91$                     |
| S10B group ANOVA hoc test $Arg-1, P < 0.0001$ $F_{3,16} = 33.34$ $CD206, P < 0.0001$ $F_{3,16} = 58.55$ $p-p65, P = 0.0014$ $F_{3,16} = 8.358$ $p-JNK, P = 0.6773$ $F_{3,16} = 0.5157$ $p-ERK1/2, P = 0.7737$ $F_{3,16} = 0.3728$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | iNOS, $P < 0.0001$                            | $F_{3,16} = 21.86$                    |
| group ANOVA hoc test $Arg-1, P < 0.0001$ $F_{3,16} = 33.34$ $CD206, P < 0.0001$ $F_{3,16} = 58.55$ $p-p65, P = 0.0014$ $F_{3,16} = 8.358$ $p-JNK, P = 0.6773$ $F_{3,16} = 0.5157$ $p-ERK1/2, P = 0.7737$ $F_{3,16} = 0.3728$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLOD | n = 3 per    | two-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tukey's post  | CD16/32, P = 0.0005                           | $F_{3,16} = 10.19$                    |
| S10C $n = 3$ per two-way group ANOVA $p = 0.0014$ $p = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S10B | group        | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hoc test      | Arg-1, P < 0.0001                             | $F_{3,16} = 33.34$                    |
| S10C $n = 3 \text{ per group}$ two-way ANOVA $n = 3 \text{ per hoc test}$ two-way $n = 3 \text{ per hoc test}$ $n = 3  per hoc tes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | CD206, P < 0.0001                             | $F_{3,16} = 58.55$                    |
| S10C $n = 3$ per group two-way ANOVA Tukey's post hoc test $p$ -ERK1/2, $P = 0.3728$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | p-p65, P = 0.0014                             | $F_{3,16} = 8.358$                    |
| S10C group ANOVA hoc test 0.7737 $F_{3,16} = 0.3728$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | p-JNK, $P = 0.6773$                           | $F_{3,16} = 0.5157$                   |
| group ANOVA hoc test 0.7737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G10G | n = 3 per    | two-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tukey's post  | p-ERK1/2, $P =$                               | E 0.2720                              |
| 20 7 0 7000 7 0 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SIOC | group        | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hoc test      | 0.7737                                        | $F_{3,16} = 0.3728$                   |
| $p-p38, P = 0.7009$ $F_{3,16} = 0.4798$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | p-p38, P = 0.7009                             | $F_{3,16} = 0.4798$                   |
| p-c-Jun, $P = 0.8994$ $F_{3,16} = 0.1933$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | p-c-Jun, $P = 0.8994$                         | $F_{3,16} = 0.1933$                   |
| p-IKK $\alpha/\beta$ , P < $F_{3,16} = 15.42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | $p-IKK\alpha/\beta, P$                        | $F_{2,16} = 15 A2$                    |
| 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | n = 2 nor    | two wex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tukey's post  | 0.0001                                        | 1.3,16 - 13.42                        |
| S10D $n = 3$ per two-way and $n = 3$ per group ANOVA $n = 3$ per two-way hoc test $n = 3$ per group $n = 3$ per two-way hoc test $n = 3$ per two-way $n = 3$ per two-way hoc test $n = 3$ per two-way $n = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S10D | •            | two-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • •           | p-I $\kappa$ B $\alpha$ , $P < 0.0001$        | $F_{3,16} = 21.51$                    |
| group ANOVA not test total IkB $\alpha$ , $P = 0.0005$ $F_{3,16} = 10.34$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | group        | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | noe test      | •                                             | $F_{3,16} = 10.34$                    |
| n = 3 per two-way Tukey's post $n = 0.0004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CLOE | n = 3 per    | two-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tukey's post  | D = 0.0004                                    | E _ 0.517                             |
| S10E group ANOVA hoc test $P = 0.0004$ $F_{4,20} = 8.517$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S10E | group        | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hoc test      | P = 0.0004                                    | $F_{4,20} = 8.51/$                    |
| $n = 3$ per one-way Dunnett's Lysosomes, $P < \frac{1}{E} = 67.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLOE | n = 3 per    | one-way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dunnett's     | Lysosomes, P <                                | E = 67.11                             |
| S10F group ANOVA post hoc test 0.0001 $F_{3,8} = 67.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5101 | group        | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | post hoc test | 0.0001                                        | $\Gamma_{3,8} = 0/.11$                |

|      |                 |                  |                          | Homogenates, P < 0.0001     | $F_{3,8} = 44.97$   |
|------|-----------------|------------------|--------------------------|-----------------------------|---------------------|
| S10G | n = 3 per group | two-way<br>ANOVA | Tukey's post<br>hoc test | P = 0.0010                  | $F_{3,16} = 9.023$  |
| S10H | n = 3 per group | two-way<br>ANOVA | Tukey's post<br>hoc test | P < 0.0001                  | $F_{3,16} = 18.08$  |
| S10I | n = 3 per group | two-way<br>ANOVA | Tukey's post<br>hoc test | P = 0.0027                  | $F_{5,24} = 5.023$  |
| S10J | n = 3 per group | two-way<br>ANOVA | Tukey's post<br>hoc test | P = 0.0002                  | $F_{6,24} = 7.351$  |
| S10K | n = 3 per group | two-way<br>ANOVA | Tukey's post hoc test    | P = 0.0027                  | $F_{3,16} = 7.288$  |
| S10L | n = 3 per group | one-way<br>ANOVA | Dunnett's post hoc test  | P < 0.0001                  | $F_{7,16} = 110.0$  |
| S10M | n = 3 per group | one-way<br>ANOVA | Dunnett's post hoc test  | P < 0.0001                  | $F_{6,24} = 110.0$  |
| S10N | n = 3 per group | one-way<br>ANOVA | Dunnett's post hoc test  | P < 0.0001                  | $F_{2,6} = 102.7$   |
|      | n - 2 man       | tura urar        | Tulcay'a nast            | IKK $\alpha$ , $P = 0.0219$ | $F_{3,16} = 4.245$  |
| S10O | n = 3 per       | two-way<br>ANOVA | Tukey's post hoc test    | IKK $\beta$ , $P = 0.9052$  | $F_{3,16} = 0.1848$ |
|      | group           | ANOVA            | noc test                 | IKK $\gamma$ , $P = 0.8804$ | $F_{3,16} = 0.2210$ |
| S10P | n = 3 per group | two-way<br>ANOVA | Tukey's post hoc test    | P < 0.0001                  | $F_{3,16} = 16.27$  |