Figure S1.

Figure S2.

Figure S4.

Figure S5

Figure S6.

WT-Cas9

∆Uba5-Cas9

Figure S7.

Figure S1. IFNγ- and LPS-dependent iNOS expression in BV2 cells. Related to Figure 1. (A) Representative flow cytometry plots of two independent experiments showing iNOS expression in WT BV2 cells stimulated for 16 hrs with increasing concentrations of IFNγ and/or LPS.

Figure S2. Results of subpool library cells treated with LPS. Related to Figure 1. (A) Volcano plot of genes enriched in the top 10 % of iNOS2-high library BV2-Cas9 cells treated with 50 ng LPS/mL. The average log2 fold change (LFC) of all sgRNAs for each gene is plotted against the –log10(p-value) for each gene. Select genes of interest are labelled. (B) Comparison of gene-level average LFC from the LPS and IFNγ (10 U/mL) subpool screen results.

Figure S3. Validation of additional CRISPR screen hits. Related to Figure 2. (A) Average NO production in cells expressing sgRNAs targeting *Nos2* (2 independent experiments). (B) Average NO production in $\Delta Atg5$ and $\Delta Atg14l$ cells expressing empty vector, WT protein or known functional mutants. Data are represented as mean ± SEM of 3 independent experiments relative to $\Delta Atg5/\Delta Atg14l$ expressing WT protein stimulated with 10 U IFNγ/mL. (C) Average NO production in cells expressing sgRNAs targeting additional CRISPR screen hits. Data are represented as mean ± SEM of 4-6 independent experiments normalized to IFNγ-activated WT BV2:Cas9 cells transduced with lentivirus carrying empty vector. (2 independent experiments for *Bloc1s1*) * *P* < 0.05 determined by ANOVA with Tukey's multiple comparison test. ns = not statistically significant.

Figure S4. Expression of complemented proteins in $\Delta Ufsp2/\Delta Uba5/\Delta Ufc1$ cells. Related to Figure 3. (A) Flow cytometry plots showing Ty1 levels (detected using anti-Ty1 and AF647-conjugated secondary) in $\Delta Ufsp2/\Delta Uba5/\Delta Ufc1$ cells and cells reconstituted with WT protein or functionally inactive mutant protein or the UFIM mutant for *Uba5*. (B) Western immunoblot for Ty1-tagged WT protein or functionally inactive mutant protein or the UFIM mutant for *Uba5* in $\Delta Ufsp2/\Delta Uba5/\Delta Ufc1$ cells. Red arrows indicate presence of an additional band which may represent the intermediate thioester between Ty1-tagged Uba5/Ufc1 and Ufm1. Figure S5. Ufc1 decreases the steady state levels of mRNAs for *Nos2* in response to IFN_Y activation. Related to Figure 4. (A-B) RT–qPCR measurements of *Nos2* transcripts normalized to Actin transcripts in cells activated with IFN_Y for (A) 8 hr and (B) 24 hr. Data are represented as mean \pm SEM. * *P* < 0.05 determined by ANOVA with Tukey's multiple comparison test.

Figure S6. UFMylation regulates ER membrane expansion. Related to Figure 5 and Figure 6. (A) Western immunoblot representative images and measurements of the PDI to Actin band intensity ratio in $\Delta Ufsp2/\Delta Uba5/\Delta Ufc1$ cells and cells reconstituted with WT protein or functionally inactive mutant protein or the UFIM mutant for *Uba5*. Average PDI:actin band intensity ratio pooled from 4-5 independent experiments are shown as mean ± SEM relative to knockout cells expressing WT protein. Data are represented as mean ± SEM. * *P* < 0.05 determined by ANOVA with Tukey's multiple comparison test. (B) Immunofluorescence of the ER protein PDI in WT and $\Delta Uba5/\Delta Ufc1/\Delta Ufm1/\Delta Ufsp2$ cells. (C) Representative immunofluorescence images of PDI in WT-Cas9 and $\Delta Uba5$ -Cas9 expressing control vector or sgRNAs targeting *Ern1*.

Figure S7. Generation of *Ufsp2^{t/f}-LysM-cre***mice. Related to Figure 7.** (A) *Ufsp2* floxed allele strategy. (B) Western immunoblot for Ufsp2 and beta-actin in the adherent fraction of peritoneal exudate cells from the indicated mice (4 independent mice from each genotype).