SI Appendix Figures and Tables:

SI Appendix, Fig. S1. Gel filtration profile of SARS-COV-2-RBD/bACE2-Rm complex protein. (A) Gel filtration profiles of bACE2-Rm (red), SARS-COV-2-RBD (yellow) and the bACE2-Rm and SARS-COV-2-RBD complex (blue) were analyzed by size-exclusion chromatography as indicated. (B) The separation profiles of each pooled samples on SDS-PAGE are shown in reducing (+DTT) or non-reducing (-DTT) conditions.

SI Appendix, Fig. S2. The distribution of Rhinolophus macrotis. Rhinolophus macrotis

mainly distribute in Southeast Asia, such as southern China, Bangladesh, India, Indonesia (Sumatra), Lao People's Democratic Republic, Malaysia (Peninsular Malaysia), Myanmar, Nepal, Pakistan, Thailand, Vietnam, Philippines. This figure is generated based on the findings from Vuong Tan Tu, et al. 2017 J Zool Syst Evol Res. (55) 177-198. doi.org/10.1111/jzs.12169

SI Appendix, Fig. S3. SPR analysis of the binding between bACE2-Rm-Y41H mutant and bACE2-Rm-wt. SPR assay characterisation of the binding of wild type bACE2-Rm-wt (A) or bACE2-Rm-Y41H mutant with SARS-COV-2 virus RBD. No substantial binding was observed with bACE2-Rm-Y41H mutant. The fits of the binding curves are shown in red.

SI Appendix, Fig. S4. Flow cytometry based assay characterizing the binding of the SARS-CoV-2 RBD with the bACE2 from *Rhinolophus sinicus* (R.s-bACE2).

SI Appendix, Table. S1. Binding profiles of SARS-CoV-2-RBD and SARS-CoV-RBD

Interaction pairs	Ka ¹ (1/Ms)	$\mathrm{Kd}^2(1/\mathrm{s})$	KD(M)
SARS-COV-2-RBD/bACE2-Rm-E.coli	1.02×10^{5}	1.32×10 ⁻¹	1.30×10 ⁻⁶
SARS-COV-2-RBD/bACE2-Rm-insect	4.61×10^4	6.92×10 ⁻²	1.50×10^{-6}
SARS-COV-2-RBD/bACE2-Rm-293T cell	4.93×10^{5}	1.37×10^{-1}	2.78×10^{-6}
SARS-CoV-RBD/bACE2-Ra	-	-	-
SARS-COV-2-RBD/hACE2	2.93×10^{5}	5.97×10 ⁻¹	2.04×10 ⁻⁸

¹ ka, association rate constant.

² kd, dissociation rate constant.

statistics	
	bACE2-Rm/SARS-CoV-2-RBD
Data collection	
Space group	I422
Wavelength (Å)	0.97853
Unit cell dimensions	
a, b, c (Å)	163.20, 163.20, 211.67
α, β, γ ()	90, 90, 90
Resolution (Å)	50-3.2 (3.31-3.20)*
Unique reflections	24258 (2387)
R _{merge}	0.163/1.790
Ι/σ	6 (4.3)
Completeness (%)	99.9 (100)
Redundancy	13.4 (13.5)
Refinement	
Resolution (Å)	48.1-3.184
R_{work} / R_{free}	0.2185/0.2708
No. atoms	
Protein	7316
Ligands	1
Water	0
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles ()	0.682
Ramachandran plot	
Favored (%)	99.11
Allowed (%)	0.89

SI Appendix, Table. S2. Crystallographic data collection and refinement statistics

Outliers (%)0.00*Values in parentheses are for highest-resolution shell.

SI Appendix, Table. S3. Cryo-EM data collection, refinement and validation

statistics of bACE2

	bACE2-Rm
Data collection and processing	
Magnification	130K
Voltage (kV)	300
Electron exposure (e^{-7} Å ²)	50
Defocus range (µm)	-1.8 ~ -2.2
Pixel size (Å)	0.99375
Symmetry imposed	C1
Final particle images (no.)	62,289
Map resolution (Å)	3.2
FSC threshold	0.143
Refinement	
Initial model used (PDB code)	6LZG
Model resolution range (Å)	up to 3.2
FSC average (model to map)	
Whole unit cell	0.7702
Around atoms	0.7738
Model composition	
Non-hydrogen atoms	4853
Protein residues	4852
Ligands	1
<i>B</i> factors ($Å^2$)	
Protein	70.0
Ligand	76.5
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles ()	0.418
Validation	
MolProbity score	1.45
Clashscore	4.88
Poor rotamers (%)	0.00
Ramachandran plot	
Favored (%)	96.80
Allowed (%)	3.20
Outliers (%)	0.00

SARS-CoV-2-R		
BD	humanACE2	bACE2-Rm
K417	D30 (4, <u>1</u>)	D30 (6, <u>1</u>)
G446	Q42 (4, <u>1</u>)	E42 (4)
Y449	D38 (9 <u>, 1</u>), Q42 (4, <u>1</u>)	D38 (9, <u>1</u>), E42 (8, <u>1</u>)
Y453	H34 (5, <u>1</u>)	S34 (3)
L455	D30 (2), K31 (2), H34 (9)	D30 (7), K31 (3), S34 (2)
F456	T27 (5), D30 (4), K31 (5)	K27 (11), D30 (4), K31 (4)
Y473	T27 (1)	K27 (6, <u>1</u>)
A475	S19 (3, <u>1</u>), Q24 (4),T27 (2)	E24 (8, <u>1</u>), K27 (2)
G476	S19 (4), Q24 (5)	E24 (9)
E484	K31 (1)	K31 (2, <u>1</u>)
F486	L79 (2), M82 (9), Y83 (11)	L79 (2), N82 (7), Y83 (8)
N487	Q24 (15, <u>1</u>), Y83 (8, <u>1</u>)	E24 (16, <u>1</u>), Y83 (5, <u>1</u>)
V/80	T27 (7), F28 (7), K31 (6), Y83 (1)	K31 (9), F28 (10), Y83 (1, <u>1</u>), K27 (4),
1407		E24 (1)
F490	K31 (2)	K31(3)
L492		
Q493	K31 (3), H34 (6), E35 (8)	K31 (7), S34 (6), K35 (3)
G496	D38 (5), K353 (7, <u>1</u>)	D38 (4), K353 (6, <u>1</u>)
0498	D38 (1), Y41 (8), Q42 (8, <u>3</u>), L45	Y41 (7), D38 (4), E42(3), K353 (2)
Q + 70	(3)	
P499		K330 (1)
Т500	Y41 (7, <u>1</u>), L45 (1), N330 (8),	K330 (11, <u>1</u>), Y41 (10, <u>1</u>), L45 (3), D355
1500	D355 (8, <u>1</u>), R357 (3)	(9), R357 (3)
N501	Y41 (8, <u>1</u>), K353 (11)	Y41 (14, <u>1</u>), K330 (1), K353 (11)
G502	K353 (4, <u>1</u>), G354 (7), D355 (1)	K353 (6, <u>1</u>), G354 (6), D355 (1)
Y505	E37 (7), K353 (28), G354 (4),	K353 (27), E37 (8, <u>1</u>) , R393 (2), G354 (2)
2000	R393 (1)	
Total	288, 16	311,14

SI Appendix, Table. S4. Comparison of SARS-CoV-2-RBD binding to hACE2 and

The numbers in parentheses of hACE2 and bACE2-Rm residues represent the number of vdw contacts between the indicated residues with SARS-CoV-2-RBD. The numbers with underline suggest numbers of potential H-bonds between the pairs of residues. wdw contact was analyzed at a cutoff of 4.5 Å and H-bonds at a cutoff of 3.5

bACE2-Rm

	24	27	28	30	31	34	35	37	38	41	42	45	79	82	83	330	353	354	355	357	393	Substitutions
ADN93471 Rhinolophus_macrotis	Ε	K	F	D	K	S	K	Е	D	Y	Е	L	L	Ν	Υ	К	К	G	D	R	R	
QMQ39222.1 Rhinolophus affinis	R	1	F	D	Ν	R	Е	Ε	Е	Y	Q	L	L	Ν	Υ	Ν	К	G	D	R	R	7
XP_023609439 Myotis_lucifugus	К	1	F	E	Ν	S	К	Ε	D	н	Е	L	L	т	Y	Ν	К	G	D	R	R	7
ADJ19219 Rousettus_leschenaultii	L	т	F	Е	Κ	т	Ε	Ε	D	Y	Q	L	L	т	Y	К	К	G	D	R	R	7
BAH02663 Rhinolophus_ferrumequinum	L	К	F	D	D	S	E	Ε	Ν	н	Q	L	L	Ν	F	Ν	К	G	D	R	R	8
ADN93472 Rhinolophus_sinicus	Е	1	F	D	К	т	К	Е	D	н	Q	L	L	Ν	Y	Ν	к	G	D	R	R	5
ADN93477 Rhinolophus_pusillus	К	К	F	Ν	D	S	Е	Ε	D	Y	Q	L	L	Ν	Y	Ν	К	G	D	R	R	6
ACM45790 Rhinolophus_ferrumequinum	L	т	F	Е	К	т	Е	Е	D	Y	Q	L	L	т	Y	к	К	G	D	R	R	7
BAF50705 Rousettus_leschenaultii	L	Т	F	E	К	Т	E	Ε	D	Y	Q	L	L	Т	Y	К	К	G	D	R	R	7
XP_015974412 Rousettus_aegyptiacus	L	т	F	E	К	т	Е	Е	D	Y	Q	L	L	т	Y	к	к	G	D	R	R	7
XP_011361275 Pteropus_vampyrus	L	т	F	E	К	т	Е	Е	D	Y	Q	L	L	Α	Y	к	к	G	D	R	к	7
XP_006911709 Pteropus_alecto	L	т	F	E	К	т	Е	Ε	D	Y	Q	L	L	Α	Y	К	К	G	D	R	К	7
XP_019522936 Hipposideros_armiger	L	E	F	D	К	т	Е	Ε	D	н	L	L	R	D	Y	Ν	К	G	D	R	R	8
ADN93470 Rhinolophus_ferrumequinum	L	К	F	D	D	S	Ε	Ε	Ν	н	Q	L	L	Ν	F	Ν	К	G	D	R	R	8
ALJ94034 Rhinolophus_landeri	L	Т	F	D	D	S	Α	Ε	Ν	Y	Q	L	н	Ν	F	Ν	К	G	D	R	R	9
ALJ94035 Rhinolophus_alcyone	L	1	F	D	Ν	S	Е	Е	Ν	н	Q	L	н	Ν	F	Ν	к	G	D	R	R	10
ABU54053 Rhinolophus_pearsonii	R	т	F	D	К	н	Е	Ε	D	н	Q	L	L	D	Y	Ν	К	D	D	R	R	9
ACT66275 Rhinolophus_sinicus	L	1	F	D	Е	S	Е	Ε	Ν	Y	Q	L	L	Ν	Y	Ν	К	G	D	R	R	7
ADN93475 Rhinolophus_sinicus	R	т	F	D	Е	S	Е	Е	Ν	Y	Q	L	L	Ν	Y	Ν	К	G	D	R	R	7
AGZ48803 Rhinolophus_sinicus	Е	М	F	D	К	т	К	Е	D	н	Q	L	L	Ν	Y	Ν	к	К	D	R	R	6
XP_028378317 Phyllostomus_discolor	D	К	F	E	Ν	Ν	Е	Е	Е	Y	Q	L	L	Ν	Y	Ν	К	К	D	R	R	9
XP_024425698 Desmodus_rotundus	Е	Т	F	E	Ν	т	Е	Е	E	Y	Q	L	1	т	Y	Ν	Ν	G	D	R	R	11
XP_016058453 Miniopterus_natalensis	К	К	F	E	G	S	Q	Е	D	F	Е	L	L	T	Y	Ν	К	N	D	R	R	8
ACT66266 Pipistrellus_abramus	Е	R	F	V	К	н	E	Е	Ν	н	Е	L	T	G	Y	D	К	N	D	R	R	10

SI Appendix, Table. S5.Conservation analysis of the residues involved in ACE2 binding to SARS-CoV-2-RBD among 31 bats

XP_027986092 Eptesicus_fuscus	Ν	1	F	E	Ν	S	E	Е	D	н	Е	L	L	Т	F	Ν	К	Ν	D	R	R	10
XP_008153150 Eptesicus_fuscus	Ν	Т	F	Ε	Ν	S	E	Ε	D	н	Ε	L	L	т	Y	Ν	к	G	D	R	R	7
XP_015426919 Myotis_davidii	K	1	F	D	Ν	S	К	Е	D	н	Е	L	L	т	Y	Ν	к	G	D	R	R	6
XP_006775273 Myotis_davidii	K	Т	F	D	Ν	S	К	Ε	D	н	Ε	L	L	Т	Y	Ν	к	G	D	R	R	6
XP_023609437 Myotis_lucifugus	K	1	F	Ε	Ν	S	К	Е	D	н	Е	L	L	т	Y	Ν	к	G	D	R	R	7
XP_014399783 Myotis_brandtii	K	1	F	Ε	Ν	S	К	Е	D	н	Е	L	L	т	Y	Ν	к	G	D	R	R	7
XP_014399782 Myotis_brandtii	К	1	F	Ε	Ν	S	К	Е	D	н	Ε	L	L	т	Y	Ν	К	G	D	R	R	7
XP_014399780 Myotis_brandtii	К	1	F	Е	Ν	S	К	Е	D	н	Е	L	L	т	Y	Ν	К	G	D	R	R	7

Red letters indicate the substitutions in the ACE2 of 31 bats.