

Supplementary FIGURE 1. *arHIF434-Ct* displays an earlier leaf senescence than *arHIF434-Col.* **(A)** *arHIF434* is represented with horizontal bars (black for *Col-0* allele, white for *Ct-1* allele, grey for heterozygous). Dashed vertical bars represent markers delimiting the candidate interval on chromosome 4. Numbers correspond to marker position (Mb). Position of *ACL1* and *ACD6* genes are shown above the arHIF. **(B)** Rosette leaves of 5-week-old plants. Upper rows: *arHIF434-Ct*, lower rows: *arHIF434-Col*. Scale bar corresponds to 1 cm. **(C)** Percentage of senescent leaves in *arHIF434-Ct* (yellow triangle line) and *arHIF434-Col* (dark green circle line) during the reproductive phase. Flowering transition occurred in average at 23.7 DAS for *arHIF434-Col* and 23.9 DAS for *arHIF434-Ct*.

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
Col-0 Ct-1	HDSSG HDSSG	ADLDRIEF ADLDRIEF	iqrshlyshdqi iqrshlyshdqi	RKDFSHSGGV(RKDFSHSGGV(ATTSPTGDTEI ATTSPTGDTEI	PYPKFRTNLKI PYPKFRTNLKI	.SDLFALPGE .SDLFALPGE	DVENTPEIFGO DVENTPEIFGO	GMSNGEKECLE GMSNGEKECLE	KLRSNGTPHE Klrsngtphe	RYKSNTGDS Ryksntgds	ELHIAAKAGHL ELHIAAKAGHL	ELYKEIIFEC ELYKEIYFEC	PCLLFE PCLLFE
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
Col-0 Ct-1	QNS 5R QNS 5R	ROTPLHVAT Rotplhvar	THGGHTKYYEAI AHGGHTKYYEAI	LVASVTSALA LVASVTSASA	SLSTEESEGLI SLSTEESE <mark>R</mark> LI	IPHYLKDE DGI IPHY <mark>RKDE</mark> DGI	NTALYYAIEG NTALYYAIEG	RYLEMATCLYI Rylematclyi	NADKDAPF ⁻ LGH NADKDAPF ⁻ LGH	INKGISSLYEF INKGISSLYEF	aydagnkfedi Aydagnkfedi	_YKAILKTTDE _YKAILKTTDE	INVDREVRKFN INVDREVRKFN	ildsklq Ildsklq
	261 	270	280	290	300	310	320	330	340	350	360	370	380	390
Col-0 Ct-1	GNKHL GNKHL	.AHYALKAK .AHYALKAK	KSIGYLDYILDI KSIGYLDYILDI	EYPSLMD eqdi Eypslmd <mark>eqdi</mark>	DGRTCLSYGI DGRTCLSYGI	ISIGYYKGLCI Isigyykglci	NILNRSTKGV NILNRSTKGV	YV <mark>CDQ</mark> DGSFP3 YV <mark>CDQ</mark> DGSFP3	CHSAAKNEHYE CHSAAKNDHYE	IIKEFIKRCF IIKEFIKRCF	Paskyl <mark>lnr</mark> l(Paskyl <mark>lnr</mark> l(GONILHYAAKN GONILHYAAKN	ieasltayml) Ieasltayml)	HDKDTK ILDKDTK
	391 	400	410	420	430	440	450	460	470	480	490	500	510	520 1
Col-0 Ct-1	HL GYG HL GYG	iQDYDGNTF iQDYDGNTF	?LHLAYMNHDFI ?LHLAYMNHDFI	DSITCLASRNI DSITCLASRNI	IEILK <mark>LRNKSI</mark> IEILK <mark>LRNKS</mark> I	ilrardiaesi ilrardiaesi	EVKPNYIFHE EVKPNYIFHE	RATLALLLYA) RATLALLLYA)	CHSSGFESVKS CHSSGFESVKS	SLT <mark>t</mark> qsypldf Sltkqsypldf	?KKNRHYYNAI ?Knnrhyynai	LVVAALVATV LVVAALVATV	/TFAAGFTIPO /TFAAGFTIPO	iGYISDS iGYISDS
	521 	530	540	550	560	570	580	590	600	610	620	630	640	650 1
Col-0 Ct-1	KKPNL KKPNL	.GRATLATN .GRATLATN	IPTLFIFLLFD: IPTLFIFLLFD:	ELANQSSVATI Elanqssvati	ICTLINAQLGI ICTLINAQLGI)LALILKSLH)PNLIRKSLH *	/ALPLLLFSL /ALPLLLFSL	LCMPYAFLFG\ LCMPYAFLFG\	/ITAIAHYKAL /ITAIAHYKAL	LYTISIISGO LYTISIISGO	SFFL <mark>F</mark> AIFILO SFFL <mark>C</mark> AIFILO	3PHYHLQRS <mark>hl</mark> 3PhyhlQrsyf — *	PPSSGIFLKT PPSAGIYLRT	FMLTID FMLTID
Col-0 Ct-1	651 ISELF ISEFF	660 VILIKACF VRKIKTCF	670 1 GCVACSE -GCVACE											

Supplementary FIGURE 2. Protein sequence alignment of ACD6 from *Col-0* and *Ct-1* accessions. Numbers indicate amino acid position from the first Methionine. Grey box correspond to ankyrin repeats and black lines to transmembrane domains as predicted using SMART website (<u>http://smart.embl-heidelberg.de/</u>). * Amino acids 566 and 634.

Supplementary FIGURE 3. Expression of *ACD6* in *arHIF434-Ct* and *arHIF434-Col*. Plants were grown under long days (8 h light/16 h dark) for 35 d after sowing and then harvested. Transcript levels of *ACD6* **(A)**; *SAG12* **(B)** and *RBCS1A* **(C)** marker genes of leaf senescence, and *PR1* **(D)** involved in SA signaling process, were monitored using RT– qPCR and specific primers (<u>Supplementary Table S1</u>). Expression of *ACD6* was normalized using *PP2AA3* and *APC2*. Expression of *PR1*, *SAG12* and *RBCS1A* were normalized using *PP2AA3*.

Supplementary FIGURE 4. Effect of *ACD6* on N and C percentages in the different parts of the plants. N and C percentages in rosette **(A,B)**, stem **(C,D)**, and seeds **(E,F)**. N and C percentages for the four genotypes (*arHIF434-Ct*, *arHIF434-Col*, *Col-O* and *acd6-2*) are shown. Least-square means from 3 independent experiments \pm s.e. are shown (n \geq 18 for each genotype). Different letters indicate significant difference (Tukey's test, p-value \leq 0.05).

Supplementary FIGURE 5. ACD6 does not affect N translocation (T1) and remobilization (T2) from old leaves to young leaves during the vegetative phase. The four genotypes (*arHIF434-Ct*, *arHIF434-Col*, *Col-O* and *acd6-2*) were grown on sand in short day conditions (8 hours). After 48h of labelling with ¹⁵NO3, lower (ranks 1 to 10) and upper (ranks >10) leaves were harvested and grouped. Proportion of total ¹⁵N is measured in the two groups of leaves, just after the labelling period (T1) to estimate the N translocation, and 7 days after (T2) to estimate the N remobilization from old leaves to young leaves during vegetative phase.